Anomalies of water and simple liquids

Zhenyu Yan

Advisor: H. Eugene Stanley

Collaborators:
Sergey V. Buldyrev, Pablo G. Debenedetti,
Nicolas Giovambattista, Pradeep Kumar

Center for Polymer Studies and Department of Physics, Boston University

Motivation and questions?

Motivation:
We try to understand water’s anomalies using a simple model

1. Are the strong orientational tetrahedral interactions in water necessary for water-like anomalies?
2. Can we find water-like anomalies in simple liquid (monatomic model with simple spherically symmetric potential without orientational interaction)? If YES
 (1) Why can spherically symmetric potential generate water-like anomalies?
 (2) How do the anomalies of simple potential compare with water?
3. How to predict the anomalous regions of water and simple liquids?
Does ramp potential leads to water-like anomalies?

Effective potential of water \rightarrow Two-scale spherically symmetric ramp potential

$\lambda \equiv \sigma_0 / \sigma_1 \in [0, 1]$ \hspace{1cm} $\lambda_w \approx 0.27\text{nm} / 0.45\text{nm} \approx 0.6$

Water anomalies

(a) Density anomaly

TMD: Temperature of Maximum Density

(b) Diffusion anomaly

DM: Diffusion Maximum/Minimum

J. Bailar et. al, University Chemistry 1965, p. 41
Result #1: Both one-scale and two-scale spherically symmetric potential show density and diffusion anomalies

\[\alpha_p = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_P \left(\frac{\partial P}{\partial T} \right)_V \]

Is there structural anomaly related to density and diffusion anomaly?

TMD: Temperature of Maximum Density
DM: Diffusion Maximum/Minimum
How to quantify structural order

Two basic types of order:
- Orientational order q (or Q): quantifies specific local structure (space angle)

Water: tetrahedral local order,

Ramp potential: HCP, or FCC structure

- Translational order t: quantifies degree to adopt preferential separations

The order parameters increases with the increasing order of system.

$$q = 1 - \frac{3}{8} \sum_{j=1}^{3} \sum_{k=j+1}^{4} \left(\cos \psi_{jk} + \frac{1}{3} \right)^2$$

$q=1$, tetrahedral local structure
$q=0$, random local structure

$$Q_{\ell i} \equiv \left[\frac{4\pi}{2\ell + 1} \sum_{m=-\ell}^{m=\ell} |Y_{\ell m}|^2 \right]^{1/2}$$

$Q_6 = 0.574$, fcc; 0.485, hcp
$Q_6 = 0.28$, random

$$t \equiv \int_0^{r_c} \left| g(r) - 1 \right| dr$$

t=0, random
t become larger if more particles adopt preferential separations

Picture: http://www.lsbu.ac.uk/water/hbond.html
Result #2: Structural anomaly of water: both t and q decrease with density

Result #3: Structural order for ramp potentials

One scale ramp ($\lambda=0$) Two scale ramp ($\lambda \approx 0.6$)

Only around $\lambda \sim 0.6$, both t and Q_6 decrease with density, exhibit water-like structural anomaly

Result #4: Two-scale spherically symmetric ramp potential order map is similar to water

Two-scale ramp ($\lambda \sim 0.6$) vs. water

Tuning ρ
Fixing T

Q_6

Translational order t

Orientational order Q_{6s}
Result #5: Anomalous regions of density, diffusion and structure

Is two-scale ramp similar to water?
Result #6: Water-like Low density / High density structural change

Ramp potential has water-like LDL/HDL structural change. Ramp system mimics the flexibility of the second shell of water

Water

Two scale Ramp ($\lambda \approx 0.6$)
Compare anomalous regions: physical parameter of two scale ramp potential ($\lambda \approx 0.6$)

Map ramp potential to water effective potential $U_{\text{eff}}(r)$

Assign real physical parameter to ramp potential

Result #7: Effective number density of water is *twice* of ramp particles.

Effectively

$1 + 4 \times \frac{1}{4} = 2$ water molecules
Result #8: Anomalous regions in the phase diagram of ramp potential are similar to water

1. Use real units for ramp
2. Density and pressure of ramp are doubled
3. Shift P, T

How to estimate the anomalous regions

Excess entropy:

\[S_{ex} \equiv S - S_{ig} \equiv S + k_B \ln \rho - c(T). \]

Density anomaly:

\[\left(\frac{\partial \rho}{\partial T} \right)_P > 0 \quad \left(\frac{\partial S}{\partial \rho} \right)_T > 0 \quad \downarrow S_{ex} \]

\[\left(\frac{\partial S_{ex}}{\partial \ln \rho} \right)_T > c \ k_B \text{ with } c = 1 \]

Diffusion anomaly:

\[\left(\frac{\partial D}{\partial \rho} \right)_T > 0 \quad \frac{D \rho^{1/3}}{T^{1/2}} = 0.6 \ \exp \left(0.8 \frac{S_{ex}}{k_B} \right) \]

\[\left(\frac{\partial S_{ex}}{\partial \ln \rho} \right)_T > c \ k_B \text{ with } c = 0.42 \]

For different T, finding the range of density between which the value of \(\left(\frac{\partial S_{ex}}{k_B \partial \ln \rho} \right)_T > 1 \text{ or } 0.42 \)

Result #9: Excess entropy of TIP5P water

Compute S_{ex}:

$$S_{ex} \approx S^{(2)} = -2\pi\rho k_B \int \{g(r) \ln[g(r)] - [g(r) - 1]\} r^2 dr$$

Excess entropy has similar anomaly as structural anomaly, and it can be used to estimate anomaly regions. Similar results for water-like ramp liquids.

Conclusion: Answers to all questions

1. Are the strong orientational tetrahedral interactions necessary for water-like density, diffusion and structural anomalies?

 No

2. Can we find water-like anomalies in simple liquids (monatomic model with simple spherically symmetric potential)?

 YES, two characteristic length scales with ratio \(\lambda \approx 0.6 \) seem necessary.

 (1) Why can spherically symmetric potential generate water-like anomalies?
 Water-like HDL/LDL structural change, mimicking change in the second shell of water

 (2) How close the anomalies of simple potential compare with water?
 Anomalous regions can be closely compared in phase diagram in real units

3. How to predict the anomaly regions of water and simple liquids from structure?
 We can use excess entropy to predict anomaly regions.
Publications

Thank you all!

Advisor: H. Eugene Stanley

Collaborators:
Sergey V. Buldyrev, Pablo G. Debenedetti, Nicolas Giovambattista, Pradeep Kumar

Committee member:
Professor H. Eugene Stanley, Professor William Skocpol, Professor William Klein,
Professor Karl Ludwig, Professor Ed Kearns, and Professor Emanuel Katz

Family and friends
Structural order in the first and second shells of water

Define the first and second shell:
1. The first shell is relatively stable, has 4 nearest neighbors
2. The second shell are defined as next 12 nearest neighbors,

We can investigate the structural order for the first and second shell separately
Result #4: Order maps

Two-scale spherically symmetric ramp potential order map: similar to water