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Abstract 

We discuss examples of complex systems composed of many interacting subsystems. We focus 
on those systems displaying nontxivial long-range correlations. These include the one-dimensional 
sequence of base pairs in DNA, the sequence of flight times of the large seabird Wandering 
Albatross, and the annual fluctuations in the growth rate of business firms. We review formal 
analogies in the models that describe the observed long-range correlations, and conclude by 
discussing the possibility that behavior of large numbers of humans (as measured, e.g., by 
economic indices) might conform to analogs of the scaling laws that have proved useful in 
describing systems composed of large numbers of inanimate objects. 

1. Introduct ion 

In recent years anomalous fluctuations have been discovered in a remarkably wide 
variety of phenomena from DNA sequences [ 1 ] and heartbeat intervals [2] to complex 
behavior of animals [3] and even to behavior of economical systems such as stock 
market fluctuations [4] or fluctuations of firm sales [5,6]. The existence of anomalous 
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fluctuations may indicate analogies in the underlying mechanisms in totally different 

systems which from the first glance do not have anything in common with each other 

[7]. 
We will concentrate on two such analogies: 

1. Long-range correlations in DNA sequences and anomalous power law dependence of 
sales fluctuations of industrial firms on their size. 

2. Patterns in DNA sequences and patterns of sea-bird behavior. 
The paper is organized as follows. In Section 2 we discuss the general concept of 

long-range correlations in DNA sequences, In Section 3 we discuss the duplication- 
deletion model of DNA evolution related to the model of hierarchical firm structure, 
discussed in Section 4. In the final two sections we discuss the l.~vy-walk models of 
long range correlations in DNA (Section 5) and sea-bird foraging (Section 6). Finally, 
we conclude with some discussion of the possibility that behavior of large numbers of 
humans (as measured, e.g., by economic indices) might conform to (or be usefully 
understood using) analogs of the scaling laws that have proved useful in describing 
systems composed of large numbers of inanimate objects. 

2. Long-range correlations in DNA sequences 

In order to study the scale-invariant long-range correlations of a DNA sequence, we 
first introduce a graphical representation of DNA sequences, which we term a fractal 
landscape or DNA walk (Fig. 1) [1]. For the conventional one-dimensional random 
walk model [8,9], a walker moves either "up" [u(i)  = +1] or "down" [u(i)  = - 1 ]  
one unit length for each step i of the walk. For the case of an uncorrelated walk, the 
direction of each step is independent of the previous steps. For the case of a correlated 
random walk, the direction of each step depends on the history ("memory") of the 

walker [ 10-12]. 
There are actually many possible rules of mapping of DNA sequence onto one- 

dimensional random walk [ 11,13]: 
(i) u(i) = +1 for C or T and u(i) = -1  otherwise ("purine-pyrimidine" rule); 

(ii) u(i) = +1 for C or G and u(i)  = - 1  otherwise; ("hydrogen bond" rule) 
and so on, see Ref. [ 14] and references therein. The energy rule as well as the analogy 
of the DNA sequences and the Ising system was proposed, and the existence of large 
domains of CG rich versus AT rich regions was observed (see, e.g., Ref. [13] ). The 
question we asked was whether such a walk displays only short-range correlations (as 
in an n-step Markov chain) or long-range correlations (as in critical phenomena and 
other scale-free "fractal" phenomena). 

The DNA walk allows one to visualize directly the fluctuations of the purine- 
pyrimidine content in DNA sequences: Positive slopes correspond to high concentration 
of pyrimidines, while negative slopes correspond to high concentration of purines. Vi- 
sual observation of DNA walks suggests that the coding sequences and intron-containing 
noncoding sequences have quite different landscapes. Landscapes for intron-containing 
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Fig. 1. The DNA walk representations of 8 DNA sequences from the MHC family. DNA landscapes are plotted 
so that the end points have the same vertical displacement as the starting points. The graphs are for yeast, 
amoeba, worms: C. elegans, Brugia malayi, drosophila, chicken, rat and human (from top to bottom, left to 
right). The dark areas denote coding regions of the genes. The DNA walks for the genes show increasing 
"complexity" with evolutions. After [ 33 ]. 

sequences show very jagged contours which consist of  patches of  all length scales, rem- 

iniscent of  the disordered state of  matter near critical point. On the other hand, coding 

sequences typical ly consist of  a few lengthy regions of  different strand bias, resembling 

domains in the system in the ferromagnet state. These observations can be tested by 

rigorous statistical analysis. Such DNA landscapes naturally motivate a quantification 

of  these fluctuations by calculating the "net displacement" of  the walker after ~ steps, 

which is the sum of  the unit steps u( i )  for each step i. Thus y(e) - ~-~i~=1 u(i). 
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An important statistical quantity characterizing any walk [8,9] is the root mean square 
fluctuation F ( t )  about the average of the displacement; F ( t )  is defined in terms of the 
difference between the average of the square and the square of the average, 

F 2 ( t )  - l a y ( t )  - Ay(t)]  2 = l a y ( t ) ]  2 -- a y ( t )  2, ( l )  

of a quantity a y ( t )  defined by A y ( t )  --  y ( t o  + t )  -- y ( e o ) .  Here the bars indicate an 
average over all positions t0 in the gene. Operationally, this is equivalent to (a) using 
calipers preset for a fixed distance t, (b) moving the beginning point sequentially from 
t0 = 1 to t0 = 2 , . . -  and (c) calculating the quantity Ay(t)  (and its square) for each 
value of t0, and (d) averaging all of the calculated quantities to obtain F2(t) .  

The mean square fluctuation is related to the auto-correlation function 

C ( t )  - u ( t o ) u ( t o  + t )  - u(t0) 2, (2) 

through the relation 

F2(t)  = ~ C ( j -  i). (3) 
i=1 j=l 

A different way [ 14-16] of quantifying the fluctuations in DNA sequences is to 
compute power spectrum S( f )  of the sequence u(i), which is obtained by (a) Fourier 
transforming the sequence {u(i)} and (b) taking the squared absolute value of complex 
Fourier component with frequency f .  For a stationary sequence, the power spectrum is 
the Fourier transform of the correlation function. 

The calculation of F ( O  can distinguish three possible types of behavior. 
(i) If the base pair sequence were random, then C( t )  would be zero on average 

[except C(0) = 1], so F ( t )  ,.o tl/2 (as expected for a normal random walk). 
(ii) If there were local correlations extending up to a characteristic range R (such as in 

Markov chains), then C( t )  ~-, e x p ( - t / R ) ;  nonetheless the asymptotic ( t  >> R) 
behavior F( t) ~ gl/2 would be unchanged from the purely random case. 

(iii) If there is no characteristic length (i.e., if the correlation were "infinite-range"), 
then the scaling property of C( t )  would not be exponential, but would most likely 
to be a power law function, and the fluctuations will also be described by a power 
law 

F ( t )  ,-, f'~, (4) 

with a ~ 1/2. 
In the last case we expect power-law behavior for both the power spectrum and the 
correlation function, 

S ( f )  ~ ( l / f )  B, (5) 

and 

C(£) ~ ( l /g )  v. (6) 
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The correlation exponents a,  fl and y are not independent, since [ 10,11] 

1 + / 3  2 - ~ ,  
oz = - ~  - -T- (7) 

For non-stationary, "patchy", sequences, such as coding DNA sequences the behavior 

of F(g) is not linear on the log-log plot: its slope undergoes a crossover from 0.5 for 

small g to 1 for large g. However, if a single patch is analyzed separately, the log-log 

plot of F(g) is again a straight line with the slope close to 0.5. This suggests that within 

a large patch the coding sequence is almost uncorrelated [ 1,17,18]. 

On the other hand, the data for intron-containing and intergenic (i.e. noncoding) 

sequences are more linear on this double logarithmic plot and can be well approximated 

by a straight line with slope a substantially larger than the prediction for an uncorrelated 
walk, a = 1/2, thus providing direct experimental evidence for the presence of long- 
range correlations. 

In order to be able to correctly quantify the fluctuations in patchy sequences, with- 
out splitting them into separate patches, we develop the detrended fluctuation analysis 

(DFA) described in detail in Refs. [ 14,19] which is based on the computation of the de- 

trended fluctuation Fd(g), and takes into account the local trend in each patch (Fig. 2). 
Thus DFA is designed to treat sequences with statistical heterogeneity such as DNA's 

known mosaic structure ("patchiness") arising from non-stationarity of nucleotide con- 

centration. On the other hand, for stationary sequences, such as inverse Fourier transform 

of a given power spectrum with random phases [ 11,20,21 ], DFA produces exactly the 

same results as original fluctuation function analysis. The advantage of the DFA method 

is that the Fd(g) function for a patchy landscape that consists of alternating uncorre- 
lated patches of fixed length s c has a slope a = 1/2 for all length scales g < s c and then 
indicates a sharp maximum in a around g = s ¢. Thus DFA is able to detect characteristic 

length scales the same way the standard power spectrum technique does, but it is more 
accurate due to the fact that F2(g) is a double summation of C(g).  Thus it would seem 
that the DFA is more useful than the power spectrum method due to reduced noise. 
For a systematic analysis of the finite size effects on the exponent or, see [22] and for 

applications of long-range correlations see [ 23 ]. 
The articles by Peng [1], Li [15,24], Voss [16], Karlin and Brendel [17], and 

Arneodo [ 25 ] have raised a question in computational molecular biology whether long- 
range correlations are present in both coding and noncoding DNA or only in the latter. 
To answer this question, we consider [14] all 33 301 coding and all 29 453 noncod- 
ing eukaryotic sequences - each of length larger than 512 base pairs (bp) - in the 
present release of the GenBank to determine whether there is any statistically significant 
distinction in their long-range correlation properties. Standard power specrum analysis 
Fig. 3a) indicates that coding sequences have practically no correlations in the range 
from 10 bp to 100 bp (spectral exponent fl 4- 2SD = 0.00 4- 0.04 or a = 0.50 + 0.02). 
In contrast, for noncoding sequences, the average value of the spectral exponent fl is 
positive (/3 = 0.16 ± 0.05 or a = 0.58-4-0.03), which unambiguously shows the pres- 
ence of long-range correlations. We also separately analyze the 874 coding and 1157 
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Fig. 2. "DNA walk" generated by a subsequence of the bacteriophage ,~ genome. The detrended fluctuation 
analysis (DFA) is applied in (a) to box size g = 100, and in (b) to box size g = 200. Shown in each box is 
the least squares fit to the data in that box. Note that the typical variance for a box in (b) is larger than for a 
box in (a). The quantitative fashion whereby the variance increases with box size determines the long-range 
correlation exponent a. 

noncoding sequences which have more than 4096 bp (Fig. 3b), and find a larger region 

of  power law behavior. We calculate the probability that these two data sets (coding 

and non-coding) were drawn from the same distribution, and we find that it is less 

than 10 - l° .  We obtain independent confirmation of  these findings using the method of  

detrended fluctuation analysis. The near-perfect agreement between the two indepen- 

dent analysis methods, FFT and DFA, increases the confidence in the reliability of  our 

conclusion. Thus the coding sequences are practically uncorrelated up to the length of  

coding sequence o f  single protein, which rarely exceeds several thousands nucleotides, 

while non-coding sequences and entire chromosomal regions including both coding and 

non-coding sequences have long-range correlations of  all length scales. 

3. Duplication-mutation model of DNA evolution 

The question arises whether these long range correlations in non-coding DNA se- 
quences and the entire chromosomes are the simple consequence of  patches of  DNA 

with different nucleotide concentration [ 17]. Indeed, how can power law correlations 
arise in the one-dimensional system such as DNA, where correlations should decay ex- 
ponentially with distance between nucleotides in analogy with spins of  one-dimensional 
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Fig. 3. (a) Power spectra averaged over all eukaryotic sequences longer than 512 bp, obtained by FFT with 
window size 512. Upper curve is average over 29 453 coding sequences; lower curve is average over 33 301 
noncoding sequences. The straight lines arc least squares fits for second decade (Region M).  The values of f l  
measured as the slopes of the fits are 0.03 and 0.2l, respectively. (b) Same data for all sequences larger than 
4096 bp, obtained by FFT with window size of 4096. The average is computed over 874 coding and 1 ! 57 
noncoding sequences. Note that for high frequencies, the power spectra for both window sizes practically 
coincide. In the region of frequencies f < 1/! 00 bp- !  (Region H on Fig. 3a), the power spectra in (a) bend 
upward from the apparent straight ]inc. For (b) (larger windows) the S(f )  spectra have constant slope over 
more than one decade (region M) .  The fits arc the same for both (a) and (b): for coding,/~ = 0.04, while 
for noncoding, ,6 = 0.21. 
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Ising models? One of the possible answers to this question is the duplication-mutation 

model of DNA evolution suggested by Li [26]. (See also Bell [27] and Sutherland and 

Richards [28] for other hypotheses.) 
In this model the time axes serves as an additional spatial dimension which connects 

distant segments of DNA which have been developed from a single ancestor. 

The model is based on two assumptions both of which are well biologically motivated: 

1. Every nucleotide can mutate with certain probability. 

2. Every nucleotide can be duplicated or deleted with certain probability. 

First phenomenon is known as point mutation which can be caused by random chemi- 

cal reactions such as methylation [ 29]. Second phenomenon often happens in the process 

of cell division (mitosis and myosis) when pairs of sister chromosomes exchange seg- 

ments of their DNA (genetic crossover). If  the exchanging segments are of identical 
length the duplication does not happen. However, if two segments differ in length by 

n nucleotides, the chromosome that acquires larger segment obtains an extra sequence 

of length n which is identical to its neighbor, while another chromosome loses this se- 

quence. Thus a tandem repeat of length n appears on one of the sister chromosomes. In 
many cases duplications can be more evolutionary advantageous than deletions. In this 

case lengthy tandemly repeated regions will emerge from a single repeat. For simplicity 

we will start with a model similar to the original model of Li [26] which neglects 
deletions and deals with duplication of single nucleotides (n = 1). Next we will discuss 

the implications of deletions. 

Schematically, this model can be illustrated by Fig. 4a. Each level of the tree-like 
structure represents one step of evolution process during which each nucleotide always 

duplicates and with probability Pm also mutates. For simplicity we assume only two 
types of nucleotides a and b (say purine vs. pyrimidine) each of which is represented 

by a step up or down in the DNA walk representation. After k steps, this process will 
lead to a sequence of 2 k nucleotides which is represented by DNA landscape, shown 

below. The total excess of purines over pyrimidines 

2 k 

A y  = ~ ui, (8) 
i=1 

is equal to the difference in heights of the starting and the ending points of the walk. 
In the following we compute explicitly the correlation 

C ( ~) = (uiui+~) (9) 

between nucleotides which are ~ nucleotides apart from each other along the resulting 
sequence. The reason of why the correlations are now long-range is obvious. Indeed, 
the nucleotides which are/~ = 2 k' apart from each other in space are only 2k I apart from 
each other in time, since they are both descendants of one common ancestor k I = log 2 g 
generations before. The correlation decay exponentially with k ~ and hence as a power 
law of g. 

Simple calculations yield 
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Fig. 4. (a) Schematic representation of the most simple example of duplication-mutation process proposed by 
W. Li. Originally the sequence consists of only one nucleotide A. At any time step, represented by a certain 
horizontal level of the tree each nueleotide duplicates and some of them mutate with probability Pm << 1. 
Mutation events are shown by dashed lines. For simplicity we assume only two nucleotides A and T. The DNA 
walk representation of the obtained sequence is shown below the tree. (b) Analogous plot for the structure 
of a firm. Dashed lines correspond to modifications of the "bosses" decisions by lower level management. To 
total change in sales can be calculated by adding changes ui of each branch of a firm listed below the tree. 

t 2 In( I --2pro ) 
(UiUi+e) = (1 -- 2pro) 2k = ~  1.2 . ( 1 0 )  

Thus  

2 In(  1 - 2pm) 
y = , ( 1 1 )  

l n 2  

and,  u s ing  ( 7 ) ,  

a = l  ] l n ( 1 - 2 p m ) l  ( 1 2 )  
l n 2  

l )  Note  tha t  a = 1 w h e n  P z  = 0 and a b e c o m e s  1 / 2  w h e n  p, .  > ½ ( 1 - ~7~ " 

In genera l ,  w h e n  the  de le t ions  m i g h t  occu r  wi th  some  p robab i l i t y  Pd < 1 /2 ,  the  

n u m b e r  o f  d e s c e n d a n t s  o f  one  c o m m o n  ances to r  g rows  as z k' whe re  z = 2 (  1 - P a )  and 

k'  is the  n u m b e r  o f  genera t ions .  
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Thus, replacing In2 by lnz in the denominators of expressions (11) and (12), we 

get 

21n(1 - 2pro) 21n(1 - 2pro) 
Y= l n ( 2 - 2 p a )  ' o t = l  l n ( 2 - 2 p a )  (13) 

More rigorous but less evident approach of recursion relations among levels of the tree 

lead to the same analytical results - see Eqs. ( 11 ), (12), and (13). 

Similar arguments can be applied for computation of a in more complex situations 

when more then one nucleotide can duplicate and all four types of nucleotides are 
present, however simple analytical results in this case are not available. 

In summary the model suggested by Li may lead under reasonable assumptions to 
the experimentally observed values of a which are in the range between 0.5 and 1. In 

the next section, we show how this model can be applied to the study of an economic 

system. 

4. Annual fluctuations of firm growth rate 

Another quite unrelated phenomenon is the behavior of industrial finn sales or their 
employment. We have studied the dependence of the fluctuations of the annual finn 
growth rates on the initial size of the finn [6]. We computed the average annual 
fluctuation of employee numbers or sales tr(S0) as a function of the initial value of 
sales or employees So. The remarkable linearity of the o-(S0) vs. So function on a log- 
log scale over many orders of magnitude may indicate some universal law of economics 
that is applicable for small companies with sales of several thousands dollars per year 
as well as for giants of size of General Motors with hundred billion annual sales. We 

found that o'(S0) ~ S~', where a = 0.82 • 0.05 (Fig. 5). 
The power law increase of o-(S0) on So may have its origin in the internal structure 

of each finn. In the simplest approach, one would assume that the sales So of a given 
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company result from N independent units 

N 

SO = ~ : i "  

i=1 

(14) 

If  the unit sales sci have a typical average (s c) = So /N  and an annual variation ui 

independent of so. Then the annual change in sales is 

N 

A S =  ~-~U i. 
i=1 

(15) 

In analogy with a random walk, o'(S0) would grow as ~ or since N is proportional to 
So as x /~ ,  thus giving a = 1/2. The much larger value of a that we find indicates the 

presence of strong correlations among the firm's units. We can model this phenomena 

by considering the tree-like hierarchical organization of a typical firm (see Fig. 4b). The 

root of the tree represents the head of the company, whose policy is passed to the level 

beneath, and so on, until finally the units in the lowest level take action. Each of these 

units has an average sales value (s ¢) = So /N  and a corresponding typical fluctuation u. 
The number of links connecting the levels will vary from level to level, but there is a 

value z which represents a certain average number of links. Then the number of units 
N is equal to z k, where k is the number of levels. 

What are the consequences of this simple model? Let us first assume that the head 

of the finn suggests a policy that could result in changing the sales of each unit by an 
amount u. If  this policy is propagated through the hierarchy without any modifications, 

then the change in sales is simply AS = Nu = Sou/(~). Accordingly, a = 1. 
More realistically, the policy of the head can be modified (undergo "mutation") 

at each level of the finn management with a small probability Pro. Hence the sales 
of the entire finn becomes a random variable with a standard deviation that can be 
explicitly computed using recursion relations among the levels of the tree. The result 
is o-2(S0) = u2[ 4Zpm( 1 - Pro) (yk  _ z k )  / ( y  _ Z ) + yn],  where y = z2( 1 - 2pro) 2 and 

k = l n ( S o / ( ~ ) ) / l n z .  For large k, the model predicts a = 1 - I l n ( 1  - 2pm)l/ln(z) if 
z > 1 / (1-2pro)  2 and ce = 1/2 otherwise [see Eq. (12) ]. Despite the model's simplicity, 
this result seems to be plausible. For example, if we require ~ = 0.8, as suggested by 
our data, and choose z = 3, we obtain Pm = 0 . 1 ,  which might be a reasonable situation. 

The models proposed are very elementary, and show that simple mechanisms can 
provide some insight into our findings. 

Remarkably, the hierarchical structure of the company (Fig. 4b) can be mapped 
exactly onto the diagram of the DNA mutations and duplications (Fig. 4a). Each level of 
the firm hierarchy corresponds to one generation of repeat family and each modification 
of the head decision by the lower level management corresponds to a mutation. Note 
that the o-(S0) for finn sales is exactly F(e)  for DNA sequences. 
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5. L~vy walk model of DNA sequences 

313 

Apparently, the molecular evolution of DNA is too complicated process to be ex- 
plained by a single model. The duplication-mutation model described in Section 3 can 
be used to explain certain features of highly repetitive DNA on relatively short length 
scales (such as tandem repeats) and probably explains the difference of statistical prop- 
erties of coding and noncoding DNA. In coding DNA, where duplications and mutations 
would in most of cases lead to fatal consequences, the long-range correlations cannot 
develop. However this model does not take into account many other important processes 
of DNA evolution like retroviral insertions and deletions, which are probably the main 
source of the rapid evolution of DNA sequences on the large length scales, compara- 
ble to the length of the entire chromosome. On such length scales the question of the 
difference between coding and non-coding DNA is no longer valid since the coding 
sequences are limited to a protein size. 

An example of such retroviral insertions is the LINE-1 sequence which consists of 
6,139 base pairs and is believed to contain a code for a functional protein [30]. In 
agreement with this it is found that the LINE-1 sequence has value of t~ close to 0.5, 
indicating the lack of long-range correlations [ 18]. Moreover, the LINE-1 sequence has 
a strong strand bias of about 59% of purines, which is also typical for coding sequences. 
The total number of LINE-1 sequences and fragments in the human genome is estimated 
to be 107,000, while in the genome of the chimpanzee there are only 51,000 copies of the 
LINE-1 sequence [ 31 ]. This dramatic difference indicates that thousands of insertions 
or deletions of LINE-I sequences took place over a relatively short evolutionary time 
scale. LINE-1 sequences are found on both strands of DNA and therefore produce large 
local fluctuations of nucleotide content. Another frequent repetitive element is the ALU 
sequence [ 32], which is also statistically similar to protein coding DNA, but, in contrast 
with the LINE-1 sequence, is only 290 base pairs long. 

The central idea of the insertion model [ 18,33] is based on the assumption that 
the insertion of retroelements, formed by the inverse-transcribed RNA, plays a major 
role in DNA evolution (see also Ref. [29] ). The statistical properties of retroelements 
are similar to those of protein coding sequences. In order to be inserted into DNA, a 
retroelement must form a loop. The probability to find a loop of certain size g in a long 
polymer chain in a solvent is given [34] by the formula 

P(g)  ~ (1/~) g, (16) 

where/z is a critical exponent with a value close to 2.2. Thus we assume 
(i) that DNA sequences are comprised of subsequences distributed according to 

Eq. (16), and 
(ii) that these subsequences are statistically similar to protein coding sequences which 

(a) usually have a significant excess of purines over pyrimidines (or vice versa 
because of DNA two-strand complementarity) and (b) can be modeled by a 
Markovian process with short range correlations [35]. 
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This biological evolution model is mathematically equivalent to the generalized L6vy 
walk which gives rise to a landscape which consists of alternating patches of different 
orientation, whose length distribution obeys power-law given by Eq. (16). The L6vy- 
walk model has a well defined power-law long-range correlation exponent a that depends 
upon the L6vy walk parameter/z [ 18,12] 

1, / z < 2 ,  
a = 2 - / z / 2 ,  2 < / z  < 3, (17) 

1/2, ~ _> 3. 

Thus nontrivial behavior of a corresponds to the case 2 < / z  < 3, where the first mo- 
ment of P(e) converges while the second moment diverges. The long-range correlation 
property for the L6vy walk, in this case, is related to the broad distribution of Eq. (16) 
that lacks a characteristic length scale. Eq. (17) is valid only asymptotically for large 
values of g. For small g the slope of the log-log plot of the function F(e) for the 
generalized I~vy walk model increases monotonically from a value defined by short 
range Markovian correlations of the inserted subsequences to a value a = 0.9 predicted 
by Eq. (17). However, this limiting value can be achieved only for very long sequences 
of about 106 base pairs, and has a large standard error for finite sequences [22]. 

To test the insertion model [ 18], we have adjusted its parameters, to best approximate 
features of actual DNA sequences and generate an artificial sequence that corresponds 
to Eq. (16) and found a good agreement between the model and the actual data on 
successive slopes of the F(g) function for all sequences, that contain a substantial 
percentage of noncoding material. 

6. L~vy-walk model of sea bird foraging 

Similar patchy behavior have been recently observed in the foraging pattern of the 
Wandering Albatross [36]. Recently, several reports have raised the possibility that 
some biological systems have scale invariant properties [37--46]. However the basis for 
such scale invariant behavior has remained elusive. In case of the Wandering Albatross 
Diomedea exulans, the origin of this scale invariant temporal behavior may be related 
to the spatial scale invariance in the underlying ecosystem [47]. 

Temporal behavior of sea birds can be easily quantified: the sea birds divide their time 
entirely between either flying or sitting on the water surface. An electronic recording 
devices was attached to the legs of 19 birds that took measurements every 3 s, and 
recorded u ( t ) ,  the number of 15 s intervals in each hour for which the animal was wet 
for 9s or more [36]. Each entry in the time series u( t )  is therefore a number from 0 
to 240, and t = 1,2 . . . .  tmax is time measured in hours. For the 19 sea birds studied, 
19 such time series were obtained, the shortest having tmax = 77 h and the longest 
tmax = 416 h (the time series have an average length of 175 h). The obtained time 
series can be mapped to one-dimensional walk where the difference in heights of two 
points is equal to 
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Fig. 6. The one-dimensional walk landscape, constructed from all 19 time series of bird foraging [36] 
analyzed using Eq. (18). Note the remarkable visual similarity with DNA landscapes (see Fig. 1 ). 

to+t 

A y = ~ u( i) - t(u( i) ), (18) 
i=to 

see Fig. 6. The average value of the time spent on water (u(i)) is subtracted for clarity. 
The obtained landscape is very similar to those of long DNA sequences, accordingly, 
we applied the same methods for measuring long-range correlation exponents. Here we 
obtained a ~ fl ~ 1.0, using both power spectrum analysis and DFA. We also measured 
the distribution of uninterrupted flight times T/ which correspond to the patches with 
large negative slope on Fig. 6 and find that the probability to find a flight with length T 
decays as T -~  with/~ ~ 2 which is in a good agreement with Lrvy walk theory [ see 
Eq. (17) ]. The power law distribution of flight times is consistent with the hypothesis of 
fractal distribution of the food (plankton) on the surface of the ocean. Indeed, suppose 
that the bird is selecting the direction of each flight at random and that it flies with 
constant speed which does not depend on the direction of flight. Then each flight will 
correspond to a segment of a straight line that connects two consecutive landing points. 
The distribution of these segments will again follow a power law with the same exponent 
/z. This pattern exactly corresponds to the Lrvy-flight model described in Ref. [48]. 
The fractal dimension of the set of landing points of a Lrvy-flight is D = br - l (for 
more details, see Ref. [49] ). In our particular case we get fractal dimension close to 1. 
Assuming that the density of landing points is proportional to the density of food, we 
conclude the plankton forms a fractal set on the surface of the ocean. 

7. Outlook 

One theme of this talk has been that the ideas of phase transitions and critical 
phenomena may have utility in explaining complex behavior of living systems - up to 
and including the science of human behavior. It is difficult to obtain large databases on 
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human behavior unless we turn to economics, where not only does a wealth of data exist 
but also the "human behavior" is subject to well-defined "rules" Like a game of chess, 

the goal is clear (the analog of catching the king is making a profit). Moreover, many 
things that would help reach the goal are illegal (just as the chess players cannot move 

freely on the chessboard, so also those who play the game of business are constrained 

in their actions by a well-defined set of rules). 

So far, we have discovered the intriguing result that there is an exponent that governs 

some economic behavior over roughly 8 decades. We conclude by discussing briefly the 

implications of this result. A question asked often of us is why the result of a power 

law with exponent different from 1/2 is not merely what anyone would expect. Indeed, 

correlations of necessity exist, and therefore the exponent should change from the value 
1/2 expected for the uncorrelated case. Moreover, the very question of the existence of 

an exponent at all has not  been posed previously. 
Some historical perspective may be illuminating at this point. In the early 1960's, 

exponents were as new to critical point phenomena as they are now to economics. 

Whenever someone would give a talk on exponents, several in the audience would 
make uncomplimentary remarks to the effect: "of course without correlations, you must 
get the mean field exponent of 1/2, but when there are correlations you will get a 

different exponent - so what?" Then the speaker would need to patiently explain that 

the important thing is the nature of the correlations could be quantified using the value 

of the exponent. An exponent close to the mean field value might indicate in some 
sense "less departure" from the uncorrelated case than an exponent far from the mean 

field value. And the speaker might explain that most people think of fluctuations as 

uncorrelated, but the numerical value of an exponent provides a quantification of the 
correlations in this randomness. Armed with this quantification, it became possible to 
make a serious comparison of theory and experiment, and it became possible to compare 

experiments on different systems. We thereby learned which features of a system are 
important for determining the exponent (i.e., the nature of the random fluctuations) and 
which features are unimportant. The analogy between economics and critical phenomena 

is sufficiently strong that a similar story might evolve. 

A second concern is as follows. Exponents in critical phenomena are associated 
with critical points. But the economy is not at a critical point all the time - so what 

conceivable use could be the analogy of critical point exponents and the exponents 
characterizing the set of 4000 US publicly-traded firms? Of course the economy is not 
perpetually at a "critical point" of the conventional sort. However in recent years more 
and more out-of-equilibrium or "dynamical" systems have been found to be describable 
using the same conceptual framework as that discovered 30 years ago to describe 
equilibrium critical points. Such out-of-equilibrium systems include many forms of 
disorderly growth, such as diffusion limited aggregation - where the rules are simple 
but the resulting object is quite disorderly and is certainly not in equilibrium. 

Some problems can be viewed as either equilibrium or out-of-equilibrium. An ex- 
ample is percolation. We can make an ensemble of "equilibrium" percolation clusters 
by assigning random numbers to all the plaquettes of a lattice, and coloring black 
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those whose random number is smaller than 0.593. Alternatively, we can create an 

out-of-equilibrium "dynamical" version of percolation - termed invasion percolation - 

by coloring black any randomly chosen site, and then iterating the simple rule that we 
blacken the perimeter site characterized by the smallest random number. One thereby 
grows a single large cluster that is automatically "at" the critical point in that as it 
grows larger and larger, it becomes closer and closer in every measurable property to 
the incipient infinite cluster that is found in conventional percolation. 

The set of such systems that are clearly out-of-equilibrium and that evolve dynamically 
in time has expanded considerably since DLA and invasion percolation. It is worth 
studying the degree to which the economy is a representative of such systems. To 
this end, an important first step is to discover whether quantifiable features of the 
economy possess the hallmarks of economic systems, such as self-similarity (i.e., scaling 

exponents). That we have identified one quantifiable feature (the growth rate) and 
discovered empirically that such a scaling law exists fits therefore the tradition of 
scientific enquiry. 

Finally, one wonders if what we discovered is so straightforward, why was it not done 
before? There are two answers to this question. 
1. In order to make the discovery of scaling in the growth rate distribution, a truly 

gargantuan amount of data analysis was required. Specifically, it was necessary to 
measure properties (sales and employment) of every US publicly-traded firm each 
year for a 20-year period. The entire analysis of growth rate statistics was repeated 
for employment and assets, for confirmation of the general principle. 

2.The second answer is that the theoretical economics community proceeds by a 
somewhat different route than the theoretical statistical physics community proceeds. 
Economists frequently make a theory or model, and later test the model using real 
data. Statistical physicists, on the other hand, may instead study empirical data hoping 
to find a pattern, trend, or "scaling law" and only much later (if  ever) explain the 
scaling law. Indeed, our approach is called "empirical" by the economists. A sec- 
ond difference is that economists rarely use graphical representations of the data as 
extensively as we do. An advantage of our approach is that we can discover "pat- 
terns" (such as the scaling laws); indeed, the likelihood of predicting these patterns 
in advance of the sort of graphical data analysis we undertook is probably fairly low. 
Finally, we address the potential utility of the discovery we report. There are often 

two different answers to questions regarding utility. 
1. The first answer concerns "scientific" utility - utility in pushing back the frontiers of 

scientific understanding. The theory of the firm is a fundamental problem in economics 
that remains unsolved and that has been a source of considerable interest in recent 
years. The discovery of "scaling invariance" over a range of 107 means that a tiny firm 
with sales of only 104 dollars somehow obeys the same law as a huge firm with sales 
of 1011 dollars. One mindset in the economics community has involved partitioning 
the entire economy into different sectors. Our work suggests that all the firms interact 
with all the other firms. That the economy consists of many many strongly interacting 
firms, just as a fluid near its critical point consists of many strongly-interacting 
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particles. One cannot say much about the nature of the interactions of the firms, 

just as one cannot say much about the nature of  the interactions of the particles in a 

critical system. Nonetheless, the quantitative characterization of both firms and critical 
systems can be carried out in terms of scaling laws. These are "laws of economics" in 

the same sense that the scaling laws in physics are "laws of physics": they are valid, 
even though a completely firm theoretical foundation is lacking. 

2. The "practical" utility of our work concerns the predictive ability of the scaling laws. 

Specifically, from these scaling laws one can use the 1995 sales data to predict a set 

of histograms for the year 1996. That is, given the firm sales in 1995, one can predict 

the histogram of firm sales in 1996. We can now make quantitative predictions by 

actually giving the complete probability distribution and the quantitative parameters 

that characterize this probability distribution. 

There are, of course, things one cannot predict: 

1. It is important to emphasize, before concluding, that we cannot predict how any 
given firm will do next year, any more than the Gutenberg-Richter plot of earthquake 

frequency against earthquake magnitude can predict when the next earthquake in 
London will occur. 

2. It is also important to emphasize that while we can predict the width (or standard 

deviation) of the histograms giving the number of firms with sales of X, we cannot 
predict the "mean." The analog of this statement in turbulence [ 50] is that one cannot 

predict the actual velocity of a red cork tossed into a turbulent fluid, but rather if one 
tosses both a red and a blue cork into a turbulent fluid, one can predict the distribution 

of the difference of the velocities of two different corks. 
Perhaps the most intriguing question is "Why should economics (which arises as a 

result of human behavior) have anything to do with statistical physics (which studies the 
motion of inanimate objects, such as corks tossed into turbulent fluids)? The behavior of 

the cork (say 1 cm in diameter) is influenced by the collisions it suffers each picosecond 
from 1015 microscopic water molecules. However, the advances in turbulence do not arise 
from "summing up" on a computer these 1015 collisions each picosecond. Rather we 

"understand" what we observe in terms of a collective phenomenon which obeys not 
Newton's laws but rather scaling laws. 

Consider a system of interest in economics, such as the stock market. Here the value 

of a stock index is influenced by all the traders to varying degrees, since if any group of 
traders decides to behave in a certain way then the value of that stock index will change. 
Now each stock trader is certainly not inanimate. However, each is following certain 
well defined rules, just as the inanimate cork follows certain rules. We don't know 
much about the complete microscopic connection between the macroscopic observed 
quantity and the individual rules followed by the stock trader. Similarly, we don't 
know much concerning the complete microscopic connection between the macroscopic 
observed quantity, the cork velocity, and the microscopic laws followed by the 1015 
water molecules that collide with the cork each picosecond. 

Our work concerns not stock market index but rather the sales of every publicly- 
traded firm in the USA. It is not implausible that this macroscopic variable, sales, is 
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influenced to varying degrees by the actions of a nonnegligible fraction of the earth's 

total population. Thus again we observe a macroscopic variable whose microscopic 
inputs are known in principle, but how these microscopic events "conspire" to set the 
actual sales of a given firm is probably as hopeless a problem to compute as is the 
motion of a cork buffeted by 1015 collisions each picosecond. 

In summary, we are seeking methods of providing new quantitative information on 
a distribution function fundamental to key economic questions. We find a new set of 
quantitative methods for characterizing economic data - using scaling invariance theory 

- which holds promise for shedding new light. Indeed, the analogs of universality classes 
in critical phenomena seems to be within reach, since data from other economies can also 
be analyzed with reasonable effort. It may be that as we study economies less regulated 
or more regulated (by studying, e.g., data bases from East Asia, Europe, or perhaps 
pre-war USA) we will find as rich a phenomenology as was discovered to describe the 
various universality classes in critical phenomena. And it may be that theoretical models 
to explain our empirical findings will be forthcoming. 

A c k n o w l e d g e m e n t s  

We wish to thank I. Grosse, H. Herzel, E. P. Kolker, M.E Shlesinger, and E. N. 
Trifonov for helpful ideas at the initial stages of this work, and NIH-HGP, NSF, the 
Mathers Charitable Foundation, the American Heart Association, Istituto Nazionale di 
Fisica della Materia, and the Israel-USA Binational Science Foundation for support. 

R e f e r e n c e s  

[ 1 ] C.-K. Peng, S.V. Buldyrev, A.L. Goldberger, S. Havlin, E Sciortino, M. Simons and H.E. Stanley, Nature 
356 (1992) 168. 

[21 C.K. Peng, J.M. Hausdorff, J.E. Mietus, S. Havlin, H.E. Stanley and A.L. Goldberger, Fractals in 
physiological control: from heartbeat to gait, in: Lrvy Flights and Related Topics in Physics (Proc. 1994 
International Conference on IAvy Flights), edited by M.E Shlesinger, G.M. Zaslavsky and U. Frisch 
(Springer, Berlin, 1995), pp. 315-330; 
C.K. Peng, S. Havlin, H.E. Stanley and A.L. Goldberger, Quantification of scaling exponents and 
crossover phenomena in nonstationary heartbeat time series, in: Proc. NATO Dynamical Disease 
Conference, edited by L. Glass, Chaos 5 (1995) 82-87. 

[3] G.M. Viswanathan, V. Afanasyev, S.V. Buldyrev, P.A. Prince and H.E. Stanley, Lrvy flight search patterns 
in animal behavior, Nature (submitted). 

[4] R.N. Mantegna and H.E. Stanley, Nature 376 (1995) 46-49. 
[51 M.H.R. Stanley, S.V. Buldyrev, S. Havlin, R. Mantegna, M.A. Salinger and H.E. Stanley, Eco. Lett. 49 

(1995) 453-457. 
[6] M.H.R. Stanley, L.A.N. Amaral, S.V. Buldyrev, S. Havlin, H. Leschhom, P. Maass, M.A. Salinger and H~E. 

Stanley, Scaling behavior of firm growth, Nature (in press); 
M.H.R. Stanley, L.A.N. Amarai, S.V. Buldyrev, S. Havlin, H. Leschhorn, E Maass, M.A. Salinger and H.E. 
Stanley, Can the science of statistical physics contribute to the science of economics?, in: Proc. International 
Conference on Future of Fractals, Fractals 3 (1995). 

[71 S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng and H. E. Stanley, Fractals in biology and 
medicine: from DNA to the Heartbeat, in: Fractals in Science, edited by A. Bunde and S. Havlin 
(Springer, Berlin, 1994), Chapter 2. 



320 H.E. Stanley et al./Physica A 224 (1996) 302-321 

[81 E.W. Montroll and M.E Shlesinger, The wonderful world of random walks, in: Nonequilibrium 
Phenomena 1I. From Stochastics to Hydrodynamics, edited by J.L. Lebowitz and E.W. Montroll (North- 
Holland, Amsterdam, 1984), pp. 1-121. 

[9] G.H. Weiss, Random Walks (North-Holland, Amsterdam, 1994); 
A.-L. Barabasi and H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, 
Cambridge, 1995). 

[10l S. Havlin, R. Selinger, M. Schwartz, H.E. Stanley and A. Bunde, Phys. Rev. Lett. 61 (1988) 1438; 
S. Havlin, M. Schwartz, R. Blumberg Selinger, A. Bunde and H.E. Stanley, Phys. Rev. A 40 (1989) 
1717; 
R.B. Selinger, S. Havlin, E Leyvraz, M. Schwartz and H.E. Stanley, Phys. Rev. A 40 (1989) 6755. 

[11] C.-K. Peng, S. Havlin, M. Schwartz, H.E. Stanley and G.H. Weiss, Physica A 178 (1991) 401; 
C.-K. Peng, S. Havlin, M. Schwartz and H.E. Stanley, Phys. Rev. A 44 (1991) 2239. 

[121 M. Araujo, S. Havlin, G.H. Weiss and H.E. Stanley, Phys. Rev. A 43 (1991) 5207; 
S. Havlin, S.V. Buldyrev, H.E. Stanley and G.H. Weiss, J. Phys. A 24 (1991) L925; 
S. Prakash, S. Havlin, M. Schwartz and H.E. Stanley, Phys. Rev. A 46 (1992) R1724. 

113] M. Ya. Azbel, Phys. Rev. Lett. 31 (1973) 589; Phys. Rev. Lett. 75 (1995) 168-171. 
[141 S.V. Buldyrev, A.L. Goldberger, S. Havlin, R.N. Mantegna, M.E. Matsa, C.-K. Peng, M. Simons and 

H.E. Stanley, Phys. Rev. E 51 (1995) 5084-5091. 
[151 W. Li and K. Kaneko, Europhys. Lett. 17 (1992) 655. 
[ 16] R. Voss, Phys. Rev. Lett. 68 (1992) 3805. 
[171 S. Karlin and V. Brendel, Science 259 (1993) 677. 
1181 S.V. Buldyrev, A.L. Goldberger, S. Havlin, C.-K. Peng, M. Simons and H.E. Stanley, Phys. Rev. E 47 

(1993) 4514-4523. 
[ 191 C.K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley and A. L. Goldberger, Phys. Rev. E 49 

(1994) 1685-1689. 
120] H. Makse, S. Havlin, M. Schwartz and H.E. Stanley, Method for generating long-range correlations 

for large systems, Phys. Rev. E Rapid Communications (submitted); Proc. 1993 Int. Conf. Complex 
Systems in Computational Physics, Buenos Aires, Chaos, Solitons and Fractals 6 (1995) 295; 
see also N.N. Pang, Y.-K. Yu and T. Halpin-Healy, Phys. Rev. E 52 (1995) 3224. 

1211 S. Prakash, S. Havlin, M. Schwartz and H.E. Stanley, Phys. Rev. A 46 (1992) R-1724. 
[221 C.K. Peng, S.V. Buldyrev, A.L. Goldberger, S. Havlin, M. Simons and H.E. Stanley, Phys. Rev. E 47 

(1993) 3730-3733. 
1231 S.M. Ossadnik, S.V. Buldyrev, A. L. Goldberger, S. Havlin, R.N. Mantegna, C.-K. Peng, M. Simons and 

H.E. Stanley, Biophys. J. 67 (1994) 64-70; 
H.E. Stanley, S.V. Buldyrev, A.L. Goldberger, S. Havlin, C.-K. Peng and M. Simons, Physica A 200 
(1993) 4-24; 
H.E. Stanley, S.V. Buldyrev, A.L. Goldberger, S. Havlin, S.M. Ossadnik, C.-K. Peng and M. Simons, 
Fractals 1 (1993)283-301. 

[241 W. Li, T.G. Malt and K. Kaneko, Physica D 75 (1994) 392-416. 
[25] A. Ameodo, E. Bacry, P.V. Graves and J.E Muzy, Phys. Rev. Lett. 74 (1995) 3293-3296. 
126] W. Li, Phys. Rev. A 43 (1991) 5240-5260; 

W. Li, International Journal of Bifurcation and Chaos 2 (1992) 137-154. 
[271 G.I. Bell, Computers and Chemistry 17 (1993) 185-190. 
I28] G.R. Sutherland and R.I. Richards, P.N.A.S./USA 92 (1995) 3636-3641. 
[ 291 B. Alberts, D. Bray, J. Lewis, M. Raft, K. Roberts and J.D. Watson, Molecular Biology of the Cell, 

Third Edition (Garland Publishing, New York, 1994). 
1301 J. Jurka, J. Mol. Evol. 29 (1989) 496. 
I31] R.H. Hwu, J.W. Roberts, E.H. Davidson and R.J. Britten, EN.A.S./USA 83 (1986) 3875. 
1321 J. Jurka, T. Walichiewicz and A. Milosevljevic, J. Mol. Evol. 35 (1992) 286. 
[331 S.V. Buldyrev, A.L. Goldberger, S. Havlin, C.-K. Peng, H.E. Stanley, M.H.R.Stanley and M. Simons, 

Biophys. J. 65 (1993) 2673-2679. 
[341 J. Des Cloizeaux, J. Physique (Paris) 41 (1980) 223; 

P.G. de Gennes, Scaling Concepts in Polymer Physics (Comell University Press, Ithaca, 1979). 
[ 35 ] G.A. Churchill, Computers and Chemistry 16 (1992) 107-116. 
[361 V. Afanasyev and P.A. Prince, Omis Scandinavica 24 (1993) 243. 



H.E. Stanley et al./Physica A 224 (1996) 302-321 321 

1371 M.E Shlesinger and B.J. West, Phys. Rev. Lett. 67 (1991) 2106; 
see also M.E Shlesinger, Ann. NY Acad. Sci, 504 (1987) 214. 

[38] A. Yu. Grosberg and A.R. Khokhlov, Statistical Physics of Macromolecules (AIP Press, New York, 
1994). 

139] B.J. West and M.F. Shlesinger, Am. Scientist 78 (1990) 40. 
[40] E. Canessa and A. Calmetta, Phys. Rev. E 50 (1994) R47. 
[41] C.K. Peng, J. Mietus, J. Hausdorff, S. Havlin, H.E. Stanley and A.L. Goldberger, Phys. Rev. Lett. 70 

(1993) 1343-1346. 
[42] J.J. Collins and C.J. De Luca, Phys. Rev. Lett. 73 (1994) 764; 

J.M. Hausdorff, C.-K. Peng, Z. Ladin. J.Y. Wei and A.L. Goldberger, J. Appl. Physiol. 78 (1995) 
349-358. 

[431 J.B. Bassingthwaighte, L.S. Liebovitch and B.J. West, Fractal Physiology (Oxford University Press, New 
York, 1994). 

[44] B.J. West and W. Deering, Phys. Reports 246 (1994) 1. 
[45] T. Vicsek, M.E Shlesinger and M. Matsnshita, eds., Fractals in Natural Sciences (World Scientific, 

Singapore, 1994). 
[461 B.J. West, Fractal Physiology and Chaos in Medicine (World Scientific, Singapore 1990). 
[47] B. Drossel, S. Clar and E Schwabl, Phys. Rev. Lett. 69 (1992) 1629. 
[48] M.E Shlesinger, in: On Growth and Form, edited by H. E. Stanley and N. Ostrowsky (Nijhoff, Dordrecht, 

1986), p. 283. 
[491 M.F. Shlesinger, G.M. Zaslavsky and U. Frisch, eds., 1Avy Flights and Related Topics in Physics 

(Springer-Verlag, Berlin, 1995). 
[50] R.N. Mantegna and H.E. Stanley, Stock market dynamics and turbulence: parallels in quantitative measures 

of fluctuation phenomena, Nature (submitted). 


