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ABSTRACT

The main focus of this thesis is to understand how confinement alters the phase diagram

of supercooled liquid water by employing methods of statistical mechanics and numerical

simulations.

Water is very complex and anomalous when compared to simple liquids. For example,

experimental data for liquid water reveals the presence of a temperature of maximum

density (TMD) below which the density decreases under isobaric cooling. Another anomaly

is the hypothesized liquid–liquid phase transition (LLPT) between two types of liquid water

with different densities. In this thesis we study how confinement affects such anomalies as

TMD and LLPT in supercooled liquid water.

This thesis is separated into three parts: (i) Monte Carlo simulations of a 2D coarse-

grained model of a water layer confined in a fixed disordered matrix of hydrophobic

nanoparticles, (ii) molecular dynamics simulations of a Jagla ramp model of liquid confined

in fixed ordered and disordered matrices of hydrophobic nanoparticles, and (iii) all-atom

simulations of trehalose and maltose in aqueous solution of lysozyme.

In Part (i), we perform Monte Carlo simulations and find that a nanoparticle con-

centration as small as 2.4% is enough to destroy the LLPT for pressure P > 0.14 GPa.

Moreover, we find a substantial (more than 90%) decrease of compressibility, thermal ex-

pansion coefficient and specific heat at high P and low temperature T upon increase of

nanoparticle concentration from 0% to 25%.

In Part (ii), we ask how, for single component systems interacting via a soft-core

isotropic potential with two characteristic length scales, the geometry of hydrophobic con-

finement affects the phase diagram. We use molecular dynamics simulations to study
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particles interacting through a ramp potential and a shoulder potential, each confined in

a fixed matrix of nanoscopic particles with a fixed volume fraction. We find a substantial

weakening of the LLPT and the disappearance of TMD upon the increase of disorder in

the confining geometry.

In Part (iii), we study aqueous systems with all-atom simulations. We are currently

investigating the mechanism of water-trehalose-protein and water-maltose-protein interac-

tion upon supercooling for its relevance to bioprotection.
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Introduction



Chapter 1

Water: A Mysterious And Complex

Liquid

Water is so ubiquitous in our everyday lives that we tend to think about it as an

ordinary colorless, odorless and testeless liquid. Moreover, we easily forget that this simple

compound of one oxygen and two hydrogen atoms has a complex and crucial relationship

with our lives. Liquid water is an extraordinary substance without witch life itself would

not exist [1]. Water is not only a special medium in which most biological processes take

place, it controls every aspect of life [3, 289]. It is often called the universal solvent that

provides a liquid environment for biochemical reactions. It also acts as a temperature

buffer, a metabolite, and a living environment for aquatic life. In addition, water is the

medium of exchange and transport in living things.

The phase diagram of water is very complex with the extraordinary number of phases

and stands out among other liquids. Stable phases of water include the vapour phase, the

liquid phase and twelve different forms of solid phases, of which ordinary hexagonal ice Ih

is the most common (at ambient pressure). Beyond stable phases, water can be found in

metastable phases. These can be solid phases, both crystalline and amorphous and liquid

phases. While most substances are present in only one phase at Earth’s ordinary tem-

peratures and atmospheric pressure, water occurs naturally in all three phases of matter:

solid, liquid, and vapour, and it is common to have all three phases coexisting together at
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the same time.

Water is also the most abundant substance on Earth [4, 203]. It is so plentiful that

we call Earth the “blue planet”. It covers three-fourth of the planet’s surface. Water is

also in constant motion around us, carried around by storms, currents, and tides [5]. It

frequently falls from the sky as rain, snow, or ice. As for the living world, water constitues

about 60% by weight of all the living organisms.

1.1 Water is not a typical liquid

The abundance of water is not the only extraordinary phenomenon. Water is also

special because of its comlex and puzzling behaviour. Many authors have pointed out

that life on Earth strongly depends on the anomalous properties of water [4, 54, 203]. In

particular the melting point and the boiling point can be found at temperatures much

higher with respect to other hydride compounds of atoms of Group 6A in the periodic

table, such as H2S, H2Se, H2Te, H2Po. This allows Earth to be bathed by liquid water.

The anomalies of water have been subject of intense studies for decades. One, well

known anomaly, the density maximum at 277 K and atmospheric, dates backs to the

seventeenth century [6]. Fig.1.1 shows that density of liquid water as a function of tem-

perature T at different pressures displays maxima. The locus of the temperature at which

the density is maximum at a given pressure is reffered to as the temperature of maximum

density (TMD). From the TMD, the liquid water expands upon cooling and heating. The

presence of the maximum density is referred to as the “density anomaly”, since for the

vast majority of liquids the density decreases monotonically as T is lowered.

The density anomaly is crucial for the inhabitants of rivers, lakes, and oceans since

it prevents water from freezing bottom to top. Instead, the freezing proceeds from top

down, so that the layers of ice formed at the interface with air insulates the bottom body

of water, preventing further freezing and allowing the survival of living organisms.
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Figure 1.1: Density of liquid water as a function of temperature at 1 atm (black circles),

25 atm (red squares), 50 atm (green diamonds), 75 atm (blue triangles up), and 100 atm

(orange triangles down). For pressures presented here, density of water displays the tem-

perature of maximum density (TMD) wich is referred to as the “density anomaly”. Data

adapted and reploted from Ref. [7, 8]
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1.2 Thermodynamic anomalies

Density anonomaly is not the only fascinating and crusial to life anomaly. Its high heat

capacity allows temperature regulation on Earth. Water has a high specific heat capacity

and it takes a lot of heat to raise its temperature. As the result, water can absorb a lot of

heat without large temperature fluctuations in the environment and in living organisms.

To date, sixty seven anomalies have been recognized, among which are phase anomalies,

density anomalies, material anomalies, thermodynamic anomalies, and dynamic anomalies

[1].

It is important to realize that liquid water’s anomalies become more pronounced as

temperature is lowered below the melting line, in the supercooled region [25]. Moreover,

many thermophysical properties of supercooled liquid water exhibit a temperature de-

pendence. At atmospheric pressure water’s response functions, responce of volume V or

entropy S to pressure or temperature perturbations, increase in magnitude with decreasing

temperature [9, 52].

For instance, the isothermal compressibility KT [Fig. 1.1(a)], associated with volume

fluctuations [10].

〈(δV )2〉 = V kBTKT (1.1)

At ambient pressure the isothermal compressibility decreases at high temperatures, reaches

a minimum around T = 319 K and then it increases rapidly, and appears to diverge in

the supercooled region [Fig.1.2(a)]. The minimum of KT moves to lower temperatures,

when pressure is increased. In a simple liquid the isothermal compressibility decreases

monotonically with decreasing temperature.

Another example of the thermodynamic response function is the isobaric heat capac-

ity CP [Fig.1.2(b)] which is characterized by the entropy fluctuations experienced by N

molecules at fixed pressure.

〈(δS)2〉 = NkBTCP (1.2)

Intuitively, CP should decrease upon decreasing temperature, as it is observed in typical

liquids. In the case of water, instead, it increases upon cooling under atmospheric pressure

for T < 308 K, and seems to diverge with a power-law at a lower temperature [9].
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(a)

(b)

(c)

Figure 1.2: Schematic temperature dependence of (a) the isothermal compressibility KT ,

(b) the isobaric heat capacity CP , and (c) the coefficient of thermal expansion αP . The

behavior of a typical liquid is also shown with a dashed lines. Adapted from Ref. [9, 11, 52].
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In addition, the coefficient of thermal expansion αP [Fig.1.2(c)] which is the measures

the cross-correlations of entropy and volume.

〈(δSδV )〉 = V kBTα (1.3)

For typical liquids, αP is positive becuase of the positive correlation of entropy and volume

fluctuations, an increase in volume is accompanied by the increase in entropy. In water, on

the other hand, αP is negative below 277 K, where the fluctuations of entropy and volume

are anti-correlated as the result of the formation of an open hydrogen bonded network for

which a decrease in orientational enthropy is accompanied by an increase in volume.

This anomalous behavior is suddenly interrupted by crystallization for T < 235 K. This

temperature is named homogeneous nucleation temperature TH at ambient pressure [12].

It must be noted that the homogeneous nucleation temperature is a kinetic limit and not

a thermodynamic one. As thus it can be considered as a practical limit, function of the

cooling rate and of the observation time [25]. It is possible to avoid the crystalline phase

altogether if the cooling rate is fast enough, ∼ 100 K/min [13]. In that case, water can

be obtained in glassy water or amorphous solid, a solid phase that lacks long range order.

The temperature at which the molecular relaxation time reaches 100 s, and the viscosity

of the system becomes ν = 1012 Pa· s, is conventionally called glass transition Tg. It is

important to note that this is not a thermodynamic transition in the standard sense (such

as the liquidgas transition), but rather a kinetic event. This implies that different cooling

procedures can produce slightly different glass transition temperatures. The temperature

at which the glass transition occurs in water is an open question, although a generally

accepted value is Tg = 136 K at ambient pressure [14, 15, 25]. When glassy water is heated,

it crystallizes sponteneously to cubic ice, Ic, at around the crystallization temperature

Tx = 150 K. Above the glass transition and below the crystallization temperature, water

can exist in an extremely viscous liquid state [25]. Water in this small region is defined

ultraviscous. Therefore, the interval between the homogeneous nucleation temperature

and the crystallization temperature is often called no man’s land, where it is impossible

to probe the supercooled liquid state of water with the available experimental techniques.

In Fig. 1.3 we show a schematic of the phase diagram at 1 atm representing the stable,
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metastable and glassy phases of water.

Yet another interesting property of liquid water is that it shows polyamorphism, i.e., the

presence of several liquid or glassy states. The concept of polyamorphism is relatively new

[58, 62, 169]. The two glassy sates of water that have been extensively studied are the high

density and the low density amorphous ice (HDA and LDA respectively). Furthermore,

it has been shown that a first-order-like transition exists between LDA and HDA with a

discontinuous jump in the density when the coexistence line is crossed [16].

1.3 Liquid-liquid critical point hypothesis

The origin of the anomalies in stable and metastable water is not yet fully understood.

As the result, the unclear mechanism of these anomalies attacts a considerable interest

in the scientific community [17, 18, 66, 169, 170, 172, 222]. Over the last few decades many

experiments and computer simulations have played an important role in establishing the

possible explanations for the origin of these anomalies [18, 52, 66, 169, 170, 222]. One of the

most popular hypotheses was proposed in 1992 by Poole et. al. [66] based on computer

simulations on ST2 water. The proposed hypothesis suggested that the first-order-like

transition between LDA and HDA is a low temperature manifestation of the equilibrium

phase transition between two distinct phases of liquid water in the deep supercooled re-

gion (the no mans land): the low density and the high density liquids (HDL and LDL

respectively). This liquid-liquid phase transition (LLPT) terminates by a liquid-liquid

critical point (LLCP) located by computer simulations [66] at ≈ 100 MPa and ≈ 220 K,

above which the distinction between the two phases disappears. Liquid water near the

hypothesized liquid-liquid critical point is a fluctuating mixture of molecules whose local

structures resemble LDL and HDL. These enhanced fluctuations are observed as a line of

maxima of the thermodynamic response functions, the Widom line.

According to the LLCP hypothesis, the apparent divergences of the thermodynamic

response functions is a consequence of the increase of the correlation length upon ap-

proaching the critical point and divergence at it [10]. Even the anomalous behaviour of

water at ambient temperature could be explained by LLCP hypothesis as the long range
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Figure 1.3: Schematic representation of the stable and metastable phases of water at

atmospheric pressure. Equilibrium transitions are shown in full lines, kinetic transitions

are in dotted lines. Adapted from Ref. [25].
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fluctuations induced by the presence of the critical point. Thus, the LLCP is the source

of all water anomalies.

The LLCP hypothesis is consistent with all the experimental evidence available to date.

However, a direct verification of the LLCP is chalanged by the homogeneous nucleation

of the crystal that prevents the access to the no mans land. Fig. 1.4 shows a schematic

representation of the phase diagram of water as predicted by the LLCP scenario.

1.4 Nanoconfined water

To this day, the experimental study of supercooled bulk water is hampered by the

homogeneous nucleation of the crystal. Therefore, to determine the validity of the liquid-

liquid critical point hypothesis, one needs first to solve the technical difficulty of accessing

the no mans land region.

Recently water confined in nanoscopic structures has attracted interest because nu-

cleation can be delayed. Thus, experimentalists are able to explore the dynamic and

thermodynamic behavior of water confined in nano-porous materials, such as vycor pores

(a porous hydrophilic silica glass), micellar systems, and layered vermiculite clay [19, 90].

Using nanoconfinement, it is possible to perform NMR and quasi-elastic neutron scattering

(QENS) experiments in the deeply supercooled region (280–190 K) [19–23, 90]. Therefore,

experiments performed within this interval could be of fundamental interest for under-

standing the open questions on water.

Confined systems have a tremendous relevance also for current biological advances. In

particular, the study of water behavior in the presence of apolar interfaces helps under-

standing such phenomena as self-assembling of micelles, membrane formations and protein

folding [70, 130, 221]. It is also relevant to many important technological and industrial

applications such as catalysis and soil chemistry.

However, one needs to be very careful in interpreting experimental and simulations

results in confined water. The confinement can exhibit a complex effect on the dynamic

and thermodynamic behavior of water. It is the goal of this thesis to examin possible

modifications of the supercooled phase diagram of liquid water by the nanoconfinement.
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Figure 1.4: Schematic representation of the phases diagram of water on the (P, T ) plane

predicted by the liquid-liquid critical point hypothesis. The LDA and HDA are separated

by a first order phase transition line that extends above the crystalization temperature and

separates two liquid phases LDL and HDL. This first order phase transition terminates by

a liquid-liquid critical point LLCP, above which the distinction between the two liquids

disappears.TH is the line of the homogeneous nucleation and Tx is the crystalization line.

Adapted from Ref. [60].
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1.5 Overview of the Dissertation

Coarse-grained model of water

The “liquid-liquid critical point” scenario was first developed by Poole et al. in 1992

[66]. Using molecular dynamics simulations they found a line of first-order transitions

between two liquid phases, which ended at a critical point. In 1996, Sastry et al. [68]

showed that the thermodynamic anomalies of water are consistent with a phase digram

which does not include a singularity, the “singularity-free” scenario.

Experiments have not been able to discriminate among the different theories of liquid

water. However, simulations can give insight on the low temperature phase diagram, but

suffer from very slow dynamics. There is therefore need of faster simulation methods.

Here we introduce the implementation of a Wolff’s cluster algorithm for the Monte

Carlo (MC) simulations of a cell model for water [35]. This method, indeed, allows to

greatly accelerate the equilibration time of the system, as shown by the direct comparison

of its energy autocorrelation time with that of the Metropolis MC dynamics.

Phase Transitions and Dynamics in Bulk and Interficial Water

New experiments for water at the surface of proteins at very low temperature display

intriguing dynamic behaviors. The extreme conditions of these experiments make it dif-

ficult to explore the wide range of thermodynamic state points needed to offer a suitable

interpretation. Detailed simulations suffer the same problem, where equilibration times

at low temperature become unreasonably long. We show how Monte Carlo simulations

and mean field calculations of a tractable model of water help interpret the experimental

results. Here we summarize the results for bulk water and investigate the thermodynamic

and dynamic properties of supercooled water at an interface.

Supercooled water in a matrix of hydrophobic nanoparticles

Using Monte Carlo simulations we study a coarse-grained model of a water layer con-

fined in a fixed disordered matrix of hydrophobic nanoparticles at different particle con-

centrations c. For c = 0 we find a first-order liquid-liquid phase transition (LLPT) ending
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in one critical point at low pressure P . For c > 0 our simulations are consistent with a

LLPT line ending in two critical points at low and high pressure. For c = 25% at high

P and low temperature, we find a dramatic decrease of compressibility KT , thermal ex-

pansion coefficient αP , and specific heat CP . Surprisingly, the effect is present also for c

as low as 2.4%. We conclude that even a small presence of hydrophobic nanoparticles can

drastically suppress thermodynamic fluctuations, making the detection of the LLPT more

difficult.

Hydrophobic nanoconfinement suppresses fluctuations in supercooled water

We perform very efficient Monte Carlo simulations to study the phase diagram of a wa-

ter monolayer confined in a fixed disordered matrix of hydrophobic nanoparticles between

two hydrophobic plates. We consider different hydrophobic nanoparticle concentrations c.

We adopt a coarse-grained model of water that for c = 0 displays a first order liquid-liquid

phase transition (LLPT) line with negative slope in the pressure-temperature P −T plane,

ending in a liquid-liquid critical point at about 174 K and 0.13 GPa. We show that upon in-

crease of c the liquid-gas spinodal and the temperature of maximum density line are shifted

with respect to c = 0 case. We also find dramatic changes in the region around the LLPT.

In particular, we observe a substantial (more than 90%) decrease of isothermal compress-

ibility, thermal expansion coefficient and constant-pressure specific heat upon increasing

c, consistent with recent experiments. Moreover, we find that a hydrophobic nanoparticle

concentration as small as c = 2.4% is enough to destroy the LLPT for P ≥ 0.16 GPa. The

fluctuations of volume apparently diverge at P ≈ 0.16 GPa suggesting that the LLPT line

ends in a LL critical point at 0.16 GPa. Therefore, nanoconfinement reduces the range of

P −T where the LLPT is observable. By increasing the hydrophobic nanoparticle concen-

tration c, the LLPT becomes weaker and its P −T range smaller. The model allows us to

explain these phenomena in terms of proliferation of interfaces among domains with differ-

ent local order, promoted by the hydrophobic effect of the water-hydrophobic nanoparticle

interfaces.

Effect of hydrophobic environments on the hypothesized liquid-liquid critical

point of water
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The complex behavior of liquid water, along with its anomalies and their crucial role in

the existence of life, continue to attract the attention of researchers. The anomalous be-

havior of water is more pronounced at subfreezing temperatures and numerous theoretical

and experimental studies are directed towards developing a coherent thermodynamic and

dynamic framework for understanding supercooled water. The existence of a liquid–liquid

critical point in the deep supercooled region has been related to the anomalous behavior

of water. However, the experimental study of supercooled water at very low tempera-

tures is hampered by the homogeneous nucleation of crystals. Recently, water confined

in nanoscopic structures or in solutions has attracted interest because nucleation can be

delayed. These systems have a tremendous relevance also for current biological advances;

for example, supercooled water is often confined in cell membranes and acts as a solvent

for biological molecules. In particular, considerable attention has been recently devoted

to understanding hydrophobic interactions or the behavior of water in the presence of

apolar interfaces due to their fundamental role in self-assembly of micelles, membrane

formation and protein folding. This article reviews and compares two very recent com-

putational works aimed at elucidating the changes in the thermodynamic behavior in the

supercooled region and the liquid–liquid critical point phenomenon for water in contact

with hydrophobic environments. The results are also compared to previous reports for

water in hydrophobic environments.

Nanoparticle Confinement in Anomalous Liquids

We investigate using molecular dynamics the effect of the structure of nanoconfinement

for liquids with water-like anomalies and liquid-liquid phase transition (LLPT). We find

that if the confinement is in an ordered matrix of nanoparticles (NPs) the anomalies are

preserved, although the LLPT shifts to lower temperatures, higher pressures and higher

densities with respect to bulk. On the contrary, if the NPs matrix is disordered, we find a

drastically different phase diagram: the LLPT occurs only in a reduced interval of densities

and the anomalies are washed out. To understand this effect we calculate the changes in

the system at the microscopic level. In all the different confinements considered here we

observe a dramatic increase of density of liquid near the confining NPs. In the disordered
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case the confinement induces larger heterogeneity in the local density, responsible for the

weakening of the LLPT and the disappearance of anomalies.



Part II

Simulations of confined water



Chapter 2

Coarse-grained model of water

Water is possibly the most important liquid for life [24] and, at the same time, is a

very peculiar liquid [25]. In the stable liquid regime its thermodynamic response functions

behave qualitatively differently than a typical liquid. The isothermal compressibility KT ,

for example, has a minimum as a function of temperature at T = 46 ◦C, while for a typical

liquid KT monotonically decreases upon cooling. Water’s anomalies become even more

pronounced as the system is cooled below the melting point and enters the metastable

supercooled regime [26].

Different hypothesis have been proposed to rationalize the anomalies of water [27]. All

these interpretations, but one, predict the existence of a liquid–liquid phase transition

in the supercooled state, consistent with the experiments to date [27] and supported by

different models [25].

To discriminate among the different interpretations, many experiments have been per-

formed [28]. However, the freezing in the temperature-range of interest can be avoided

only for water in confined geometries or on the surface of macromolecules [27, 29]. Since

experiments in the supercooled region are difficult to perform, numerical simulations have

played an important role in recent years to help interpret the data. However, also the

simulations at very low temperature T are hampered by the glassy dynamics of the empir-

ical models of water [30–32]. For these reasons is important to implement more efficient

numerical simulations for simple models, able to capture the fundamental physics of wa-
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ter but also less computationally expensive. Here we introduce the implementation of a

Wolff’s cluster algorithm [33] for the Monte Carlo (MC) simulations of a cell model for wa-

ter [34, 35]. The model is able to reproduce all the different scenarios proposed to interpret

the behavior of water [36] and has been analyzed (i) with mean field (MF) [34, 35, 37, 38],

(ii) with Metropolis MC simulations [32, 39] and (iii) with Wang-Landau MC density of

state algorithm [40]. Recent Metropolis MC simulations [32] have shown that very large

times are needed to equilibrate the system as T → 0, as a consequence of the onset of

the glassy dynamics. The implementation of the Wolff’s clusters MC dynamics, presented

here, allows us to (i) drastically reduce the equilibration times of the model at very low

T and (ii) give a geometrical characterization of the regions of correlated water molecules

(clusters) at low T and show that the liquid–liquid phase transition can be interpreted as

a percolation transition of the tetrahedrally ordered clusters.

2.1 The model

The system consists of N particles distributed within a volume V in d dimensions. The

volume is divided into N cells of volume vi with i ∈ [1, N ]. For sake of simplicity, these

cells are chosen of the same size, vi = V/N , but the generalization to the case in which

the volume can change without changes in the topology of the nearest–neighbor (n.n.) is

straightforward. By definition, vi ≥ v0, where v0 is the molecule hard-core volume. Each

cell has a variable ni = 0 for a gas-like or ni = 1 for a liquid-like cell. We partition the total

volume in a way such that each cell has at least four n.n. cells, e.g. as in a cubic lattice

in 3d or a square lattice in 2d. Periodic boundary conditions are used to limit finite–size

effects.

The system is described by the Hamiltonian [34, 35]

H = −ε
∑

〈i,j〉

ninj − J
∑

〈ij〉

ninjδσij ,σji − Jσ

∑

i

ni

∑

(k,l)i

δσik,σil
, (2.1)

where ε > 0 is the strength of the van der Waals attraction, J > 0 accounts for the hy-

drogen bond energy, with four (Potts) variables σij = 1, . . . , q representing bond indices of

molecule i with respect to the four n.n. molecules j, δa,b = 1 if a = b and δa,b = 0 otherwise,
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Figure 2.1: Pictorial representation of five water molecules in 3d. Two hydrogen bonds

(grey links) connect the hydrogens (in blue) of the central molecule with the lone electrons

(small gray lines) of two nearest neighbor (n.n.) molecules. A bond index (arm) with q = 6

possible values is associated to each hydrogen and lone electron, giving rise to q4 possible

orientational states for each molecule. A hydrogen bond can be formed only if the two

facing arms of the n.n. molecules are in the same state. Arms on the same molecule interact

among themselves to mimic the O-O-O interaction that drives the molecules toward a

tetrahedral local structure.
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and 〈i, j〉 denotes that i and j are n.n. The model does not assume a privileged state for

bond formation. Any time two facing bond indices (arms) are in the same (Potts) state,

a bond is formed. The third term represents an intramolecular (IM) interaction account-

ing for the O–O–O correlation [41, 42], locally driving the molecules toward a tetrahedral

configuration. When the bond indices of a molecule are in the same state, the energy is

decreased by an amount Jσ ! 0 and we associate this local ordered configuration to a

local tetrahedral arrangement. The notation (k, l)i indicates one of the six different pairs

of the four bond indices of molecule i (Fig.2.1). The model does not differentiate “donor”

molecule and “acceptor” molecule in the hydrogen bond definition. This simplification

increases the number of possible bonded configurations, hence increases the entropy asso-

ciated to the local tetrahedral configurations. A simple modification of the model could

explicitly take into account this feature, however the comparison of the results from the

present version of the model with experiments and simulations from more detailed models

shows good qualitative agreement.

Experiments show that the formation of a hydrogen bond leads to a local volume

expansion [25]. Thus in our system the total volume is

V = Nv0 + NHBvHB, (2.2)

where

NHB ≡
∑

<i,j>

ninjδσij ,σji (2.3)

is the total number of hydrogen bonds, and vHB is the constant specific volume increase

due to the hydrogen bond formation.

2.2 Mean–field analysis

In the mean–field (MF) analysis the macrostate of the system in equilibrium at constant

pressure P and temperature T (NPT ensemble) may be determined by a minimization of

the Gibbs free energy per molecule, g ≡ (〈H 〉 + PV − TS)/Nw, where

Nw =
∑

i

ni (2.4)
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is the total number of liquid-like cells, and S = Sn + Sσ is the sum of the entropy Sn over

the variables ni and the entropy Sσ over the variables σij.

A MF approach consists of writing g explicitly using the approximations

∑

<ij>

ninj −→ 2Nn2 (2.5)

∑

<ij>

ninjδσij ,σji −→ 2Nn2pσ (2.6)

∑

i

ni

∑

(k,l)i

δσik,σil
−→ 6Nnpσ (2.7)

where n = Nw/N is the average of ni, and pσ is the probability that two adjacent bond

indices σij are in the appropriate state to form a hydrogen bond.

Therefore, in this approximation we can write

V = Nv0 + 2Nn2pσvHB, (2.8)

〈H 〉 = −2 [εn + (Jn + 3Jσ) pσ] nN. (2.9)

The probability pσ, properly defined as the thermodynamic average over the whole

system, is approximated as the average over two neighboring molecules, under the effect

of the mean-field h of the surrounding molecules

pσ =
〈
δσij ,σji

〉
h
. (2.10)

The ground state of the system consists of all N variables ni = 1, and all σij in the same

state. At low temperatures, the symmetry will remain broken, with the majority of the

σij in the preferred state. We associate this preferred state to the tetrahedral order of the

molecules and define mσ as the density of the bond indices in the tetrahedral state, with

0 ≤ mσ ≤ 1. Therefore, the number density nσ of bond indices σij is in the tetrahedral

state is

nσ =
1 + (q − 1)mσ

q
. (2.11)

Since an appropriate form for h is [34, 35]

h = 3Jσnσ, (2.12)
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we obtain that 3Jσ
q ≤ h ≤ 3Jσ.

The MF expressions for the entropies Sn of the N variables ni, and Sσ of the 4Nn

variables σij, are then [37]

Sn = −kBN(n log(n) + (1 − n) log(1 − n)) (2.13)

Sσ = −kB4Nn[nσ log(nσ) + (1 − nσ) log(1 − nσ) + log(q − 1)], (2.14)

where kB is the Boltzmann constant.

Equating

pσ ≡ n2
σ +

(1 − nσ)2

q − 1
, (2.15)

with the approximate expression in Eq. (2.10), allows for solution of nσ, and hence g, in

terms of the order parameter mσ and n.

By minimizing numerically the MF expression of g with respect to n and mσ, we find the

equilibrium values n(eq) and m(eq)
σ and, with Eqs. (2.4) and (3.5), we calculate the density ρ

at any (T, P ) and the full equation of state. An example of minimization of g is presented

in Fig. 2.2 where, for the model’s parameters J/ε = 0.5, Jσ/ε = 0.05, vHB/v0 = 0.5, q = 6,

a discontinuity in m(eq)
σ is observed for Pv0/ε > 0.8. As discussed in Ref.s [34, 35, 39] this

discontinuity corresponds to a first order phase transition between two liquid phases with

different degree of tetrahedral order and, as a consequence, different density. The higher

P at which the change in m(eq)
σ is continuous, corresponds to the pressure of a liquid–liquid

critical point (LLCP). The occurrence of the LLCP is consistent with one of the possible

interpretations of the anomalies of water, as discussed in Ref. [37]. However, for different

choices of parameters, the model reproduces also the other proposed scenarios [36].

2.3 The simulation with the Wolff ’s clusters Monte

Carlo algorithm

To perform MC simulations in the NPT ensemble, we consider a modified version

of the model in which we allow for continuous volume fluctuations. To this goal, (i) we

assume that the system is homogeneous with all the variables ni set to 1 and all the cells
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Figure 2.2: Numerical minimization of the molar Gibbs free energy g in the MF approach.

The model’s parameters are J/ε = 0.5, Jσ/ε = 0.05, vHB/v0 = 0.5 and q = 6. In each

panel we present g (dashed lines) calculated at constant P and different values of T . The

thick line crossing the dashed lines connects the minima m(eq)
σ of g at different T . Upper

panel: Pv0/ε = 0.7, for T going from kBT/ε = 0.06 (top) to 0.08 (bottom). Middle

panel: Pv0/ε = 0.8, for T going from kBT/ε = 0.05 (top) to 0.07 (bottom). Lower panel:

Pv0/ε = 0.9, for T going from kBT/ε = 0.04 (top) to 0.06 (bottom). In each panel dashed

lines are separated by kBδT/ε = 0.001. In all the panels m(eq)
σ increases when T decreases,

being 0 (marking the absence of tetrahedral order) at the higher temperatures and + 0.9

(high tetrahedral order) at the lowest temperature. By changing T , m(eq)
σ changes in a

continuous way for Pv0/ε = 0.7 and 0.8, but discontinuous for Pv0/ε = 0.9 and higher P .
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with volume v = V/N ; (ii) we consider that V ≡ VMC + NHBvHB, where VMC ! Nv0

is a dynamical variable allowed to fluctuate in the simulations; (iii) we replace the first

(van der Waals) term of the Hamiltonian in Eq. (2.1) with a Lennard-Jones potential with

attractive energy ε > J and truncated at the hard-core distance

UW (r) ≡






∞ if r " r0,

ε
[(

r0
r

)12 −
(

r0
r

)6
]

if r > r0.
(2.16)

where r0 ≡ (v0)1/d; the distance between two n.n. molecules is (V/N)1/d, and the distance

r between two generic molecules is the Cartesian distance between the center of the cells

in which they are included.

The simplification (i) could be removed, by allowing the cells to assume different vol-

umes vi and keeping fixed the number of possible n.n. cells. However, the results of the

model under the simplification (i) compares well with experiments [37]. Furthermore, the

simplification (i) allows to drastically reduce the computational cost of the evaluation of

the UW (r) term from N(N − 1) to N − 1 operations. The changes (i)–(iii) modify the

model used for the mean field analysis and allow off-lattice MC simulations for a cell model

in which the topology of the molecules (i.e. the number of n.n.) is preserved. The com-

parison of the mean field results with the MC simulations show that these changes do not

modify the physics of the system.

We perform MC simulations with N = 2500 and N = 10000 molecules, each with four

n.n. molecules, at constant P and T , in 2d, and with the same parameters used for the

mean field analysis. To each molecules we associate a cell on a square lattice.

The Wolff’s algorithm is based on the definition of a cluster of variables chosen in

such a way to be thermodynamically correlated [43–45]. To define the Wolff’s cluster, a

bond index (arm) of a molecule is randomly selected; this is the initial element of a stack.

The cluster is grown by first checking the remaining arms of the same initial molecule:

if they are in the same Potts state, then they are added to the stack with probability

psame ≡ min [1, 1 − exp(−βJσ)] [33], where β ≡ (kBT )−1. This choice for the probability

psame depends on the interaction Jσ between two arms on the same molecule and guarantees

that the connected arms are thermodynamically correlated [45]. Next, the arm of a new
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molecule, facing the initially chosen arm, is considered. To guarantee that connected

facing arms correspond to thermodynamically correlated variables, is necessary [43, 44] to

link them with the probability pfacing ≡ min [1, 1 − exp(−βJ ′)] where J ′ ≡ J − PvHB is

the P–dependent effective coupling between two facing arms as results from the enthalpy

H + PV of the system. It is important to note that J ′ can be positive or negative

depending on P . If J ′ > 0 and the two facing arms are in the same state, then the new

arm is added to the stack with probability pfacing; if J ′ < 0 and the two facing arms are

in different states, then the new arm is added with probability pfacing
1. Only after every

possible direction of growth for the cluster has been considered the values of the arms are

changed in a stochastic way; again we need to consider two cases: (i) if J ′ > 0, all arms

are set to the same new value

σnew =
(
σold + φ

)
mod q (2.17)

where φ is a random integer between 1 and q; (ii) if J ′ < 0, the state of every single arm

is changed (rotated) by the same random constant φ ∈ [1, . . . q]

σnew
i =

(
σold

i + φ
)

mod q. (2.18)

In order to implement a constant P ensemble we let the volume fluctuate. A small in-

crement ∆r/r0 = 0.01 is chosen with uniform random probability and added to the current

radius of a cell. The change in volume ∆V ≡ V new−V old and van der Waals energy ∆EW is

computed and the move is accepted with probability min (1, exp [−β (∆EW + P∆V − T∆S)]),

where ∆S ≡ −NkB ln(V new/V old) is the entropic contribution.

2.4 Monte Carlo correlation times

The cluster MC algorithm described in the previous section turns out to be very efficient

at low T , allowing to study the thermodynamics of deeply supercooled water with quite

intriguing results [46]. To estimate the efficiency of the cluster MC dynamics with respect

1The results of [43–45] guarantee that the cluster algorithm described here satisfies the detailed balance

and is ergodic. Therefore, it is a valid Monte Carlo dynamics.
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to the standard Metropolis MC dynamics, we evaluate in both dynamics, and compare,

the autocorrelation function of the average magnetization per site Mi ≡ 1
4

∑
j σij, where

the sum is over the four bonding arms of molecule i.

CM(t) ≡ 1

N

∑

i

〈Mi(t0 + t)Mi(t0)〉 − 〈Mi〉2

〈M2
i 〉 − 〈Mi〉2

. (2.19)

For sake of simplicity, we define the MC dynamics autocorrelation time τ as the time,

measured in MC steps, when CM(τ) = 1/e. Here we define a MC step as 4N updates of

the bond indices followed by a volume update, i.e. as 4N + 1 steps of the algorithm.

In Fig. 2.3 we show a comparison of CM(t) for the Metropolis and Wolff algorithm

implementations of this model for a system with N = 50 × 50, at three temperatures

along an isobar below the LLCP, and approaching the line of the maximum, but finite,

correlation length, also known as Widom line TW (P ) [37]. In the top panel, at T . TW (P )

(kBT/ε = 0.11, Pv0/ε = 0.6), we find a correlation time for the Wolff’s cluster MC

dynamics τW ≈ 3 × 103, and for the Metropolis dynamics τM ≈ 106. In the middle panel,

at T > TW (P ) (kBT/ε = 0.09, Pv0/ε = 0.6) the difference between the two correlation

times is larger: τW ≈ 2.5 × 103, τM ≈ 3 × 106. The bottom panel, at T + TW (P )

(kBT/ε = 0.06, Pv0/ε = 0.6) shows τW ≈ 3.7× 102, while τM is beyond the accessible time

window (τM > 107).

Since as T → 0 the system enters a glassy state [32], the efficiency τM/τW grows at

lower T allowing the evaluation of thermodynamics averages even at T / TC [46]. In

particular, the cluster MC algorithm turns out to be very efficient when approaching the

Widom line in the vicinity of the LLCP, with an efficiency of the order of 104. We plan

to analyze in a systematic way how the efficiency τM/τW grows on approaching the LLCP.

This result is well known for the standard liquid-gas critical point [33] and, on the basis of

our results, could be extended also to the LLCP. However, this analysis is very expensive

in terms of CPU time and goes beyond the goal of the present work. Nevertheless, the

percolation analysis, presented in the next section, helps in understanding the physical

reason for this large efficiency.

The efficiency is a consequence of the fact that the average size of Wolff’s clusters

changes with T and P in the same way as the average size of the regions of correlated
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Figure 2.3: Comparison of the autocorrelation function CM(t) for the Metropolis (circles)

and Wolff (squares) implementation of the present model. We show the temperatures

kBT/ε = 0.11 (top panel), kBT/ε = 0.09 (middle panel), kBT/ε = 0.06 (bottom panel),

along the isobar Pv0/ε = 0.6 close to the LLCP for N = 50 × 50.
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molecules [45], i.e. a Wolff’s cluster statistically represents a region of correlated molecules.

Moreover, the mean cluster size diverges at the critical point with the same exponent of

the Potts magnetic susceptibility [45], and the clusters percolate at the critical point, as

we will discuss in the next section.

2.5 Percolating clusters of correlated molecules

The efficiency of the Wolff’s cluster algorithm is a consequence of the exact relation

between the average size of the finite clusters and the average size of the regions of thermo-

dynamically correlated molecules. The proof of this relation at any T derives straightfor-

ward from the proof for the case of Potts variables [45]. This relation allows to identify the

clusters built during the MC dynamics with the correlated regions and emphasizes (i) the

appearance of heterogeneities in the structural correlations [47–49], and (ii) the onset of

percolation of the clusters of tetrahedrally ordered molecules at the LLCP [50], as shown

in Fig. 2.4.

A systematic percolation analysis [43, 44] is beyond the goal of this report, however

configurations such as those in Fig. 2.4 allow the following qualitative considerations. At

T > TC the average cluster size is much smaller than the system size. Hence, the structural

correlations among the molecules extends only to short distances. This suggests that the

correlation time of a local dynamics, such as Metropolis MC or molecular dynamics, would

be short on average at this temperature and pressure. Nevertheless, the system appears

strongly heterogeneous with the coexistence of large and small clusters, suggesting that

the distribution of correlation times evaluated among molecules at a given distance could

be strongly heterogeneous. The clusters appear mostly compact but with a fractal surface,

suggesting that borders between clusters can rapidly change.

At T + TC there is one large cluster, in red on the right of the middle panel of

Fig. 2.4, with a linear size comparable to the system linear extension and spanning in the

vertical direction. The appearance of spanning clusters shows the onset of the percolation

geometrical transition. At this state point the correlation time of local, such as Metropolis

MC dynamics or molecular dynamics would be very slow as a consequence of the large
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Figure 2.4: Three snapshots of the system with N = 100 × 100, showing Wolff clusters

of correlated water molecules. For each molecule we show the states of the four arms and

associate different colors to different arm’s states. The state points are at pressure close to

the critical value PC (Pv0/ε = 0.72 + PCv0/ε) and T > TC (top panel, kBT/ε = 0.0530),

T + TC (middle panel, kBT/ε = 0.0528), T < TC (bottom panel, kBT/ε = 0.0520),

showing the onset of the percolation at T + TC .
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extension of the structurally correlated region. On the other hand, the correlation time of

the Wolff’s cluster dynamics is short because it changes in one single MC step the state of

all the molecules in clusters, some of them with very large size. Once the spanning cluster

is formed, it breaks the symmetry of the system and a strong effective field acts on the

molecules near its border to induce their reorientation toward a tetrahedral configuration

with respect the molecules in the spanning cluster.

As shown in Fig.3, the spanning cluster appears as a fractal object, with holes of any

size. The same large distribution of sizes characterizes also the finite clusters in the system.

The absence of a characteristic size for the clusters (or the holes of the spanning cluster)

is the consequence of the fluctuations at any length-scale, typical of a critical point.

At T < TC the majority of the molecules belongs to a single percolating cluster that

represents the network of tetrahedrally ordered molecules. All the other clusters are small,

with a finite size that corresponds to the regions of correlated molecules. The presence of

many small clusters gives a qualitative idea of the heterogeneity of the dynamics at these

temperatures.

2.6 Summary and conclusions

We describe the numerical solution of mean field equations and the implementation

of the Wolff’s cluster MC algorithm for a cell model for liquid water. The mean field

approach allows us to estimate in an approximate way the phase diagram of the model at

any state point predicting intriguing new results at very low T [46].

To explore the state points of interest for these predictions the use of standard simu-

lations, such as molecular dynamics or Metropolis MC, is not effective due to the onset

of the glassy dynamics [32]. To overcome this problem and access the deeply supercooled

region of liquid water, we adopt the Wolff’s cluster MC algorithm. This method, indeed,

allows to greatly accelerate the autocorrelation time of the system. Direct comparison

of Wolff’s dynamics with Metropolis dynamics in the vicinity of the liquid-liquid critical

point shows a reduction of the autocorrelation time of a factor at least 104.

Furthermore, the analysis of the clusters generated during the Wolff’s MC dynamics
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allows to emphasize how the regions of tetrahedrally ordered molecules build up on ap-

proaching the liquid–liquid critical point, giving rise to the backbone of the tetrahedral

hydrogen bond network at the phase transition [50]. The coexistence of clusters of cor-

related molecules with sizes that change with the state point gives a rationale for the

heterogeneous dynamics observed in supercooled water [47–49].



Chapter 3

Phase Transitions and Dynamics in

Bulk and Interficial Water

Water is essential in biology, because it participates in nearly every process necessary for

life (including cell metabolism, transport of nutrients and residues, protein conformation

changes, etc.), and is the most common solvent in chemistry. It regulates a large variety of

processes, including atmospheric phenomena, the formation of geophysical structures, the

propagation of cracks in stones and cement, the sliding of glaciers, the transport in plants,

and is ubiquitous in the universe as ice in the interstellar space. In all these examples the

properties of water are essential to understand what is observed.

Nevertheless, water has proven to be a complex puzzle to many researchers for its

anomalous thermodynamic and dynamic properties at room temperature and pressure. For

example, by decreasing temperature T at pressure P = 1 atm, water’s volume fluctuations,

proportional to the isothermal compressibility KT , increase below T = 46oC, and entropy

fluctuations, proportional to the isobaric specific heat CP increase below T = 35oC, while

in normal liquid any fluctuation decreases when T is decreased [26, 51, 52]. These water’s

anomalies grow upon cooling and increase in number. For example below T = 4oC the

cross-fluctuation of volume and entropy, proportional to the isobaric thermal expansion

coefficient αP , becomes negative [53], while it is always positive in normal liquids where

the entropy decreases when the volume decreases [37].
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By decreasing T even more, it is experimentally possible to supercool liquid water down

to TH = −41oC at 1 atm and to TH = −92oC at 2000 atm, where the liquid is metastable

with respect to crystal phases [26]. These extreme conditions are not unusual in nature,

where water exists in its liquid form at −20oC in insects, −37oC in clouds or −47oC in

plants [54]. Below TH the homogeneous nucleation of crystal ice occurs in a time too short

to allow any measurements. But even the crystal phase of water is not simple. In fact,

water is a polymorph with at least sixteen forms of crystal ices, the last one, Ice XV, was

discovered in 2009 [55].

However, at very low T , crystal water is not the only possible kind of ice. By rapidly

quenching liquid water below −123oC [56], or by condensing the vapour at low T [57], or

by compressing crystal ice at low T [58], or by irradiation (with ions for example [59]), it

is possible to solidify water as an amorphous, or glass, i. e. a form that has the elastic

properties of a solid, but the structure of a liquid with no long-range order [60]. As for

the crystal state, the amorphous state of water is also not unique. Water is a polyamorph

with at least three different amorphous states: low–density amorphous (LDA), discovered

in 1935 [61], high–density amorphous (HDA), discovered in 1984 [62], and very high-density

amorphous ice (VHDA), discovered in 2001 [63].

All these anomalies of water are a consequence of the properties of the hydrogen bond

network that they form. The hydrogen bond interaction is characterized by a preferred

geometrical configuration, that at low T and P is approximately a tetrahedron of four

molecules around a central one, with an angle varying around 106.6o (slightly smaller than

a tetrahedral angle of 109.47o) and a distance oscillating around 2.82 Å[37]. The local

arrangement, including the number of nearest neighbours, can change with T and P . In

particular, in 2000 Soper and Ricci observed at 268 K, compressing from 26 to 400 MPa,

a continuous transformation from low–density liquid (LDL) local arrangement of water

with an open, hydrogen-bonded tetrahedral structure, to high–density liquid (HDL) local

arrangement with nontetrahedral O-O-O angles and a collapsed second coordination shell

with broken hydrogen bonds, and a change in density of about 73% [64].
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3.0.1 Thermodynamic Interpretations of Water Behavior

All the above results are consistent with theories that propose different mechanisms

and different phase behaviors in the supercooled region. They can be summarized in four

possible scenarios for the P − T phase diagram.

(i) In the stability limit (SL) scenario [65] the behavior of the superheated liquid spin-

odal, i. e. the limit of stability of the liquid with respect to the gas, and the stretched

water, i. e. water under tension as in a plant fibers, are related. In particular, it is hy-

pothesized that the limits of stability of these two regions are continuously connected at

negative pressure, forming a re-entrant curve toward the positive P region below TH(P ).

The response functions, including KT , CP and αP , diverge when T is decreased a positive

P as a consequence of the approaching of the re-entrant spinodal line.

(ii) In the liquid–liquid critical point (LLCP) scenario [66] it is hypothesized the ex-

istence of a LDL–HDL first–order phase transition line with negative slope in the P − T

plane and terminating in a critical point C ′. Below the critical pressure PC′ the response

functions increase on approaching the Widom line (the locus of correlation length maxima

emanating from C ′ into the one–phase region) [37], and for P > PC′ by approaching the

HDL–to–LDL spinodal line. The possibility with PC′ < 0 have also been proposed [67].

(iii) In the singularity–free (SF) scenario [68] it is hypothesized that the low-T anticor-

relation between volume and entropy gives rise to response functions that increase upon

cooling and display maxima at non–zero T , but do not display any singular behavior.

Specifically, Sastry et al. [68] show that this is a direct consequence of the fact that wa-

ter’s line of temperatures of maximum density (TMD) has a negative slope in the (T, P )

plane.

(iv) In the critical–point free (CPF) scenario [28] it is hypothesized that a first–order

phase transition line separates two liquid phases and extends to P < 0 toward the super-

heated limit of stability of liquid water. This scenario effectively predicts a continuous

locus of stability limit spanning the superheated, stretched and supercooled state, because

the spinodal associated with the first–order transition will intersect the liquid–gas spinodal

at negative pressure. No critical point is present in this scenario.
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Since all these scenarios are consistent with the available experimental data, a natural

question is if we can design an experiment that would discriminate among them. Un-

fortunately, many scientists have discovered that an answer to this question is a difficult

challenge [28]. In fact, experiments on bulk water are hampered by freezing below TH , and

no measurements on bulk liquid water can be performed with our present technology below

this temperature. Nevertheless, the different proposed theories have different implications

on phenomena such as the cold denaturation (and stop of activity) of proteins at low T ,

an important issue in cryopreservation, cryonics, cryostasis and cryobiology.

3.0.2 Interfacial Water

One possible strategy to probe supercooled water at very low T is to consider water

at an interface. Water adsorbed onto the surface of proteins or confined in nanopores

freezes at much lower T than bulk water, giving access to a low-temperature region where

interfacial water is still liquid, while bulk water would not be [69]. In many cases of interest

for practical purposes in biology, geology or industrial applications, water is hydrating a

surface or is confined. As a consequence, fundamental research in physics and chemistry has

been performed in recent years with experiments [28, 41, 69–76], theories and simulations

[77–80].

During the last years experiments on water in Vycor micropores [81], in nanopores

of MCM-41 silica [82–84], of sol–gel silica glass [85], of NaA zeolites [86], or of double-

wall carbon nanotubes [87] have contributed to the investigation of water dynamics in

confinement. In particular, confinement in hydrophilic MCM-41 silica nanopores of 1.8

and 1.4 nm diameter allows to study water dynamics down to 200 K where quasielastic

neutron scattering reveals a crossover at T ≈ 225 K in the average translational relaxation

time from a non-Arrhenius behavior at high T to an Arrhenius behavior at low T [88].

A similar crossover is also observed for the self-diffusion coefficient of water by nuclear

magnetic resonance at T ≈ 223 K [89]. By increasing from 400 bars to 1600 bars the

external pressure applied on a sample of MCM-41 silica nanopores with 1.4 nm diameter

at full hydration level of 0.5 g of H2O per g of silica, it has been observed that the crossover

occurs at lower T , reaching T ≈ 200 K at P = 1600 ± 400 bars and disappears at higher
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P [90].

Quasielastic neutron scattering experiments show the same crossover for the aver-

age translational relaxation time of at least three different systems: (i) water hydrating

lysozymes, at hydration level h = 0.3 g of H2O per g of dry lysozyme, for T ≈ 220 K,

a temperature below which the protein has a glassy dynamics [76], (ii) DNA hydration

water, at hydration level corresponding to about 15 water molecules per base pairs, for

T ≈ 222 K, at which DNA displays the onset of anharmonic molecular motion [91], and

(iii) RNA hydration water, at a similar hydration level, for T ≈ 220 K, where both RNA

and its hydration water exhibit a sharp change in slope for the mean-square displacements

of the hydrogen atoms [92],

All these results can be interpreted as a consequence of a structural rearrangement of

water molecules associated with a LDL-HDL critical point [90]. In fact, along the Widom

line in the supercritical region of the LDL-HDL critical point, the changes in the hydrogen

bond network are consistent with the dynamic behavior observed in the experiments, as

we will discuss in the following sections.

This interpretation has been criticized [93] on the base of similar crossover observed for

water confined in molecular sieves [94] or for water mixtures [95] and water solutions [96].

It has also been proposed a possible interpretation as a consequence of the dynamics of

(Bjerrum-type) defects due to orientationally disordered water molecules that are hydrogen

bonded to less than four other water molecules [97, 98].

2H-NMR studies on hydrated proteins, at a comparable hydration level as in [90], show

no evidence for the crossover at 220 K and indicate that water performs thermally activated

and distorted tetrahedral jumps at T < 200 K, which may be related to a universal defect

diffusion [74]. Also, dielectric spectroscopy studies of hydrated protein show a smooth

temperature variations of conductivity at 220 K and ascribe the crossover observed in

neutron scattering to a secondary relaxation that splits from the main structural relaxation

[75, 99].

On the other hand, numerical simulations for bulk water show that crossing the Widom

line emanating from a LDL-HDL critical point, the structural change in water is maximum,

as emphasized by the maximum in specific heat, and the diffusion constant has a crossover
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[100]. This result is observed also in water hydrating lysozyme or DNA, where the dy-

namic transition of the macromolecules occurs at the temperature of dynamic crossover in

the diffusivity of hydration water and also coincides with the maximum change in water

structure [101].

A crossover from high-T non-Arrhenius to low-T Arrhenius behavior is observed also

in simulation of water hydrating lysozyme powder in the translational correlation time

and in the inverse of the self-diffusion constant, in agreement with the neutron scattering

experiments, at about 223 K [102]. The activation energy for the Arrhenius regime is found

to be of about 0.15 eV, as in the neutron scattering experiments [102]. Also, simulations

of water hydrating elastin-like and collagen-like peptides show this crossover, but with a

weaker change in the slope and an Arrhenius activation energy of about 0.43 eV, consistent

with dielectric spectroscopy and nuclear magnetic resonance studies [74, 103].

It is therefore difficult not only in the experiments, but also in the models to get a

clear answer about the relevant dynamic mechanisms and their relation with the thermo-

dynamics in water at interfaces. Moreover, the relation between confined water and bulk

water remains not fully understood. For this reason models that are tractable with a the-

oretical approach are particularly appealing in this context. With these models, in fact,

simulations can be compared with analytic calculations to develop a consistent theory.

3.1 Cooperative Cell Model for a Monolayer of Water

We consider the case of water in two dimensions (2D). This case can be considered as an

extreme confinement of one single layer of water between two repulsive (hydrophobic) walls

when the distance between the walls is such to inhibit the crystal formation [104]. In fact,

it has been shown that the relevant parameter to avoid the transition to a crystal phase

is the distance between the confining wall and not the characteristics of the hydrophobic

interaction with the wall [104].

Another case in which the study of a monolayer of water is relevant is when a substrate

of protein powder is, on average, hydrated only by a single layer of water, and the proteins

do not undergo any configurational transformation and/or large scale motion [46]. In
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these conditions, for a hydrophilic protein surface, we can assume that the effect of the

water–protein interaction is to attract water on a surface that, by constraining the water

molecule positions, inhibits its crystallization.

A very desirable feature of a model for a liquid is transferability. The parameters and

effective interactions of a model are optimized to precisely reproduce static and dynamic

properties of the liquid at one particular thermodynamic state point. The quality of the

model is measured by the range of validity of its predictions in other state points. Un-

fortunately, there is no water model that is truly transferable, nor can reproduce all the

properties of water [105]. Many routes have been explored to solve this issue. Molecular

polarizability [106, 107] is one way to introduce effects not considered by standard pair-

wise additive potentials. However, polarizable models are computationally very expensive

and provide only a partial solution [108]. An alternative way is to include many–body

effects into the potential. In the following we define a model with an effective many–body

interaction introduced through a cooperative hydrogen bond term.

3.1.1 Definition of the Model with Cooperative Interaction

We consider N molecules in a volume V with periodic boundary conditions (p.b.c.) in

two dimensions, and the size of about one single molecule (and no p.b.c.) in the third

dimension. We initially consider the case in which the molecules are distributed in a

homogeneous way, with each molecule i ∈ [1, N ] occupying the same volume V/N larger

than a hard–core volume v0 ≈ 102 Å3 due to short-range electron clouds repulsion. We

consider the case in which each molecule has coordination number four, consistent with

the tendency of a water molecule to minimize its energy by forming four hydrogen bonds.

The interaction Hamiltonian for water molecules is [34, 35, 37, 39]

H = U0(r) − J
∑

〈i,j〉

δσij ,σji − Jσ

∑

(k,l)i

δσik,σil
(3.1)

where U0(r) denotes the sum of all the isotropic interactions (e. g. van der Waals)

between molecules at distance r ≡ (V/N)1/d, represented by a Lennard–Jones potential

with attractive energy ε plus a hard–core at distance r0 ≡ (v0)1/d.
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The second term (with δa,b = 1 if a = b and δa,b = 0 otherwise, and 〈i, j〉 denoting that

i and j are nearest–neighbors) accounts for the directional contribution to the hydrogen

bond energy with strength J , where σij = 1, . . . , q is a (Potts) variable representing the

orientational state of the hydrogen (or the lone e−) of molecule i facing the lone e− (or the

hydrogen, respectively) of the molecules j. For the sake of simplicity we do not distinguish

between hydrogen and lone e−, associating to each molecule four equivalent bond indices

σij. We choose the parameter q by selecting 30o as the maximum deviation from a linear

bond, i. e. the O—H....O angle is less than 30o, as estimated from Debye-Waller factors

[109, 110]. Hence, q ≡ 180o/30o = 6 and every molecule has q4 = 64 ≡ 1296 possible

orientations. The effect of choosing a different value for q has been analyzed in [37].

The third term (with (k, l)i indicating each of the six different pairs of the four bond

indices of molecule i) represents an interaction accounting for the hydrogen bond cooper-

ativity and giving rise to the O–O–O correlation [41], locally driving the molecules toward

an ordered (tetrahedral in the bulk) configuration with lower energy.

By defining the energy per hydrogen bond (between σij and σji) as the sum of the

interactions in which two bonded molecules (i and j) are participating, we obtain EHB =

ε+J +mJσ/2, where m = 0, . . . , 6 is the number of cooperative interactions in which that

bond variables (σij and σji) are partaking. If we choose as parameters ε = 5.8 kJ/mol

(consistent with the value 5.5 kJ/mol of the estimate of the van der Waals attraction based

on isoelectronic molecules at optimal separation [111]), J = 2.9 kJ/mol and Jσ = 0.29

kJ/mol, the values of EHB ranges between 8.70 and 9.6 kJ/mol depending on m. However,

a definition of EHB based on a cluster of 5 or 8 bonded molecules in d =3-dimensions

increases this range up to 17 or 18 kJ/mol, respectively. Therefore, EHB depends on the

environment (the value of m and the number of molecules bonded in a cluster), as observed

in computer simulation of the crystalline phases of ice [112], and has values within the range

6.3 [113]— 23.3 kJ/mol [114], proposed on the base of experiments.

Experiments show that formation of the hydrogen bonds leads to an open —locally

tetrahedral— structure that induces an increase of volume per molecule [25, 64]. This

effect is incorporated in the model by considering that a full bonded molecule, i. e. a

molecule with four hydrogen bonds, has a molecular volume larger than a non-bonded
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molecule by an amount

∆v ≡ 4vHB, (3.2)

where vHB is the volume increase per H bond. Hence, if

NHB ≡
∑

〈i,j〉

ninjδσij ,σji (3.3)

is the total number of hydrogen bonds in the system, the hydrogen bond contribution to

the total volume is

∆V ≡ NHBvHB. (3.4)

We adopt r0 = 2.9 Å consistent with the expected value of the van der Waals radius [115],

and vHB = 0.5v0, with v0 ≡ r3
0, corresponding to a maximum hydrogen bond distance of

about 3.3 Å, consistent with the range of a water molecule’s first coordination shell, 3.5 Å,

as determined from the oxygen-oxygen radial distribution function [116].

3.2 The Phase Diagram

The model is studied using both mean–field (MF) analysis and Monte Carlo (MC)

simulations. The MF approach has been describe in details in Ref.s [37, 117]. It consists

of expressing the molar Gibbs free energy in terms of an exact partition function for a

portion of the system made of a treatable number of degrees of freedom. We take into

account the effect of all the rest of the system as a mean field acting on the border of this

portion [27, 32, 34, 35, 37–39, 117–120].

MC simulations are performed at constant N , P , T , allowing the volume VMC of the

system to fluctuate as a stochastic variable. The average distance r between the molecules

is then calculated as r/r0 ≡ (VMC/v0N)1/d, where d = 2 in two dimensions. The total

volume of the system is by definition

V ≡ VMC + ∆V, (3.5)

where ∆V is the hydrogen bond volume contribution in Eq.(3.4). Note that ∆V is not

included in the calculation of r to avoid MF–type long–range correlation in volume fluc-

tuations in the MC simulations.
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For the parameters choice J/ε = 0.5, Jσ/ε = 0.05 and vHB/v0 = 0.5, we find that the

density ρ as a function of T at constant P displays a discontinuous change at high T and

low P corresponding to the gas-liquid first order phase transition anding in a critical point

where the discontinuity disappears (Fig. 7.1a). By decreasing T , the density reaches a

maximum, that in real water at atmospheric pressure occurs at 4oC. At lower T , in the

supercooled state, and higher P we find another discontinuity in density, this time with a

lower density at lower T (Fig. 7.1b). The system at these supercooled T displays a first

order phase transition from HDL to LDL, as hypothesized in the LLCP scenario (Fig. 2).

3.2.1 Effect of Hydrogen Bond Cooperativity on the Behavior

of Water

The experiments for confined water have boosted the debate over the supercooled

phase diagram of water, motivating the proposal of the CPF scenario hypothesized by C.

A. Angell [28], as described above. This new scenario leads to questions such as

(i) How to understand the new Angell hypothesis?

(ii) How to connect it to the other three existing hypotheses?

A recent work by Stokely et al. [36] succeeds in answering both questions (i) and (ii).

Specifically, it is shown that all four existing hypotheses are cases of the cooperative water

model. Thus no matter which hypothesis may be correct (if any is correct), it is possible

that the underlying mechanism is basically the same—the thermodynamic properties of

water can be accounted for by considering two main contributions to the hydrogen bond

interaction: (a) the directional (or covalent) contribution (parametrized by J in the model)

and (b) the three-body (or cooperative) contribution (parametrized by Jσ in the model).

By MF calculations and MC simulations, Stokely et al. [36] demonstrate that the bal-

ance between contributions (a) and (b) determines which of the four hypotheses presented

in section 1.1. best describes experimental facts. Since the characteristic energy associ-

ated with these two contributions can be estimated, the work allows to begin to validate

or contradict each hypothesis on an experimental basis.
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(a)

(b)

Figure 3.1: The density ρ (in units of 1/v0) as a function of the temperature T (in units

of ε/kB where kB is the Boltzmann constant) for different values of pressure P (in units

of ε/v0) as calculated from MC simulation of a system with N = 15625 water molecules.

The parameters of the model are J/ε = 0.5, Jσ/ε = 0.05 and vHB/v0 = 0.5. (a) At high T

and for (from bottom to top) values of Pv0/ε from 0.1 to 0.9, we observe for Pv0/ε < 0.8

a discontinuity in the density corresponding to the first-order gas-liquid phase transition,

with a critical P at about (0.75 ± 0.05)ε/v0 and critical T at about (2.2 ± 0.1)ε/kB. Note

that if we choose as model parameters ε = 2.5 kJ/mol and r0 = 3.2 Å, we get an estimate

PC′ = 22.7 ± 1.5 MPa and TC′ = 661 ± 30 K consistent with the real water critical point

at about 22.064 MPa and 647 K. (b) At low T and for (from bottom to top) Pv0/ε from

0.5 to 0.9, for Pv0/ε > 0.55 a discontinuity in ρ marks the first-order LDL-HDL phase

transition.
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Figure 3.2: The finite size behavior of the maximum of compressibility Kmax
T as a function

of the number of water molecules N for pressure P = 0.8ε/v0 at low T shows a linear

increase as expected at a first order phase transition.
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Specifically, by fixing the parameters J/ε = 0.5 and vHB/v0 = 0.5, and varying the

parameter Jσ/ε, it is possible to observe that the cooperative model reproduces all four

scenarios of section 1.1. The overall picture that emerges is one in which the amount of

cooperativity among H bonds (Jσ/ε), in relation to the H bond directional strength (J/ε),

governs the location of a LLCP, hence which scenario is realized. For zero cooperativity,

the temperature TC′ where Kmax
T and αmax

P diverge is at zero temperature, and no liquid-

liquid transition exists for T > 0–the SF scenario. For very large cooperativity, C ′ lies

outside the region of stable liquid states, and a liquid-liquid transition extends to the entire

(supercooled and superheated) liquid phase–the CPF/SL scenario. For intermediate values

of H bond cooperativity, TC′ varies in a smooth way between these two extremes–the LLCP

scenario. Due to the anticorrelation between the volume and entropy associated to the H

bonds, the larger TC′ , the smaller PC′ , eventually with PC′ < 0 for larger cooperativity.

These cases are summarized in Fig. 6.3.

3.3 Water at Interfaces

To elucidate the relation between the protein dynamic crossover at about 220 K and the

dynamic crossover observed for the average translational correlation time in the first layer

of protein hydration water [76, 90–92], we perform MF calculations and MC simulations

of the cooperative model of water of section 2.1. Since we are interested in cases at low

humidity, we consider the case of a water monolayer hydrating an immobile surface of

globular protein that, forcing the water molecules out of place with respect to crystal

configurations, inhibits the crystallization. We focus on the hydrogen bonds dynamics,

regardless if the hydrogen bonds are formed with the protein or among water molecules.

3.3.1 The Hydrogen Bond Dynamics for Hydrated Proteins

Following the work of Kumar et al. [32, 38, 120], Mazza et al. [46] study the orienta-

tional correlation time τ associated with the hydrogen bond dynamics of the model is in

section 2.1. They confirm the occurrence of a dynamic crossover at a temperature of about

kBT/ε ≈ 0.32 corresponding to the T of maximum variation of the number of hydrogen
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Figure 3.3: The pressure P vs temperature T phase diagram of the cooperative water

model for different values of Jσ/ε. (a) Mean field results showing the low T phase diagram

with the LDL-HDL phase transition lines (solid lines, where KT is discontinuous) and

Widom lines (dashed lines, where KT has a finite maximum) for varying Jσ/ε from (right-

most) 0.04, 0.03, 0.02, 0.01, 0.005 and 0 (leftmost). For each value of Jσ/ε solid circles

indicate the LDL-HDL critical point C ′ where the response function (such as KT ) diverge.

Hashed circle indicates the state point at T = 0 where KT diverges when Jσ/ε = 0. (b)

The MC phase diagram for varying Jσ/ε for N = 104 water molecules. At high T the sys-

tem displays a liquid–gas first–order phase transition line (continuous line with full circles)

ending in a liquid–gas critical point C (full circle), from which departs the liquid-to-gas

spinodal line (dashed line with open diamonds). At lower T , the retracing line with open

squares marks the temperatures of maximum density (TMD) along isobars. All these loci

do not change in an appreciable way with the value of Jσ/ε. The phase diagram at lower

T , instead, show a strong dependence from Jσ/ε. For Jσ/ε = 0.5, we find for any P above

the spinodal line a first-order phase transition line between a HDL (at high P ) and a

LDL (at low P ) phase (continuous line with open circles). This is the CPF scenario [28].

For Jσ/ε = 0.3 we observe that the HDL-LDL phase transition ends to a critical point

C ′ (continuous line with open circles ending in a full large circle) at negative P , as in

the LLCP scenario suggested in Ref. [67]. From C ′ a Widom line (dashed line with full

circles) departs. For Jσ/ε = 0.05, C ′ occurs at positive P , has hypothesized in Ref. [66]

and the Widom line (dashed line with full squares) extends to lower P . For Jσ/ε = 0.02,

C ′ approaches the T = 0 axis, as well as the Widom line (dashed line with full diamonds),

going toward the limit of the SF scenario [68].
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bonds, that in turn corresponds to the Widom line. They also confirm that the crossover

is from a non–Arrhenius behavior at high T to another non–Arrhenius behavior [27], that

closely resembles an Arrhenius behavior around the crossover.

These results are consistent with those from simulations of other models for hydrated

proteins where a crossover in the translational dynamics is observed [101]. The difference

here is that (i) the crossover is for the dynamics of the hydrogen bonds, (ii) in the coop-

erative water model the crossover can be calculated from MF and an exact relation can

be found between the crossover and the Widom line, and (iii) the model can test different

hypotheses. In particular, Kumar et al. have shown that the crossover at kBT/ε ≈ 0.32

is independent of whether water at very low temperature is characterized by a LLCP or

is SF. In fact, the crossover is a consequence of the sharp change in the average number

of hydrogen bonds at the temperature of the specific heat maximum, that occurs in both

scenarios. Kumar et al. were able also to make predictions about the P–dependence of

quantities characterizing the crossover at kBT/ε ≈ 0.32: (i) the time scale of the crossover,

showing that it is independent of P (isochronic crossover); (ii) the activation energy of the

apparent Arrhenius behavior at low T and (iii) the crossover temperature, showing that

both (ii) and (iii) decrease linearly upon increasing P [32]. These predictions have been

confirmed by Chu et al. [27, 121] in a study on the dynamics of a hydrated protein under

moderately high pressures at low temperatures using the quasielastic neutron scattering

method. They relate these predictions (i)–(iii) to the mechanical response of the protein

to an external force, that is the average elastic constant calculated from the mean square

displacement of the protein atoms. In particular, the degree of “softness” of the protein,

related to the enzymatic activity, is preserved at lower T if the pressure is increased [121].

However, a criterion proposed in Ref. [32] for discriminating which scenario better describe

water on the basis of the crossover at kBT/ε ≈ 0.32, cannot be tested in the experiments

since the predicted difference between the two scenarios (of the order of 1%) is within the

error bars of the measurements [27].

The answer to the puzzle of which of the scenarios better describe water might be

related to the very recent experimental discovery of another crossover for the hydrogen

bond τ to an Arrhenius behavior at very low T , of the order of 180 K at hydration h = 0.3
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g H2O/g. This crossover has been observed by Mazza et al. at kBT/ε ≈ 0.07 [46], in

relation to an ordering process of the hydrogen bonds leading to the HDL-LDL critical

point. The study has been possible thanks to the use of a highly efficient cluster MC

dynamics [43, 122]. This very–low T crossover would reduce even more the T at which the

proteins preserve their “softness”, essential for their correct functionality.

3.3.2 Water Monolayer in Hydrophobic Confinement

By considering partially hydrated hydrophobic plates at a distance such to inhibit the

crystallization of water at low T , Franzese and de los Santos [123] have show that water

has a glassy behavior [31] for both the translational and rotational degrees of freedom

when cooled down to a low P . This result is consistent with simulations of TIP4P water

forming a quasi-2d amorphous when confined in a hydrophobic slit pore with wall-to-wall

separation just enough to accommodate two molecular layers [124].

At higher P the hydrogen bond network builds up in a less gradual way, allowing the

system to equilibrate the rotational degrees of freedom also at very low T , but not the

translational degrees of freedom. This effect is emphasized by the appearance of many

dehydrated regions [123], as also observed in water confined between two protein-like

hydrophobic flattened surfaces at distances ranging from 0.4 to 1.6 nm [79].

When P is close to the LLCP value, the cooperativity of the hydrogen bond network

induces a strong non-exponential behavior [125] for the hydrogen bond correlation func-

tion. However, both rotational and translational degrees of freedom equilibrate within the

simulation time. At higher P the rotational correlation function recovers the exponential

behavior and the diffusion of the system allows the formation a large dry cavity, while the

rest of the surface is well hydrated. It is interesting to observe that the cooperative model

allows to calculate, in the MF approximation, the diffusion constant at any T and P [126].

The hydrophobic confinement has effects also on water thermodynamics. It shifts the

HDL-LDL phase transition to lower temperature and lower pressure compared to bulk

water when the confinement is between plates [127, 128]. Moreover, it shifts both the

line of maximum density and the liquid-to-gas spinodal toward higher pressures and lower

temperatures with respect to bulk when the confinement is in a hydrophobic disordered
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matrix of soft spheres [80]. This result is confirmed also in the analysis performed by

using the cooperative water model in confinement between hydrophobic hard spheres [129].

However, the effect of the matrix on the HDL-LDL critical point is less clear and is presently

under investigation.

3.4 Conclusions

The effect of confinement is of great interest to biology, chemistry, and engineering,

yet the recent experimental and simulations results are object of an intense debate. A

better understanding of the physico–chemical properties of liquid water at interfaces is

important to provide accurate predictions of the behavior of biological molecules [130],

including the folding-unfolding transitions seen in proteins [131–133], and the dynamical

behavior of DNA [91]. However, it is still unclear whether such behaviors are inherent in

the structure of such molecules, or an effect of water in which they are always found, or

due to the interactions between the two.

To get insight into this subject the formulation of a model that allows the development

of a theory could be useful to find functional relations connecting different observables. The

advantage of this approach is to have two independent ways of approaching the problem,

one theoretical and the other numerical.

We have presented here several recent results obtained with a cooperative water model

suitable for studies with mean field theories and with N , P , T simulations with thousands

of molecules. The model has been studies in the context of water monolayers on hydrated

proteins, between hydrophobic surfaces or in a hydrophobic matrix.

Some of the conclusions reached with this model are the following.

• The different scenarios proposed to interpret the low-T behavior of water are in-

stances of the same mechanism, with different values of the directional (covalent)

strength and the cooperative (many-body) interaction of the hydrogen bonds. The

parameters that can be estimated from the experiments suggest that the scenario

with the LLCP is the most plausible for water.
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• Previous experiments showing one dynamic crossover in the water monolayer hy-

drating proteins, RNA and DNA are consistent with (at least) two scenarios.

• The possibility of a second dynamic crossovers detectable at lower T and lower

hydration level would be consistent only with the LLCP scenario, because its origin

would be related to the ordering of the hydrogen bond network.

• A consequence of the occurrence of a LLCP should be detectable when the transla-

tional and rotational dynamics of water are studied for a monolayer in a hydrophobic

confinement. In particular, the rotational dynamics should appear with the strongest

non-exponential behavior in the vicinity of the LLCP, as an effect of the cooperativ-

ity. Moreover, the slow increase of the number of hydrogen bonds at ow T and low

P is the cause of the formation of an amorphous glassy state when the confinement

is such that to inhibit the crystallization of water. Under this conditions, the dehy-

dration of hydrophobic surfaces is characterized by the appearance of heterogeneities

and cavitation.

• The hydrophobic confinement affects the thermodynamics of water by lowering the

T and increasing the P of the liquid-gas phase transition and of the TMD line. It

also affects the LDL-HDL phase transition in a way that is possibly more complex.

All these results are potentially relevant in problems such as the protein denaturation

or the protein aggregation. Works are in progress to underpin and build up a theory of

water at interfaces that could help us to acquire a better understanding of these subjects.



Chapter 4

Supercooled water in a matrix of

hydrophobic nanoparticles

Many recent experiments investigate the behavior of water in confined geometries

[28, 81, 84, 89, 134–137] for its relevance to nanotechnology, e.g., filtering water in carbon

nanotubes [138, 139], and biophysics, e.g., intracellular water [70]. An interesting prop-

erty of nanoconfined water is that it remains liquid at temperatures where bulk water

freezes. The present technology allows us to observe bulk water in its liquid phase be-

low 0◦C if quenched very rapidly (supercooled), but ice formation cannot be avoided

below TH = −41◦C (at 1 atm). Interestingly, a number of theories and models predict

a peculiar thermodynamic behavior for bulk water below TH , with a liquid-liquid phase

transition (LLPT) [32, 34, 36, 37, 39, 46, 66, 100, 140–142]. Although studying nanoconfined

water could shed light on the phase diagram of deeply supercooled water, experiments

and simulations [143, 144] show that fluid-fluid phase transitions in a confined space can

differ from those in bulk water. Several studies using specific geometries, e.g., slits

[79, 123, 124, 127, 128] or disordered matrices of disks or spheres [80, 145], have clarified

some aspects but leave open questions about the thermodynamics of supercooled confined

water [28, 41, 72, 81, 84, 89, 127, 134–137].

It has been proposed that supercooled water forms highly structured regions in the

hydration shell of nonpolar solutes [146, 147], where the hydrogen bond (HB) network

is weakened only when the size of the hydrophobic particles is above a characteristic
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value [148], calculated using free energy analysis to be ≈ 1 nm [77]. Muller explained

experimental results by assuming enthalpic strengthening of the hydration HBs with a

simultaneous entropy increase in the hydration shell [149].

4.1 Simulation details

Here, motivated by several experiments on water in a strong hydrophobic confinement

[28, 70, 81, 84, 89, 134–139, 150], we consider a water monolayer of thickness h <∼ 1 nm in

a volume V partitioned into N cells of a square section of size
√

V /N h. Each cell

is occupied by either a water molecule or a hydrophobic particle. Particles can occupy

more than one cell, are spherical and approximated by the set of cells with more than

50% of their volume inaccessible to water. Particles are randomly distributed and form

a fixed matrix that mimics a porous system or a rough atomic interface. N ≤ N is the

total number of cells occupied by water molecules and V ≤ V is their total volume. The

Hamiltonian for water-water interaction is [32, 34, 36, 37, 39, 46]

H ≡
∑

ij

U(rij) − JNHB − Jσ

∑

i

ni

∑

(k,")i

δσik,σi"
. (4.1)

Here rij is the distance between water molecules i and j, U(r) ≡ ∞ for r < r0 ≡ 2.9 Å,

the water van der Waals diameter, U(r) ≡ εw[(r0/r)12 − (r0/r)6] for r ≥ r0 with εw ≡

5.8 kJ/mol, the van der Waals attraction energy, and U(r) = 0 for r > rc =
√

V /h/4, the

cut-off distance.

The second term in Eq. (9.1) describes the directional HB interaction, with J ≡

2.9 kJ/mol, and the total number of HBs NHB ≡
∑

〈i,j〉 ninjδσij ,σji , where ni ≡ 1 for

a water molecule when Nv0/V ≥ 0.5 (liquid density, with v0 ≡ hr2
0) and 0 otherwise,

and ni ≡ 0 for a hydrophobic particle. A HB breaks when the OH—O distance exceeds

rmax − rOH = 3.14Å, because ninj = 0 when the O–O distance r ≥ rmax ≡ r0

√
2 =

4.10Å (rOH = 0.96Å). It also breaks if ÔOH > 30o. Therefore, only 1/6 of the orientation

range [0, 360◦] in the OH–O plane is associated with a bonded state. By allowing q = 6

possible states for each index σij, we account for the entropy loss associated with the

formation of a HB because, by definition, δσij ,σji ≡ 1 if σij = σji, δσij ,σji ≡ 0 otherwise.
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Figure 4.1: P–T phase diagram for different nanoparticle concentrations c. Open circles

estimate liquid-to-gas spinodal line, squares estimate TMD line. In this and all other

figures, where not shown, errors are smaller than the symbol size. Lines are guides for the

eyes (dashed for c = 0, dotted for 2.4%, full for 25%). Critical points are shown as large

full circles. The liquid–gas critical point is the same for c = 0 and 2.4%, while occurs at

lower P and T for c = 25%. Lower inset: enlarged view of the low-T region. The first-order

LLPT ends in a critical point at T + 174 K and P + 0.13 GPa for all c. At c = 2.4% and

25% at P > 0.15 GPa the first-order LLPT is no longer detected, indicating a new high-P

critical point. Upper inset: configuration at T + 160 K and P = 0.18 GPa for c = 25%.

Hydrophobic nanoparticles are in white; HBs are in different colors for different ordered

domains.
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The notation 〈i, j〉 denotes that the sum is performed over nearest–neighbors (n.n.) water

molecules i and j, so that each water molecule can form up to four HBs.

HB formation increases the volume per molecule, because it leads to an open network

of molecules with reduced nearest neighbors with respect to close molecular packing. We

incorporate this effect by an enthalpy increase PvHB for each HB, where vHB/v0 = 0.5 is

the average density increase from low density ice Ih to high density ices VI and VIII.

The third term in Eq. (9.1) accounts for the HB cooperativity, with Jσ ≡ 0.29 kJ/mol,

where (k, *)i indicates each of the six different pairs of the four bond-indices σij of a

molecule i. It gives rise to the O–O–O correlation, locally driving the molecules toward

an ordered configuration [41].

The water-nanoparticle interaction is purely repulsive, Uwn(r) ≡ εh[(r0/r)12], with εh ≡

εw

√
0.1 = 1.8 kJ/mol [80], where r < rc is the distance between the water cell and each of

the cells occupied by the nanoparticle. The restructuring effect of hydrophobic particles

on water is incorporated by replacing J and Jσ in the hydration shell with Jh = 1.3J and

Jh
σ = 1.3Jσ, following [151]. Because bonding indices facing the nanoparticle cannot form

HBs, at intermediate T they have a number of accessible states larger than those facing

water molecules, inducing an increase of hydration entropy [149].

We perform Monte Carlo (MC) simulations for constant pressure P , temperature T ,

and N , with variable water volume V ≡ V0 + NHBvHB, where V0 ≥ Nv0 is a stochastic

continuous variable that fluctuates following the MC acceptance rule [122]. We simulate

systems with N ≤ 1.6 × 105 within a fixed matrix of spherical nanoparticles of radius

R = 1.6 nm, with nanoparticle concentration c ≡ (N − N)/N = 2.4% and 25%. We

repeat the analysis for R = 0.4 nm. For c = 0, the model has a phase diagram with

a first-order LLPT, between a low density liquid and a high density liquid, starting at

P + 0.2 GPa for T → 0 and ending in a critical point at T + 174 K and P + 0.13 GPa

[32, 34, 36, 37, 39, 46].
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4.2 Results

We find that for c > 0 the liquid-gas spinodal is shifted to lower T and the line of

temperature of maximum density (TMD) is shifted to lower T at low P and to higher T at

high P , with respect to the c = 0 case, reminiscent of results for other models of confined

water [80, 128]. We find stronger changes for increasing c (Fig. 4.1).

Further, we find that confinement drastically reduces volume and entropy fluctuations

at low T . To quantify this reduction, we calculate volume fluctuations, entropy fluctua-

tions, and cross-fluctuations of volume and entropy, and analyze the associated measurable

response function, respectively, isothermal compressibility KT , isobaric specific heat CP

and isobaric thermal expansion coefficient αP , e.g., see Figs. (5.7) and (5.5). For a water

monolayer with N = 1.6 × 105 cells confined within nanoparticles with R = 1.6 nm at

c = 25%, we find a maximum Kmax
T along the isobar at P + 0.16 GPa that is 99.7% smaller

than the c = 0 case. If we decrease c to 2.4%, the reduction of Kmax
T is still remarkable:

92.3% (Fig. 5.5). We find similar reductions for Cmax
P and αmax

P .

Such a dramatic Kmax
T reduction at low T and high P suggests a possible change in

the region of the phase diagram where water at c = 0 has the LLPT. The general theory

of finite size scaling tells us that at a first-order phase transition, Kmax
T , Cmax

P and αmax
P

increase linearly with the number of degrees of freedom, here equal to 4N . We find a linear

increase for 0.14 GPa≤ P ≤ 0.20 GPa for c = 0, and only for 0.14 GPa≤ P < 0.16 GPa

for c = 25% and 2.4%, consistent with the absence of a first-order LLPT outside these

ranges.

To better understand this new feature, i.e., the effect of confinement on the LLPT

at high P , we study the finite size scaling of the Binder cumulant [152, 153] UN ≡ 1 −

[〈V 4〉N /3〈V 2〉2N ], where 〈·〉N stands for the thermodynamic average for a system with N

cells. For N → ∞, at fixed c and P , UN = 2/3 for any T away from a first-order phase

transition, while Umin
N < 2/3 at a first-order phase transition [152, 153].

For c = 0, we find that Umin
N < 2/3 for N → ∞ at 0.14 GPa≤ P ≤ 0.20 GPa, while

Umin
N = 2/3, within the error bar, at P = 0.12 GPa (Fig. 5.9a). Hence, this analysis

confirms that for c = 0 there is a first-order LLPT in the range 0.14 GPa≤ P ≤ 0.2 GPa.
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For c = 2.4% and 25%, we find that, for large N , Umin
N < 2/3 at 0.14 GPa, but not at

0.12 GPa or at

P ≥ 0.16 GPa (Fig. 5.9b,c). Hence, for c = 2.4% and 25% the first-order LLPT occurs

only in a limited range of pressures around 0.14 GPa, consistent with our results for

〈(δV )2〉 (Fig. 5.7) or Kmax
T (Fig. 5.5), with two end-points: one at ≈ 0.15 GPa, another at

≈ 0.13 GPa (Fig. 4.1).

4.3 Discussion

We interpret our findings as follows. As a consequence of the stronger HB in the

solutes hydration shell, at low T the hydration water is more ordered than the c = 0

case. However, shells around different nanoparticles have a different local orientational

order. This generates competing domains, reminiscent of the locally structured regions

proposed in Ref. [146, 147], and exhibits no macroscopic order (Fig. 4.1 upper inset). The

large decrease in fluctuations and response functions, e.g. KT , is due to the many domain

boundaries. Our results for c as low as 2.4% suggest that that the decrease is due to

the introduction of a characteristic length scale, inversely proportional to c, that limits

the growth of the ordered structured regions. This is consistent also with the results for

Kmax
T (Fig. 5.5), where the lower is c, the larger is N beyond which the confined behavior

deviates from the c = 0 case.

In previous theoretical analysis, with water confined by a fixed matrix of randomly

distributed Lennard-Jones disks, the reduction of compressibility was observed only for

large hydrophobic obstacle concentrations [145]. Here, instead, we find that KT is reduced

for very low c, possibly because of the different water-nanoparticle interaction.

Our results are qualitatively consistent with recent experiments on H2O confined in the

hydrophobic mesoporous material CMK-1-14 consisting of micrometer-sized grains, each

with a 3-dimensional interconnected bicontinuous pore structure, with an average pore

diameter 14 Å, at a hydration level of 99% at ambient pressure [150]. Zhang et al. find

that the TMD is shifted down by 17 K with respect to the hydrophilic confinement in

silica mesopores and that αP shows a much broader peak, spanning from 240 to 180 K, in
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Figure 4.2: (a) Volume fluctuations 〈(δV )2〉 for c = 25% and N = 104 have maxima

that follow a locus in the P – T plane that does not change, within the error bars, with

c or N . The projections 〈(δV )2〉 vs P or vs T clarify that the maxima do not change

monotonically with P or T . (b) The projection of maxima of 〈(δV )2〉 increases approaching

P = 0.132 GPa and 0.156 GPa, consistent with our estimate of two critical points at

≈ 0.13 GPa and ≈ 0.15 GPa. Dashed lines are guides for the eyes.
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Figure 4.3: Maxima Kmax
T of the isothermal compressibility KT ≡ 〈(δV )2〉/(kBT 〈V 〉) vs

number of water molecules N for c = 0, 2.4% and 25%. (a) Linear increase in Kmax
T with

N for P = 0.14 GPa, consistent with a first-order LLPT for all c. (b) At P = 0.16 GPa,

Kmax
T increases linearly for c = 0 indicating a first-order LLPT, but saturates for c = 2.4%

and 25%, consistent with the absence of a first-order LLPT 2.

2At c = 0, Kmax
T increases for higher P because 〈(δV )2〉 depends weakly on P , and Kmax

T occurs at

lower T 〈V 〉.
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Figure 4.4: (a) At c = 0, for N → ∞ is Umin
N = 2/3, within the error bar, for P =

0.12 GPa and tends to a value ≤ 2/3 for P ≥ 0.14 GPa, indicating a first-order LLPT for

P ≥ 0.14 GPa. At nanoparticle concentrations c = 2.4% (b) and 25% (c), for N → ∞ we

find Umin
N < 2/3 only for P = 0.14 GPa, indicating that the first-order LLPT is washed

out by the hydrophobic confinement at high P . For sake of clarity, typical error bars are

indicated only for a few points. Lines through the points are fits, while other lines are

linear interpolations between fits at intermediate P . Black arrows mark isobars crossing

the first-order LLPT line.
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contrast to the sharp peak at 230 K in hydrophilic confinement [150], reminiscent of our

results on the shift of TMD and the reduction of the response functions with respect to

the c = 0 case.

Recent results for small angle x-ray scattering for aqueous solutions of amphiphilic

tetraalkyl-ammonium cations at ambient conditions suggest that the strengthening of the

structure of hydration water is present only for solutes with radius smaller than ≈ 0.44 nm

[215]. We therefore repeat our analysis for small nanoparticles with R = 0.4 nm, and find

that our results are robust if the amount of hydrophobic interface in contact with water

is kept constant with respect to the case of R = 1.6 nm.

4.4 Conclusion

In conclusion, we predict that a water monolayer confined in a fixed matrix of hy-

drophobic nanoparticles at concentration c displays changes in the thermodynamics and

a drastic reduction, > 90%, in KT , CP , and αP with respect to the c = 0 case. At c as

small as 2.4% the first-order LLPT at high P is no longer detected.



Chapter 5

Hydrophobic nanoconfinement

suppresses fluctuations in

supercooled water

Water is frequently found in nature in its supercooled state. This fact has stimu-

lated intense experimental and theoretical research [28, 81, 84, 89, 134–136, 155–157]. In

the deeply supercooled region, however, the direct observation of bulk water is extremely

difficult due to the inevitable crystallization that occurs. One way to overcome this exper-

imental difficulty is to confine water to nanometric distances. Nanoconfined water remains

liquid down to very low temperatures [157] opening the possibility of exploring the prop-

erties of confined water in a temperature range that is inaccessible when the subject is

bulk liquid water. A number of important technological and biological applications de-

pend on understanding the phase diagram of water [28, 81, 84, 89, 134–137, 158–161]. For

example, hydrophobic and hydrophilic interactions are important driving forces for the

self-assembling of micelles or membranes and are fundamental for protein folding. Water

is enclosed in cell membranes and is a typical solvent for proteins [130]. The study of

water confined in carbon nanotubes is opening new technological perspectives [70], and

thus there has been an increasing interest in studying confined water in various geome-

tries, such as nanopores or nanotubes, protein hydration water, and intracellular water

[138, 139, 162–168].
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One very peculiar property of supercooled water is the phenomenon of polyamorphism,

i.e., the presence of two or more liquid or glassy states which was first observed in glassy

water [58, 62, 169]. There are two different forms of amorphous glassy water: a low density

amorphous (LDA) and a high density amorphous (HDA) that are separated by a first order

phase transition line. Consequently, polyamorphism for liquid water with low density liquid

(LDL) and a high density liquid (HDL) was proposed [66, 170, 171] triggering experimental

investigations [172, 173]. A number of current theories and models predict a first-order

liquid-liquid phase transition (LLPT) for bulk water between LDL and HDL below the

homogeneous nucleation temperature T bulk
H , where bulk water freezes spontaneously [27,

32, 34, 36, 37, 39, 46, 66, 100, 101, 140, 141, 156, 174–177]. Recently, Limmer and Chandler

performed free-energy calculations for the ST2 water model concluding that there is no

evidence for the LLPT [178]. However, more recent calculations reach a different conclusion

supporting the existence of the LLPT [179, 181, 182, 305].

Recent studies on water in various confined geometries—in which water crystallization

is suppressed down to very low temperatures—have investigated the region in the pressure-

temperature (P–T ) phase diagram where a first order LLPT is predicted. However, no

definitive answer has been given regarding the thermodynamic implications of confinement

and its relevance to the phase diagram of bulk water. Water differs from most liquids in

that there is an important thermodynamic locus in the P–T phase diagram—the line

where, at a given P , the T dependence of the density exhibits a maximum, commonly

referred to as the temperature of maximum density (TMD). A shift to lower T of the TMD

line, and its curvature modification, have been reported for confined water, suggesting

important changes in the phase diagram deep in the supercooled region [80, 183]. In

general, experiments and simulations [143, 144, 184] show that LLPTs in a confined space

can differ from those in bulk. Therefore, there are aspects of the thermodynamics of

confined water that remain open to debate [41, 72].

In computer simulations, one possible approach to these studies is to develop atomistic

models of water utilizing a geometry such as slits [79, 123, 124, 127, 128, 185] or a disordered

matrix of disks or spheres [80, 183]. The main difficulty in this approach is that these

simulations are time-consuming, and are usually limited to only a few hundred water
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molecules.

Another possible approach is to consider coarse-grained models of water. Coarse

graining can be done at different levels, i.e., at the level of a single water molecule

[34, 35, 37, 68, 186] or a few molecules [187], depending on the properties being studied.

Here we present results for a water model that is coarse-grained at the single molecule

level. Molecular details are sacrificed for the benefit of computational speed, which allows

more extensive studies, and theoretical simplicity, which allows analytic calculations. Here

we ask whether the confinement in a fixed matrix of hydrophobic nanoparticles changes

the thermodynamics of a water monolayer at temperatures below T bulk
H .

Using Monte Carlo simulations, our results for a coarse-grained model of a water mono-

layer [129] show that even a small presence of hydrophobic nanoparticles can drastically

suppress thermodynamic fluctuations, and wash out the coexistence of the two types of

liquid supercooled water at high pressures.

The paper is organized as following. Sections 2, 3, and 4 outline details of the model

and Monte Carlo simulations. Section 5 presents the results. Discussion and Conclusions

are given in Section 6.

5.1 Coarse-Grained Model of water monolayer

We consider a coarse-grained model for water in two dimensions confined between

two smooth hydrophobic plates, whose interaction with water is purely repulsive and

represented by a steric hard-core exclusion. It has been previously shown that when the

distance between the plates is approximately 0.5 nm the monolayer of water remains in

its liquid phase, while the properties of the confined water are only weakly dependent

on the details of the confining potential between smooth walls [104, 188]. We partition

a water monolayer of thickness h + 0.5 nm and volume V into N square cells of equal

length
√

V /N h. We coarse-grain over the position orthogonal to the walls and consider

only the projection of water molecules in a plane parallel to the wall. We further coarse-

grain the detailed position of each molecule, discretizing it to the resolution given by

our square partition of the parallel plane, assigning to each cell an occupancy variable
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(a) (b)

Figure 5.1: (a) Snapshot magnified around the region occupied by the hydrophobic

nanoparticle (golden irregular polygon). The size of the hydrophobic nanoparticle is con-

trolled by the number of cells it can occupy, and its shape is approximated by a disk

composed of cells that fall within radius R. Here the radius of the hydrophobic nanopar-

ticle is R = 1.6 nm. Small cyan spheres are water cells with four bond indices (small

squares) with six possible colors corresponding to the q = 6 possible values of the bonding

variables. Only the bond indices that participate in the formation of the hydrogen bond

are shown here.(b) Snapshot of the monolayer with 2.4% of its volume occupied by hy-

drophobic nanoparticles (big golden spheres) with R = 1.6 nm. Hydrophobic nanoparticles

are randomly placed and form a fixed matrix. Hydrogen bonds are visualized by different

color lines between water cells (cyan small spheres), depending on their relative state.
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ni = 1 if the cell is occupied by a water molecule, or ni = 0 if it is occupied by a

hydrophobic nanoparticle. We consider the case in which there are no empty cells in the

system and hydrophobic nanoparticles can occupy more than one cell, depending on their

size. Hydrophobic nanoparticles are disks of radius R and are approximated by a set of

cells that fall within the πR2 area centered on each hydrophobic nanoparticle [Fig. 5.1(a)].

Hydrophobic nanoparticles are randomly distributed and form a fixed matrix that mimics

a porous system or a rough atomic interface [Fig5.1(b)]. N ≤ N denotes the total number

of cells occupied by water molecules and V ≤ V denotes their total volume.

In order to implement a constant P ensemble we include volume V fluctuations in the

model by allowing a global rescaling of the cell length
√

V /N h. The cell length coincides

with the distance among nearest neighbor molecules. Therefore, the volume fluctuations

induce fluctuations of rij (i) the distance between any two water molecules i and j and (ii)

the distance between any water molecule i and any cell j occupied by the nanoparticle.

Since a continuous range of possible volume fluctuations is allowed, the distances change

as continuous variables, despite the discrete lattice partition of the space. As the result,

the fluctuations of the cell size and therefore the fluctuations of the volume occupied by

a nanoparticle are a consequence of the change of the coarse-graining scale. Therefore,

it does not imply that the nanoparticle volume is increasing or decreasing, but that the

coarse-graining length-scale undergoes (small) fluctuations.

The system is described by the Hamiltonian [27, 32, 34, 36, 37, 39, 46, 101, 174, 175]

H ≡
∑

ij

U(rij) − JNHB − Jσ

∑

i

ni

∑

(k,")i

δσik,σi"
. (5.1)

The first term, U(rij) ≡ Uw(rij) + Uh(rij), is given by the sum of the isotropic part of the

water-water interaction Uw(rij) and the water-nanoparticle interaction Uh(rij). The two
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pair interactions are defined as

Uw(r) ≡






∞ for r < r0,

εw[( r0
r )12 − ( r0

r )6] for r ≥ r0,

0 for r > rc

Uh(r) ≡






∞ for r < r0,

εh[(
r0
r )12] for r ≥ r0,

0 for r > rc

(5.2)

where r0 ≡ 2.9 Å is the water van der Waals diameter, εw ≡ 5.8 kJ/mol is the water-water

attraction energy, rc =
√

V /h/4 is the cut-off distance. For the water-water case this term

includes the short–range repulsion of the electron clouds and all the isotropic long–range

attractive interactions, such as the weak instantaneous induced dipole-dipole (London)

interactions between the electron clouds of different molecules and the stronger isotropic

part of the hydrogen bond [189].

For the water-hydrophobic nanoparticle case we assume that the interaction is purely

repulsive, with εh ≡ εw

√
0.1 = 1.8 kJ/mol to soften the repulsive ramp. We observe here

that a hydrophobic nanoparticle could also have a small attractive term in the water-

hydrophobic nanoparticle interaction, since dispersive van der Waals forces are always

present. However, the repulsive interaction is typically one order of magnitude stronger

than the attractive term [190]. Our neglect of the attractive water-nanoparticle interaction

is, therefore, reasonable at first approximation and has been adopted by other authors [80].

The second term of Eq. (9.1) describes the strong directional component of the hydrogen

bond (HB) due to the dipole-dipole interaction between the highly concentrated positive

charge on each H and each of the two excess negative charges concentrated on the O of

another water molecule. To account for the different bonding configurations of each water

molecule, we assign to each cell i four bond variables σij = 1, ..., q (one for each nearest

neighbor cell j), representing the orientation of molecule i with respect to molecule j. A

common assumption is that a HB breaks when ÔOH > 30o. Therefore, only 1/6 of the

orientation range [0, 360◦] in the OH–O plane is associated with a bonded state. Hence,

every molecule has q4 = 64 ≡ 1296 possible orientations and by considering the index σij

we account for the entropy loss associated with the formation of a HB. We say that two
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molecules in nearest neighbor (n.n.) cells form a HB only if they are correctly oriented,

by definition, δσij ,σji ≡ 1 if σij = σji, δσij ,σji ≡ 0 otherwise. The total number of HBs is

NHB ≡
∑

〈i,j〉

ninjδσij ,σji , (5.3)

where ni ≡ 0 for a nanoparticle and 1 for a water molecule. The notation 〈i, j〉 denotes

that the sum is performed over n.n. water molecules i and j, so that each water molecule

can form up to four HBs. We consider a bond energy J ≡ 2.9 kJ/mol, as adopted in

Ref. [46, 101, 174]. Since εw = 2J , the HBs are formed in large numbers only in the

condensed liquid phase.

Hydrophobic nanoparticles are treated as a fixed random confining matrix and the

bonding variable facing the nanoparticles cannot participate to any hydrogen bond, but

contribute to the entropy of the system and are correlated to the other three bonding

variables of the same water molecule.

Experiments have demonstrated that the formation of a HB leads to an open, locally

tetrahedral, structure that induces an increase of volume per molecule within the second

shell [25, 64]. We incorporate this effect by an enthalpy increase PvHB for each HB, where

P is pressure and vHB/v0 = 0.5 is the average volume increase from high density ices VI

and VIII to low density ice Ih, and v0 ≡ hr2
0. Then the total water volume of the system

is defined as

V ≡ V0 + NHBvHB, (5.4)

where V0 ≥ Nv0 is a continuous variable that changes with pressure in such a way that

V follows the water equation of state [122]. Note that only the term V0 of the fluctuating

volume is considered for the calculation of distances r appearing in the Eq. (9.2) for the

isotropic interaction U(r), because the HB formation does not imply an increase of molec-

ular distances, but only an increase of the local tetrahedral structure with the exclusion of

interstitial water molecules between the first and the second shell. This exclusion induces

the increase of volume per water molecule mimicked by the Eq. (9.4).

The third term accounts for the experimental fact that at low T the O–O–O angle

distribution in water becomes sharper around the tetrahedral value [41], consistent with

a cooperative behavior among bonds [36] as a consequence of many-body interaction of
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water molecules. We model this interaction by including a coupling Jσ ≡ 0.29 kJ/mol

among the four bonding indices of the same water molecule in the third term of Eq. (9.1),

where (k, *)i denotes each of the six different pairs of the four bond-indices σij of a molecule

i. Since is Jσ < J , this term locally drives the HBs formed by a water molecule toward

an ordered configuration, mimicking the many-body interaction that induces the locally

ordered structure of the HBs.

5.2 Hydrophobic Interaction

Confinement along one dimension inhibits the formation of 3D ice at T < T bulk
H [128,

185], and forces the water molecules to freeze into a lattice characterized by orientational

disorder [128, 185]. The characteristics of the lattice are closely related to those of the

hydrophobic surface. For example, strong template effects are present for the graphene

surface [191] while the absence of atomic characterization of the surface leads to a generic

square arrangement [128, 185]. In any case, the limited space left open to water induces

the formation of an almost 2D structure where the translational dynamics at low T is very

limited, while the HB breaking-and-formation dynamics is present also at low T [128, 185].

All of these features are reproduced in the coarse-grained model considered here [123].

Moreover, the possibility of exploring very low temperatures and very high pressures by

means of this coarse-grained water model allows us to predict a phase diagram with a

first-order LLPT, between a LDL and a HDL, starting at P + 0.2 GPa for T → 0 and

ending in a critical point at T + 174 K and P + 0.13 GPa [27, 32, 34, 36, 37, 39, 46, 101, 174,

175] [Fig. 5.6(a)]. Furthermore, in the vicinity of the liquid-liquid critical point, the HB

dynamics displays the largest heterogeneity, consistent with the presence of cooperative

dynamics [123], and with experiments for a water monolayer hydrating hemoglobin [192].

In the case considered here, water is also confined by hydrophobic nanoparticles to

the two directions parallel to the infinite flat surfaces. As shown in (9.2), the water-

hydrophobic nanoparticle interaction is repulsive and leads to interesting physics at low

T . In particular, it has been proposed that supercooled water forms highly structured

regions in the hydration shell of nonpolar solutes [146], where the hydrogen bond network
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is weakened only when the size of the hydrophobic nanoparticles is above a characteristic

value [148], calculated using free energy analysis to be ≈ 1 nm [77]. Moreover Muller

showed that experimental results can be explained only by assuming enthalpic strength-

ening of the hydration HBs with a simultaneous entropy increase in the hydration shell

[149].

In our model the restructuring effect of hydrophobic nanoparticles on water is incor-

porated by replacing the parameter J and Jσ in the hydration shell with Jh = 1.30J and

Jh
σ = 1.30Jσ, following Patel et al. [151]. Because bonding indices facing the hydrophobic

nanoparticle cannot form HBs, at intermediate T they have a number of accessible states

larger than those facing water molecules, inducing an increase of hydration entropy consis-

tent with the description of the hydrophobic effect given by Muller [149] and subsequently

modified by Lee and Graziano [193].

5.3 Monte Carlo Simulations

We perform Monte Carlo (MC) simulations in two dimensions for constant P , T , and

N . We use the protocol of heating the system starting from a completely ordered con-

figuration. We simulate systems with N ≤ 1.6 × 105 within a fixed matrix of hydropho-

bic nanoparticles of radius R = 1.6 nm, with hydrophobic nanoparticle concentration

c ≡ (N −N)/N = 2.4% and 25%. We repeat the analysis for R = 0.4 nm for a range of

concentrations between 0.5% and 22.5% for a fixed system size of N = 104. We observe

that for the two hydrophobic nanoparticle radii the effect is the same as long as the amount

of hydrophobic interface in contact with water is the same. Hence, the concentration c

necessary to observe the same effect is larger for the smaller hydrophobic nanoparticles,

being the relevant factor the amount of hydrophobic interface. We discuss our results in

terms of c and R.

In our simulations we update the variables σij using the Wolff cluster algorithm [122].

The algorithm is based on an exact mapping of the model studied here to a percolation

problem, following the mapping rules described in [43, 45]. The mapping is exact in this

case because the system has no frustration. Bond indices within a water molecule belong
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to the same cluster with probability psame ≡ 1 − exp [−βJσ], where β ≡ (kBT )−1, kB is

the Boltzmann constant. Bond indices of nearest neighbors (n.n.) water molecules belong

to the same cluster with probability pfacing ≡ 1 − exp [−βJ ′], where J ′ ≡ J − PvHB is

the HB enthalpy due to the interaction energy and the HB volume increase. For the

interfacial water molecules, we consider Jh and Jh
σ instead of J and Jσ respectively. We

study pressures in the interval 0.02 GPa " P " 0.2 GPa and we present a detailed scaling

analysis for pressures 0.12 GPa, 0.14 GPa, 0.16 GPa, and 0.18 GPa.

5.4 Results

We first considered how the confinement in fixed hydrophobic matrix affects the ther-

modynamics of liquid water above the melting point. In (Fig. 5.2) the P−T phase diagram

for different concentrations c of hydrophobic nanoparticles demonstrates a shift to lower

T of the liquid-gas spinodal for c > 0. For c = 25% the T change from the c = 0 case

is about 55 K at P = 0.02 GPa and about 35 K at P = 0.14 GPa. The shifts in the

TMD for c > 0 with respect to the c = 0 case is reminiscent of results for other models of

confined water [80, 128, 185]. We find stronger changes for increasing c. The changes are

not monotonic with pressure. For instance, for c = 25% the TMD exhibits a shift to lower

T of about 35 K at P = 0.02 GPa and 0.14 GPa, whereas, at P = 0.19 GPa the TMD

increases of about 100 K with respect to the c = 0 case (Fig. 5.2).

Relevant properties are associated with the fluctuations of thermodynamic quantities.

For example, the fluctuations of an order parameter associated with a phase transition

exhibit characteristic behavior when the phase transition occurs. Hence, their calculation

allows us to locate the phase boundaries. Moreover, from the fluctuations it is possible

to calculate the measurable quantities such as the isothermal compressibility, the iso-

baric specific heat, or the isobaric expansion coefficient that characterize the macroscopic

behavior of the system and are relevant in many technological applications. For exam-

ple, from the calculations of the volume fluctuations 〈(δV )2〉 ≡ 〈(V − 〈V 〉)2〉 using the

fluctuation-dissipation relation it is possible to calculate the isothermal compressibility,

KT ≡ 〈(δV )2〉/(kBT 〈V 〉) (Figure 5.3). From each data set at constant P , using separate



70

500 1000 1500
Temperature T  [K]

0

0.04

0.08

0.12

0.16

0.20

0.24

Pr
es

su
re

 P
 [G

Pa
]

0%
2.4%
25%

GAS

LIQUID

TMD

c

Figure 5.2: P–T phase diagram for different hydrophobic nanoparticle concentrations

c. Open circles mark liquid-to-gas spinodal line, squares mark TMD line. In this and all

other figures, where not shown, errors are smaller than the symbol size. Lines are guides

for the eyes (dashed for c = 0, dotted for 2.4%, full for 25%). The liquid–gas critical point

(large full circle) is the same, within the error bar, for c = 0 and 2.4%, while occurs at

lower P and lower T for c = 25%.
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fits on each side of the set maxima, we extrapolate the maxima of compressibility Kmax
T ,

and the maxima in 〈(δV )2〉.

By calculating the value of KT for state points sampled in the P −T plane for T < 190

K [Fig. 5.4(a)] we identify the location and shape of the locus of maxima of KT . When

a critical point occurs, the locus of Kmax
T calculated in the supercritical region converges

towards the locus of maxima of correlation length ξ (Widom line), as well as any other

locus of maxima of response functions. This is because in the vicinity of a critical point

all the response functions can be expressed as a power law of ξ. On the other hand, at a

critical point, ξ diverges in the thermodynamic limit. Therefore, Kmax
T and all the other

response functions diverge at the critical point. Hence, by following the locus Kmax
T (P )

in the P − T plane, when a critical point occurs we observe a diverging Kmax
T in the

thermodynamic limit. Moreover, because the critical point is at the end of a first-order

phase transition in P − T plane, maxima occur along this line and increase linearly with

system size. Therefore, by locating the locus of Kmax
T and calculating the finite size scaling

of Kmax
T at different pressures we are able to locate the critical point and the line of

first-order phase transition.

We first extract the locus of maxima of KT at different values of c and observe that

its position does not depend on N [Fig. 5.4(a)] nor c [Fig. 5.4(b)]. We therefore conclude

that the line of Kmax
T is a robust feature of water upon confinement in a fixed disordered

hydrophobic matrix of hydrophobic nanoparticles.

We find, however, that confinement drastically reduces volume fluctuations at low T .

For a water monolayer with N = 1.6×105 cells confined within hydrophobic nanoparticles

with R = 1.6 nm at c = 25%, we find a maximum Kmax
T along the isobar at P + 0.16 GPa

that is 99.7% smaller than the c = 0 case. If we decrease c to 2.4%, the reduction of Kmax
T

is still remarkable: 92.3% (Fig. 5.5).

For c = 0, previous investigations have located a liquid-liquid critical point at T +

174 K and P + 0.13 GPa by calculating the fluctuations of volume and entropy [Fig. 5.6(a)]

[27, 32, 34, 36, 37, 39, 46, 101, 174, 175].

Note that for c > 0 the maxima of 〈(δV )2〉 do not change monotonically with P or T

(Fig. 5.7). Instead, the maxima of 〈(δV )2〉 appear to diverge at two different values of T
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Figure 5.3: Decrease of volume fluctuations 〈(δV )2〉 and isothermal compressibility KT

at P = 0.14 GPa for increasing hydrophobic nanoparticle concentrations c. Calculations

based on a system with N = 4× 104. Lines are fits of simulation data for 〈(δV )2〉 (a) and

KT (b) with exponential function y = a0ea1/(a2−x) separately on each side of the maximum,

excluding the points near the maximum. (We estimate the maximum of each dataset as

the crossing of the fits on each side of the maximum, plus or minus the distance of the

crossing point from the curve maximum.)
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Figure 5.4: (a) The locus of maxima of KT (P, T ) does not depend on N , as shown by

symbols for N going from 104 to 1.6 × 105, for hydrophobic nanoparticles with radius

R = 1.6 nm and c = 2.4%. Values of log KT (P, T ) are color-coded as shown in the panel.

(b) The locus of maxima of KT (P, T ) does not depend either on concentrations c, as shown

for N = 104 and c = 0, 2.4% and 25%.
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Figure 5.5: Dependence of the maxima Kmax
T of the isothermal compressibility KT ≡

〈(δV )2〉/(kBT 〈V 〉) for c = 0, 2.4% and 25% on the number of water molecules N . (a)

For P = 0.12 GPa, Kmax
T slowly increases and possibly saturates. (b) For P = 0.14 GPa,

the linear increase of Kmax
T with N is consistent with a first-order LLPT for all c. For

P = 0.16 GPa (c) and P = 0.18 GPa (d), Kmax
T increases linearly only for c = 0 indicating

a first-order LLPT, but saturates for c = 2.4% and 25%, consistent with the absence of a

first-order LLPT 3.

3At c = 0, Kmax
T increases for higher P because 〈(δV )2〉 depends weakly on P , and Kmax

T occurs at

lower T 〈V 〉.
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Figure 5.6: Enlarged view of the low-T region of the phase diagram. The first-order

LLPT ends in a critical point at T + 174 K and P + 0.13 GPa for all c. In (a) for c = 0

the first-order LLPT is terminated by one critical point. For c = 2.4% and 25% (b) at

P > 0.15 GPa the first-order LLPT is no longer detected, indicating a new high-P end

point, whose behavior is consistent with a critical point (see text).
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Dashed lines are guides for the eyes.
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and P . This behavior for c > 0 is consistent with the occurrence of another critical point

at high P [Fig. 5.6(b)].

The general theory of finite size scaling tells us that, at a first-order phase transition,

Kmax
T increases linearly with the number of degrees of freedom, here equal to 4N . We find

a clear linear increase for 0.14 GPa≤ P ≤ 0.20 GPa for c = 0, and only for 0.14 GPa≤

P < 0.16 GPa for c = 25% and 2.4%, consistent with the absence of a first-order LLPT

outside these ranges (Fig. 5.5).

To emphasize that, at low P , Kmax
T does not grow linearly with N , we consider the

χ ≡ log(Kmax
T × 1 GPa/N) as a function of 1/N , where Kmax

T × 1 GPa/N is dimensionless

(Fig. 5.8).

For a first-order LLPT χ tends to a constant as 1/N → 0, otherwise it vanishes. Our

calculations confirm that a first-order LLPT is absent for any c at sufficiently low P . For

c = 2.4% and c = 25% the first-order LLPT is absent also at sufficiently high P . Hence

there is an upper critical point at the end of the LLPT line for c = 2.4% and c = 25%.

To more precisely locate the end points of the first order LLPT, we study the finite

size scaling of the Binder cumulant for volume [152, 194]

UN ≡ 1 − 〈V 4〉N
3〈V 2〉2N

, (5.5)

where 〈·〉N is the thermodynamic average for a system with N cells. For N → ∞,

at fixed c and P , UN = 2/3 for any T away from a first-order phase transition, while

Umin
N < 2/3 at a first-order phase transition [152, 194].

The T dependence of Umin
N is shown in Figs. 5.9(a) and 5.9(b) for c = 0 at two repre-

sentative values of P and for different system sizes. We find that there is a temperature

at which Umin
N < 2/3 with increasing N for P ! 0.14 GPa indicating the presence of a

first order LLPT in this region. The Binder cumulant analysis therefore confirms what

we concluded from the behavior of Kmax
T , i.e., the existence of a first-order LLPT in the

range 0.14 GPa " P " 0.2 GPa for c = 0. However, for c = 2.4% and 25%, we find

that with increasing N there is a T at which Umin
N < 2/3 for P = 0.14 GPa, but not

for P ! 0.18 GPa [Fig. 5.9(c)–(f)], which implies that in the thermodynamic limit at

P = 0.18 GPa the system is in the one phase region at all the temperatures considered
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Figure 5.8: Size dependence of compressibility maxima Kmax
T for several pressures and (a)

c = 0, (b) c = 2.4%, (c) c = 25%. The dimensionless quantity χ ≡ Log(Kmax
T × 1 GPa/N)

has a clear decrease for c = 0 only for very low P , indicating the absence of a first-order

LLPT. At fixed P , by increasing c, the value of Kmax
T /N decreases of orders of magnitude.

For c = 25% the values of χ are not monotonic with P , with maxima at P = 0.16 GPa,

showing that the upper end-point for c = 25% is between P = 0.16 GPa and P = 0.14 GPa.
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Figure 5.9: Finite size scaling of the isobaric Binder cumulant UN as a function of

temperature, for different values of hydrophobic nanoparticle concentrations c. Sizes range

from N = L2 = 1600 to 1.6 × 105. (a) For c = 0 at pressure P = 0.14 GPa and (b)

0.18 GPa; (c) for c = 2.4% at P = 0.14 GPa and (d) 0.18 GPa; (e) for c = 25% at

P = 0.14 GPa and (f) 0.18 GPa. The error bars are estimated using the Jackknife method

for all the points, but only the largest error bars—at the minima of the largest system

sizes—are shown for clarity reasons.
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Figure 5.10: Extrapolation of the minima of Binder cumulants Umin
N to the thermody-

namic limit N → ∞. For P = 0.12 GPa, Umin
N → 2/3 as N → ∞ within the error bars.

For c = 0% in (a) Umin
N " 2/3 for P ! 0.14 GPa, indicating a first-order LLPT for these

pressures. For hydrophobic nanoparticle concentrations of c = 2.4% (b), and c = 25% (c),

Umin
N " 2/3 for N → ∞ only for P = 0.14 GPa marked by the arrow Therefore, the LLPT

is washed out by the hydrophobic confinement at high P . For sake of clarity, typical error

bars are shown only for a few points. Lines through the points are polynomial fits.

here. These results are summarized for several pressures in Figure 5.10, where we show

the size dependence of the minima of the Binder cumulant at different P for the three

concentrations studied. For c = 2.4% and 25% we find that Umin
N tends to a value less than

2/3, consistent with a first-order LLPT only for P at about 0.14 GPa. Therefore, consis-

tent with what already has been indicated by the analysis of Kmax
T and 〈(δV )2〉 (Fig. 5.5

and Fig. 5.7) for c = 2.4% and 25%, the first-order LLPT occurs only in a limited range

of pressures around 0.14 GPa, with two end-points: one at ≈ 0.15 GPa, and the other at

≈ 0.13 GPa [Fig. 5.6(b)].

5.5 Discussion

We adopt density as the relevant order parameter for the liquid-liquid phase transition.

In the model the density depends on the number of accessible configurations (entropy) and

energy of the system via the number of HBs NHB, and their specific volume vHB. Therfore,

our order parameter includes by definition contributions coming from entropy and energy,
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as is in general the case for fluid-fluid phase transitions [195].

It is interesting to compare our results with other cases in which the effect of quenched

disorder on phase transitions in 2D has been considered, including membranes [196–198]

or quenched filler particles [199]. In particular, we are interested in the comparison with

the case of random-field (RF) quenched disorder. In the RF case, phase transitions are

always destroyed in two dimensions [200–202]. To clarify what type of quenched disorder

do the hydrophobic nanoparticles represent in the case considered here, we observe the

following. For RF quenched disorder two conditions must hold: (i) the RF couples with

the order parameter and (ii) the RF destroys the ground state by frustrating it. While in

our model the first condition (i) holds, the second one (ii) does not, as we discuss in the

following. Hence, our system cannot be modeled as a RF.

The RF destroys the ground state, because it forces locally the degrees of freedom to

assume states that are not consistent with the ground state. In other words, the RF forces

the creation of interfaces. This is not true in our model, where the ground state is not

modified by the presence of the hydrophobic nanoparticles. By starting from a completely

ordered configuration (one of the q ground states), we heat up the sample and observe that

the stronger water-water hydrogen bond (HB) interactions near the hydrophobic nanopar-

ticles make the ground state as stable as the case without the hydrophobic nanoparticles,

as shown in Fig.5.4, where the locus of maxima of KT (P, T ) does not depend on concen-

tration c.

We understand our results in terms of dilution quenched disorder, for which the disorder

effects are mild and do not destroy phase transitions in 2D. In particular, by including

hydrophobic nanoparticles, we delete water-water interactions in the region occupied by

the hydrophobic nanoparticles and make the water-water interaction stronger for the first

shell of water molecules hydrating the hydrophobic nanoparticles. The procedure reminds

us of the one performed in the Kasteleyn-Fortuin dilution that, as can be analytically

demonstrated [45], does not change the thermodynamics of the Ising model or any Potts

model. Thus we believe that our model cannot be described as a RF model and the results

for RF models do not apply to our case.

However, in our case, at high P the phase diagram changes. We believe that this effect
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could be a consequence of the fact that we do not follow the rules of Kasteleyn-Fortuin

dilution, the only that does not change the thermodynamics [43]. This consideration is

supported by mean field results for the model with no hydrophobic nanoparticles [36]. It

has been shown [36] that the low-T state is disordered around the locus PLL + ((J +

3Jσ)/vHB) + γTLL, where TLL and PLL are the T and P along the liquid–liquid transition

line and γ + −7.4kB/v0. The disordering is continuous at low P and discontinuous at high

P with a critical point (PC , TC), separating the low-P and high-P region, given by

TC + (4/3)Jσ/ε (5.6)

and

PC + ((J + 3Jσ)/vHB) + γTC . (5.7)

With the hydrophobic nanoparticles, we introduce new energy scales Jh = 1.3J and

Jh
σ = 1.3Jσ with stronger HBs. We now expect that at high enough P ′

LL + ((Jh +

3Jh
σ )/vHB) + γT ′

LL = PLL + 0.3(J + Jσ)/vHB > PC + 0.3(J + Jσ)/vHB > PC , with T ′
LL +

(Jh + 3Jh
σ − P ′

LLvHB)/(−γ) = TLL − 0.3(J + Jσ)/(−γ) < TC − 0.3(J + Jσ)/(−γ) < TC ,

both stronger HBs and normal HBs are weakened enough by the effect of P . The random

distribution of distances between hydrophobic nanoparticles makes the disordering process

continuous at P > P ′
LL and T < T ′

LL. This interpretation seems to be qualitatively

consistent with our numerical results.

It is also important to note that we choose not to perform averages over the randomness

because our results show that the system is self-averaging for increasing size. Indeed,

we change the random configuration of hydrophobic nanoparticles for each size that we

consider and we find that the results converge to a limit for increasing size, as shown in

Fig. 5.8, 5.9, 5.10. Therefore, since the system is self-averaging, averages over randomness

are not going to change our results.

The relation of this model in 2D with bulk 3D water is established by the mean-field

results for the model [36]. Mean-field applies to systems embedded in a space with large or

infinite dimensions. It was shown that, apart from quantitative differences with simulations

in 2D, mean-field results and 2D results agree qualitatively. This agreement is strong

evidence that embedding dimension does not play a role in the qualitative predictions of the



83

model. Furthermore, comparison of the phase diagram of the 2D model simulations with

the results from 3D models do not show qualitative differences and, for several properties

not even quantitative differences, as discussed in [175].

We finally discuss here the effect of the increased HB strength for water-water interac-

tions at the surface of the hydrophobic nanoparticles. The value Jh = 1.3J is chosen to

facilitate the comparison with previous results from other models [151]. However, our pre-

liminary results for Jh = 1.05J and c = 25% do not show qualitative differences with the

case with Jh = 1.3J and the same concentration of hydrophobic nanoparticles (Fig.5.11).

5.6 Conclusion

As a consequence of the restructuring effect of hydrophobic nanoparticles on the hy-

dration shell water, stronger HBs are formed in the hydration shell of each solute. At low

T the hydration water is more ordered with respect to the c = 0 case. However, hydration

shells around different hydrophobic nanoparticles have a high probability (5/6 + 83%) of

being in a different local bonding order. Consequently, different ordered domains are gen-

erated in the vicinity of hydrophobic nanoparticles, reminiscent of the locally structured

regions proposed in Ref. [146]. These competing domains disrupt the macroscopic order

(Fig. 5.12). Due to the presence of many domain boundaries there is a large decrease in

the fluctuations and response functions, such as KT . In contrast, when no hydrophobic

nanoparticles are introduced into the system (c = 0), a small temperature increase leads

to a rapid change from the ordered to a disordered configuration as expected for a first

order phase transition (Fig.5.13). This drastic change is the origin of the large fluctuations

in KT observed when approaching the discontinuous transition (Fig.5.5).

Our results for c = 25% and 2.4% (Fig. 5.14) show that the smaller the c, the larger the

N at which the behavior deviates from the case c = 0%. This observation suggests that

the decrease of the fluctuations is due to the introduction of a characteristic length scale,

inversely proportional to c, that limits the growth of the ordered structured regions. This

is consistent also with a visual inspection of the typical configuration at different values of

c (Figs. 5.12, 5.13, and 5.14).
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Figure 5.11: Dependence of the isothermal compressibility maxima Kmax
T on the number

of water molecules N at pressure P = 0.18 GPa for simulations of the model with Jh = 1.3J

for c = 0, 2.4% and 25% (open symbols), as in Fig.5.5, and for the model with Jh = 1.05J

for c = 25% (filled circles). We observe quantitative, but not qualitative, differences

between the two cases with same c = 25% and different Jh.
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Figure 5.12: Typical configurations for c = 25% and P = 0.18 GPa for (a) T = 159.58 K,

(b) 160.31 K and 162.40 K. Different colors represent different ordered domains of HBs.

Water molecules with fewer than four HBs are represented in turquoise and hydrophobic

nanoparticles in white. HB ordering is favored around hydrophobic nanoparticles, but

the system is macroscopically disordered. Note that domain boundaries can cross the

hydrophobic nanoparticles.

Figure 5.13: For c = 0 a small temperature increase from (a) T = 158.332 K to (b)

158.333 K leads to a sudden change from the ordered (a) to a disordered configuration (b).

Such behavior is consistent with a first order phase transition.
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Figure 5.14: Configuration for c = 2.4% for T = 158.36 K. The hydrophobic nanoparti-

cles contribute to the continuous growth of the ordered domains, here the largest ordered

domain is visualized in red.

Note that the reduction of compressibility was previously observed in the theoretical

analysis of water confined by a fixed matrix of randomly distributed Lennard-Jones disks.

However this reduction only occurred when the hydrophobic obstacle concentrations were

high [145]. We instead find here that KT is reduced for c as low as 2.4%. More systematic

studies are needed to understand how this difference among theoretical predictions depends

on the details of the hydrophobic nanoparticle-water interaction energy. For example, we

have shown here that a 30% increase in the HB strength in the water first hydration shell

is enough to decrease the compressibility by 90% even for small c.

Our results are qualitatively consistent with recent experiments on H2O confined in the

hydrophobic mesoporous material CMK-1-14 consisting of micrometer-sized grains, each

with a 3-dimensional interconnected bicontinuous pore structure, with an average pore

diameter 14 Å, at a hydration level of 99% at ambient pressure [150, 153]. Zhang et al.

find a broadening of the αP peak, spanning from 240 K to 180 K in mesoporous CMK

in contrast to the sharp peak at 230 K in hydrophilic confinement in silica mesopores

MCM [150, 153], reminiscent of our results on the reduction of the response functions with
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respect to the c = 0 case. In addition, Zhang et al. demonstrate the TMD downshift by

17 K in hydrophobic CMK with respect to the hydrophilic MCM, which is similar to our

observed temperature downshift of TMD for low pressures.

Recent results for small angle x-ray scattering for aqueous solutions of amphiphilic

tetraalkyl-ammonium at ambient conditions suggest that the strengthening of the structure

of hydration water is present only for solutes with radius smaller than ≈ 0.44 nm [215].

We therefore repeat our analysis for small hydrophobic nanoparticles with R = 0.4 nm,

and find that our results are robust if the amount of hydrophobic interface in contact with

water is kept constant with respect to the case of R = 1.6 nm. We conclude that the

observed thermodynamic shifts and reductions of the response functions are due to the

water-hydrophobic nanoparticle interactions. In particular, they are directly related to

the strength of the HBs in the hydration shell. As a consequence, by keeping a constant

amount of the water molecules in a direct contact with the hydrophobic nanoparticles, we

reproduce consistent shifts in spinodal, TMD, and high-P , and the disappearance of the

LLPT for both R = 1.6 nm and 0.4 nm hydrophobic nanoparticles.

It was previously shown for c = 0 that the dynamics of the Wolff cluster algorithm are

very efficient and allow the system to fully equilibrate even in a low temperature region

[122]. The dynamics of the c > 0 systems are still under detailed investigation. However,

our preliminary results demonstrate that introducing a hydrophobic confinement with

restructuring effect does not slow down the equilibration process. At the present time

more detailed study of the correlation times is needed.

In conclusion, we predict that a water monolayer confined in a hydrophobic fixed

matrix of hydrophobic nanoparticles at concentration c displays significant changes in the

thermodynamics and important reductions in the response functions with respect to the

c = 0 case. Moreover, at c as small as 2.4% a first-order LLPT at high P is no longer

detected. As a consequence, even a small number of hydrophobic nanoparticles can make

the detection of the LLPT difficult. These findings may have important applications in

fields related to conservation at cryogenic temperatures (around −100o C), for example,

in the preservation of stem cells, blood, or food products.



Chapter 6

Effect of hydrophobic environments

on the hypothesized liquid-liquid

critical point of water

We often think of water as a typical liquid because of its ubiquity in our lives. However,

the thermodynamic behavior of water is very complex and anomalous when compared to

simple liquids [25, 203]. Its isothermal compressibility, isobaric specific heat, and coefficient

of thermal expansion, in fact, show a non-monotonic behavior, displaying an apparent di-

vergence in the supercooled region [186, 204]. Moreover, water presents a density anomaly,

i.e., a decrease in density upon isobaric cooling [205]. The border of the region of density

anomaly is marked by the temperature of maximum density (TMD) line.

To explain the anomalous behavior of water, in 1992 the liquid–liquid critical point

scenario was hypothesized for supercooled water [66]. Since then, several computer sim-

ulations have modeled a singular behavior for supercooled water, i.e, the appearance of a

liquid–liquid critical point (LLCP) at the end of a liquid–liquid phase transition (LLPT)

line between two types of liquid water, high-density liquid (HDL) and low-density liquid

(LDL) [39, 141, 142, 171, 176, 206–208].

The experimental study of water in the supercooled region, where its anomalies are

more pronounced, is extremely difficult due the homogeneous nucleation of the crystal

phase, occurring at T = 235 K at ambient pressure [25]. One way to explore this ex-
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perimentally unaccessible region is to nanoconfine water, which forces it to remain in the

liquid phase at temperatures where bulk water freezes, and a number of recent studies of

the behavior of supercooled water have utilized various confining geometries, such as slits,

pores or porous media [80, 101, 128, 129, 138, 139, 157, 162–168, 185].

The study of confined water at low temperatures is relevant to a wide range of fields,

including food refrigeration and the cryopreservation of, e.g., stem cells, umbilical cord

blood, and embryos. In both refrigeration and cryopreservation, extracellular or intracel-

lular ice formation, dehydration, and solute concentration due to ice crystal growth can

permanently damage cells but, under the proper conditions, this destructive phenomenon

can be inhibited through the use of confinement techniques [28, 81, 89, 134, 209].

Another way to extend the accessible region in supercooled water is to investigate aque-

ous solutions, because the homogeneous nucleation temperature of water often decreases

in temperature when solutes are added [210]. Several recent studies have explored super-

cooled water in aqueous solutions of hydrophilic [183, 211–217] and hydrophobic solutes

[218, 219]. The properties of supercooled aqueous solutions are relevant to many biologi-

cal and geophysical systems and, in particular, are of great interest when cryopreserving

biological tissues [220].

Of particular interest is the behavior of water in contact with apolar surfaces or with

apolar solutes. The study of water in these hydrophobic environments helps us under-

stand such diverse phenomena as biological membrane formation, surfactant micellization,

the folding of globular proteins, and the stability of mesoscopic assemblies [70, 130, 221].

Thus, understanding how hydrophobic interfaces and solutes affect the thermodynamics of

supercooled liquid water also helps us understand the biology and biophysics of life under

subfreezing conditions. In such studies, the crucial question to ask is how water in the

hydrophobic environment differs from bulk water. One way to approach this fundamental

question is to perform computer simulations. Recent simplified models, such as 2D square

lattice models or 3D spherically symmetric potentials with two length scales, have cap-

tured the anomalous behavior of water, including the appearance of a LLPT ending in a

LLCP [36, 100, 222, 223].

In this paper, we review how hydrophobic particles affect the thermodynamic behavior



90

of supercooled liquid water. In particular, we discuss and compare the results obtained

for hydrophobic objects in a 2D square lattice model for water, studied using Monte

Carlo (MC) simulations [129] and the results obtained for mixtures of hard spheres (HS)

and Jagla ramp potential particles studied using discrete molecular dynamics (DMD)

simulations [218]. These results are then compared to previous observations for water in

hydrophobic environments at subfreezing temperatures [80, 101, 128, 145, 150, 219].

The paper is organized as follows. Section 2 outlines the details of the models used

in our computer simulations [129, 218]. Section 3 reviews the recent findings reported in

these computational studies. The results are compared to previous reports for supercooled

water in hydrophobic environments in Section 4. Conclusions are discussed in Section 5.

6.1 Models and Simulation Details

6.1.1 MC simulations of a coarse-grained model of water con-

fined in a matrix of hydrophobic particles

The MC method is a computational tool that allows us to simulate the random ther-

mal fluctuations of a system by sampling its different states at equilibrium. Different

algorithms have been developed to optimize the MC simulation of spin models and cell

models [43, 153]. The Wolff cluster algorithm [33] has become a particularly useful tool for

the simulation of water when coarse-grained or cell models are utilized [36, 46, 122, 224].

Here we review MC simulations performed in the NPT ensemble on a water monolayer

between two hydrophobic extended flat surfaces separated by about 0.7 nm, partitioned

into N cells, each with four nearest neighbors (n.n.). Each cell is occupied either by

a water molecule or a hydrophobic nanoparticle whose size is controlled by the number

of cells it occupies. The nanoparticles have an approximately spherical shape and are

randomly distributed to form a fixed matrix that mimics a porous system or a rough

atomic interface. Each water cell has four bond indices with q orientations that determine

whether a hydrogen bond (HB) can be formed between the n.n. We choose q possible

orientational states based on the assumption that the HB breaks when its angle deviation
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exceeds ±30◦, therefore q = 360/60 = 6. The model incorporates isotropic interactions,

the HB directional two-body interaction, and the HB many-body interaction. In addition,

the model takes into account the restructuring effect of water in the first hydration shell by

explicitly increasing the strength of the HB by 30%. The coarse-grained model employed

in this simulation in the absence of hydrophobic interfaces has been extensively explored

and has reproduced the thermodynamic anomalies of water and has predicted a first-

order LLPT and the LLCP [27, 32, 34, 35, 37–39, 46, 122, 123, 156]. Furthermore, the model

allows to explain the observed phase transition in terms of the proliferation of regions with

tetrahedrally ordered molecules.

Using MC simulations, we investigated system sizes up to N = 1.6×105 with nanopar-

ticles of radius R = 1.6 nm for different concentrations c ≡ (N − N)/N ranging from

2.4% to 25%, where N is the total number of water cells. The analysis was repeated for

nanoparticles with R = 0.4 nm. A snapshot of this coarse-grained model of a water mono-

layer with hydrophobic nanoparticles of R = 0.4 nm and c = 2.4% is shown in Fig. 7.1

(a).

6.1.2 DMD simulations on mixtures of Jagla ramp potential par-

ticles and hard spheres

DMD is a computer simulation method in which particles interact with discontinuous

stepwise potentials. In DMD, particles move along straight lines with constant velocities

until a collision, signaled by a discontinuity in the interaction potential, is encountered.

After this event, the coordinates and velocities of the particles are updated. DMD is

an efficient molecular dynamics (MD) technique, and unlike the standard MD method, it

allows us to easily simulate potentials containing hard cores. In a sense, DMD is equivalent

to a Metropolis MC in which the set of moves is equivalent to the ballistic motion of the

particles. As a result, DMD simulations are very efficient when studying polymers, colloids,

and lipid membranes [225]

Over the last decade, several papers have shown that the presence of tetrahedrality or

even of orientation-dependent interactions in computer models of water are not necessary
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(a) (b)

Figure 6.1: (a) Snapshot of an equilibrated configuration for the water monolayer

with randomly positioned fixed hydrophobic nanoparticles (yellow spheres) of radius

R = 0.4 nm. Each water cell is represented by a small cyan sphere. Colored lines repre-

sent hydrogen bonds between molecules in nearest neighbor cells, with six possible colors

corresponding to different possible bonding states. (b) Snapshot of an equilibrated config-

uration for the mixture of Jagla ramp particles (green spheres) and HS (yellow spheres)

with HS mole fraction xHS = 0.20. The total number of particles is 1728.
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conditions for the appearance of water anomalies or of a LLPT [100, 223, 226–243]. In fact,

the Jagla potentials, a family of spherically symmetric potentials composed of a hard core

and a linear repulsive ramp, can reproduce both water-like anomalies and the LLPT by

tuning the ratio between the two characteristic lengths [244–248]. It has been suggested

that the hard core length corresponds to the first coordination shell of water molecules

while the repulsive ramp length corresponds to the second coordination shell [246–248]. It

is important to mention that Jagla potentials differ from water. In particular, the slope

of the LLPT in the P − T plane, related to the difference in entropy of HDL and LDL, in

the Jagla potentials has an opposite sign with respect to water. It is therefore important

to understand the consequences of the differing entropy behavior by comparing the results

of the Jagla potentials with those of water-like models.

The investigated systems are mixtures of Jagla ramp particles and HS with identical

diameters and the same mass m. The mole fractions studied spanned from xHS = 0.10 to

0.50. A snapshot of the xHS = 0.20 mixture is presented in Fig. 7.1(b).

In Fig. 6.2, the shape of the spherically symmetric Jagla ramp potential is shown. For

the results we review, the Jagla potential was built considering a hard-core diameter a

and a soft-core diameter, at the end of a linear repulsive ramp, b, where b/a = 1.72. The

potential was supplemented with an attractive linear tail that extends to the the cutoff

c = 3a. The potential has been discretized, with the step ∆U = U0/8, where U0 is the

minimum of the energy that corresponds to the soft-core distance. The repulsive ramp was

partitioned in 36 steps of width 0.02a and the attractive ramp into eight steps of width

0.16a. The energy at the hard-core distance is defined as UR = 3.56 U0, the value of the

least-squares linear fit of the discretized ramp at r = a. The systems were simulated at a

constant number of particles, volume, and temperature. The temperature was controlled

by a modified Berendsen algorithm [225]. For the DMD simulations, all quantities are

expressed in reduced units: distances in units of a, energies in units of U0, times in units

a
√

m/U0, pressures in units of U0/a3 and temperatures in units of U0/kB. The density

is defined as ρ ≡ N/L3, with L the edge of the cubic simulation box, and is measured in

units of a−3. The total number of particles is N = 1728.
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Figure 6.2: Spherically symmetric Jagla ramp potential. Its two length scales correspond

to the hard-core distance a and the soft-core distance b. The parameters of the potential

studied were set to b/a = 1.72 and UR/U0 = 3.56. The potential was supplemented by an

attractive tail and a long range cutoff was imposed at c/a = 3. The discretized version

of the potential (see text) is shown (black solid line) along with the original continuous

version (blue line).
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6.2 The LLCP of water in hydrophobic environments

In this section, we present the results obtained in the MC simulations of the coarse-

grained model of water confined in a hydrophobic matrix of particles and in the DMD

simulations on mixtures of Jagla ramp potential particles and HS. There have been ex-

tensive computational studies of both approaches considered here without the addition

of the hydrophobic particles [32, 34, 36, 37, 39, 100, 223, 249] that showed the presence of

water anomalies, such as the density anomaly and peaks of the thermodynamic response

functions. These studies were also consistent with the theoretical predictions of the exis-

tence of two types of liquids, i.e., LDL and HDL, in the subfreezing region of the P − T

phase diagram of liquid water, separated by a first-order LLPT and terminating with a

LLCP. Here we show how the presence of hydrophobic particles affects the liquid–liquid

phase diagram of water.

6.2.1 MC simulations on 2D water confined in a matrix of hy-

drophobic particles

Franzese et al. [27, 32, 34, 36–39, 46, 122, 123, 156] previously showed that for c = 0%

the coarse-grained model of a water monolayer employed here for the MC simulations

captures the major thermodynamic phenomena of liquid water such as the liquid-gas spin-

odal, the locus of density maxima, the diffusion anomaly, and a first-order LLPT line that

terminates in a LLCP at about 174 K and 0.13 GPa (Fig. 6.3). When we added a fixed

matrix of hydrophobic nanoparticles to the water monolayer we observed a decrease in

temperature of the liquid-gas spinodal, and a deformation of the TMD line. The TMD

line shifts to lower T for P below 0.14 GPa, and to higher T for P above 0.16 GPa [129]. In

addition, we noticed a weakening in the first-order LLPT. In particular, at temperatures

below 168 K and pressures above 0.15 GPa, there is only one liquid phase and there is no

LLPT between the LDL and HDL.

In Fig. 6.4, we compare the isobars for water with the MC simulations of the coarse-

grained model in the presence of and in the absence of hydrophobic nanoparticles (con-

centration c = 25%). For the case of c = 0% we observe sharp discontinuities in density
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Figure 6.3: P −T phase diagram for the water coarse-grained model at different nanopar-

ticle concentrations c, obtained by MC simulations. The T axis is shown in logarithmic

scale. The liquid-gas spinodal is denoted by open circles, the TMD line by open squares

and the liquid-liquid spinodal by open diamonds. Lines are guides for the eyes (dashed for

c = 0%, dotted for 2.4% and solid for 25%). Critical points are presented as large filled

circles. The first-order LLPT between LDL and HDL ends in a LLCP (black circle) at

T + 174 K and P + 0.13 GPa for all c. For c = 2.4% and 25% a new critical point emerges

at approximately T + 168 K and P + 0.15 GPa, above which the first-order LLPT can

no longer be detected. Figure adapted from Fig. 1 of Ref. [129].
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ρ for P above 0.13 GPa, which is consistent with a strong LLPT line that terminates at

about 0.13 GPa. On the other hand, water confined in the nanoscopic hydrophobic particle

matrix displays smaller discontinuities in density than that of c = 0% in a pressure region

between 0.13 GPa and 0.16 GPa. This observation indicates a weakening in the LLPT.

Moreover, the maximum slope of ρ vs. T largely decreases above 0.16 GPa, suggesting

that there is no first-order phase transition above 0.16 GPa. This result, together with the

fluctuation analysis [129], suggests that in this case, the LLPT is delimited by two critical

points: one at P + 0.13 GPa and another at P + 0.15 GPa (Fig. 6.3).

A detailed finite-size scaling study of response functions such as compressibility, thermal

expansion coefficient, and specific heat [129] confirms the absence of the LLPT at high

P above 0.16 GPa. It also shows that even a small number of nanoparticles, c = 2.4%,

is sufficient to reproduce the effect of the reduction of the first-order LLPT to a narrow

region in both P and ρ with two critical points at high and low pressures (Fig.6.3).

6.2.2 DMD simulations on mixtures of Jagla ramp potential par-

ticles and hard spheres

Several thermodynamic studies employing DMD simulations for bulk Jagla ramp parti-

cles have shown a LLPT line that terminates with a LLCP at Tc = 0.375, Pc = 0.243, and

ρc = 0.37 [100, 223, 249] (see Sec. 6.1.2 for the definition of the quantities). The analysis

of the isotherms and isochores of the mixtures of Jagla ramp particles and hydrophobic

HS solutes with the same size and mass revealed the existence of a LLPT and a LLCP for

all mole fractions investigated. [218].

Figure 6.5 shows that when the mole fraction of the HS in the aqueous solution is

increased the position of the LLCP shifts to a lower temperature and higher pressure.

This shift can occur because the solvation tendency of the HS in the LDL is stronger

than that in the HDL [250–253]. We also notice a narrowing of the region in the P − T

plane between the LDL and HDL limit of mechanical stability (LMS) as xHS increases,

suggesting a weakening of the LLPT line as solute content increases.

The presence of HS narrows the LDL-HDL coexistence envelope in both the P − T
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Figure 6.4: MC isobars of the coarse-grained model of water with hydrophobic nanoparti-

cles at concentration c, for a system with size N = 1.6×105. Isobars are for P = 0.10 GPa,

0.12 GPa, 0.14 GPa, 0.16 GPa, and 0.18 GPa (from bottom to top) at c = 0% (red empty

circles with solid connecting lines) and at c = 25% (black empty squares with dashed

connecting lines). At high pressures, isobars for c = 0% display an infinite slope, which

is consistent with a strong LLPT. For the case c = 25%, the maximum slope decreases,

which is consistent with the absence of the first-order phase transition.
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Figure 6.5: DMD simulations on the Jagla ramp potential: comparison of the positions

of the LLCP (filled circles) upon the increase of the solute mole fractions from 0, or bulk,

(red) to xHS = 0.10, 0.15, and 0.20 (in black, green, and blue respectively). The data points

presented with open symbols show the positions of the two branches of the liquid-liquid

LMS lines for LDL and HDL (labeled only for bulk, for clarity). Lines connecting the

data points are guides for the eyes. Here we observe that upon increasing the solute mole

fraction the position of the critical point shifts to lower temperatures and higher pressures

and the region enclosed by the LMS lines shrinks. The critical line (dashed) joining the

LLPCs of the mixtures is drawn as a guide for the eye. Figure adapted from Fig. 4 of Ref.

[218].
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and the P − ρ planes. In Fig. 6.6, the isotherms of bulk Jagla particles are compared

to the xHS = 0.20 mixtures. Together with the isochores, the liquid–liquid LMS and the

liquid–liquid coexistence line are shown. The LMS line is built by joining the extrema of

the isotherms, and the coexistence line is obtained by the Maxwell construction. When

going from the bulk case to the xHS = 0.20 case, the width of the regions enclosed by both

the coexistence line and the LMS line is reduced, indicating a weaker LLPT. The density

anomaly, indicated by the crossing of the isotherms in the P − ρ plane, is well defined

in the bulk case, but significantly weaker in the xHS = 0.20 case. The phase diagram

of the mixtures changes gradually with concentration (not shown), and while a LLCP

with a narrower coexistence envelope is apparent up to xHS = 0.50, the density anomaly

disappears at the highest mole fraction, xHS = 0.50.

6.3 Comparison to other computational and experi-

mental studies

As we have shown in the previous section, the presence of hydrophobic nanoparticles,

either as a confining medium or as a solute, can significantly affect the phase diagram of

supercooled liquid water. In particular it affects the behavior of the LLPT and the position

of the LLCP. Several studies in the past have addressed the thermodynamic behavior of

supercooled water in presence of a hydrophobic environment. Here, we summarize some

relevant findings in the literature and compare them to our own results.

Kumar et al. [101, 128] performed MD simulations on a system composed of 512 TIP5P

water molecules confined between two smooth walls, mimicking solid paraffin. They ob-

served a 40 K decrease in T in the overall phase diagram of confined water with respect

to bulk water. The temperature shift was qualitatively explained as being caused by the

absence of HBs between the hydrophobic walls and water molecules, which on average

reduced the number of HBs per molecule in the confined water, analogous to the case

of bulk water at high temperatures. Due to the shift to lower T it was not possible to

reach the LLPT found in bulk water. However, inflections in P − ρ isotherms were ob-
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Figure 6.6: DMD isotherms for the Jagla potential. Isotherms are shown as fourth-degree

polynomial fits to simulated state points in the P − ρ plane for bulk (red solid lines from

T = 0.3 to 0.39 with a step of ∆T = 0.01) and xHS = 0.20 solution of HS (blue dashed

lines from T = 0.28 to 0.36 with a step of ∆T = 0.01). The liquid–liquid LMS lines are

outlined by striped curves, and the coexistence regions by thick black curves. In the case

of the mixture, the LMS density range is reduced in ρ with respect to the bulk case. The

LLCPs are shown as large filled circles. Density anomaly manifests by crossing of the

isotherms in the low-density region. This isothermal crossing is very well pronounced in

the bulk case and is significantly weaker in the case of the xHS = 0.20 solution. Figure

adapted from Fig. 3 of Ref. [218]
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served implying the proximity of the system to the LLCP. This result shows that the

presence of a LLCP in water in a hydrophobic confinement is plausible also when using

3D, orientational-dependent water models, in agreement with the results found for the 2D

coarse grained model studied with MC simulations [129] (see Sec. 6.2.1).

Gallo and Rovere [80] used MD simulation to study the thermodynamic properties

of TIP4P water confined in a rigid disordered matrix of hydrophobic soft spheres upon

supercooling. Although they also observed a reduction in the average number of HBs,

the HB network appeared preserved, in contrast to the case of water confined between

hydrophobic plates. Despite the substantial integrity of the network and the small changes

found in the structural properties of confined water, significant shifts to higher P and

lower T of both the TMD line and the liquid–gas spinodal were found with respect to bulk

TIP4P water. The magnitude of the temperature shift is consistent with water confined

between hydrophobic plates. The authors suggested a weak dependence of the properties

of water on the hydrophobic confining medium. The existence of a TMD line and liquid–

gas spinodal in TIP4P water confined in a rigid disordered matrix of hydrophobic objects

compares well with the results shown for the MC simulations (see Sec. 6.2.1).

Chatterjee and Debenedetti [219] conducted theoretical investigations of the effect of

apolar solutes with different strengths of dispersive interactions (solute-solute interactions)

on the mixture phase behavior. They compared this to the bulk phase behavior for a

model that incorporates the presence of the LLPT line and the LLCP and found a critical

line originating at water’s second critical point for aqueous mixtures. This line extended

towards low P and high T as the solute mole fraction was increased, suggesting a possible

accessible experimental manifestation of the LLCP in the deeply supercooled water. The

existence of a critical line originating at the LLCP of water in solution of hydrophobic

objects is in agreement with the results found in the DMD simulations on mixtures of

Jagla ramp particles and HS [218] (see Sec. 6.2.2). The difference in the direction of

the shift of the LLCP in solutions could be due to the presence of dispersive interactions

between apolar particles in the Chatterjee and Debenedetti model and/or to the different

slope of the liquid–liquid coexistence line, negative in their case, positive in the Jagla

model.
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Urbic et al. [145] modeled two-dimensional Mercedes-Benz water, freely mobile in a

rigid disordered matrix of Lennard-Jones disks. They found that the presence of the

obstacles induced perturbations in the water structure. They also demonstrated that

high disk densities greatly affect the HB network, and cause a reduction in such response

functions as compressibility, in agreement with what was observed in the MC 2D coarse

grained model [129].

Finally, Zhang et al. [150] reported experimental results of a 17 K shift towards lower

T of the TMD line in water confined in the hydrophobic mesoporous material CMK-1-14,

which consists of micrometer-sized grains, each with a three-dimensional interconnected

bicontinuous pore structure, with an average pore diameter 14Å, at a hydration level

of 99% at ambient pressure. They measured the broadening of the thermal expansion

coefficient peak in hydrophobic CMK confinement, contrasting with the sharp peak in

the hydrophilic confinement in silica MCM mesopores. The reduction of the anomalous

properties of water in hydrophobic environments agrees with what was observed both in

the MC simulations on the 2D coarse-grained model [129] (see Sec. 6.2.1) and in DMD

simulations on the Jagla model [218] (see Sec. 6.2.2).

In all of these studies, the effect of the hydrophobic confinement is revealed by a shift

in P −T of the thermodynamic loci. Furthermore, experiments [150] and simulations [129,

145] reveal a reduction of the fluctuations with respect to the less hydrophobic cases.

In particular, this decrease of fluctuations could be relevant even when the hydrophobic

nanoparticle concentration is small [129].

We finally remark that the difference in entropy behavior between the Jagla potential

and water, and in particular the coarse-grained model of water presented here, should be

taken into account when comparing the results, as this is possibly the origin of the differ-

ent effect of the hydrophobic confinement on the LLPT. In the isotropic Jagla potential,

the LDL phase has a larger entropy than the HDL phase and consequently, through the

Clausius-Clapeyron equation (dP/dT ) = (∆S/∆V ), the HDL-LDL coexistence line has a

positive slope. In water and in the coarse-grained model presented here, the LDL phase

has a smaller entropy than the HDL phase, thus the slope of the HDL-LDL coexistence line

is negative. In the Jagla potential with hydrophobic solute [218] the entire LLPT shifts
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to lower T and higher P as the solute molar fraction is increased. On the other hand,

for the coarse-grained model of water confined by hydrophobic nanoparticles between hy-

drophobic walls [129], the LLCP is almost not affected by the increase of the nanoparticle

concentration, but the LLPT is weakened, and eventually disappears, at high P .

6.4 Conclusions

We have reviewed and compared two recent computational works describing the changes

in the thermodynamic behavior in the supercooled region of water and in the LLCP phe-

nomenon for water in hydrophobic environments. We have compared these works with

previous reports for water in hydrophobic environments in order to give an overview of the

modifications in the phase diagram of water at subfreezing temperatures. We have seen

that the presence of a hydrophobic environment can significantly alter the thermodynamic

properties of water. The reported temperature shifts in water anomalies and critical points,

and the weakening of the LLPT as well as its disappearance at high pressures observed in

the MC simulation case, are relevant to current biological research. In biological systems,

water is often found in contact with hydrophobic objects, and the results shown can play

a crucial role in studies of cryopreservation, in which the reduction of volume fluctuations

and the inhibition of ice formation can minimize cell damage.



Part III

Simulations of anomalous liquids



Chapter 7

Discrete Molecular Dynamics

Recently, the study of complex liquids has been significantly advanced by the develop-

ment of simplified models that capture the essential features of the systems and at the same

time, allow very fast simulations. One such approach is the discrete molecular dynamics

(DMD). DMD is a qualitatively different kind of molecular dynamics (MD) that is useful in

dealing with potentials that are discontinuous functions of the distance. This kind of MD

is collision driven, where a so called collision takes place each time the distance between

two particles in the system becomes equal to a point of discontinuity in the interaction

potential. In DMD, the atoms or group of atoms are replaced by hard spheres interacting

via discontinuous stepwise potentials. DMD is frequently used in studies of simple liq-

uids [223, 227, 230, 233, 238, 246, 275, 277], polymers, [278–280] colloids [281, 282], and lipid

membranes [283].

The molecular dynamics of molecules interacting via hard sphere discontinuous poten-

tials must be solved in a different way that is qualitatively different from the molecular

dynamics of soft bodies, such as Lennard-Jones type systems. Thus, in DMD, particles

move along straight lines with constant velocities until a moment of collision. At the

collision, velocities of particles change instantaneously, and can be determined using the

conservation laws of energy, momentum and angular momentum.

In Fig. 7.1 a schematic diagram of a collision between two particles is visualized. For

two particles i and j with mass mi and mj respectively, traveling at constant velocities −→v i
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Figure 7.1: Diagram of a collision between two particles. The initial positions of the

particles of mass mi and mj are −→r i and −→r j respectively. They travel at constant veloc-

ities −→v i and −→v j, collide at distance Rij and their velocities are modified to −→v ′
i and −→v ′

j.

Courtesy of S. V. Buldyrev.

and −→v j from the initial positions −→r i and −→r j, the collision distance is Rij, corresponding

to a point of discontinuity in the interaction potential. If we define −→r ij = −→r i − −→r j and

−→v ij = −→v i −−→v j, the collision time is determined by the equation

(−→r ij + −→v ijtij)
2 = R2

ij. (7.1)

The DMD algorithm calculates the shortest collision time in the system

δt = min
i<j

tij (7.2)

and allows the motion of all particles in the system until the next collision time, so that

−→r ′
i = −→r i + δt−→v i. (7.3)

The minimization of the tij is optimized by dividing the system into small subsystems, so

that collision times are computed only between particles in the neighboring subsystems.

Then we find new velocities −→v ′
i and −→v ′

j for particles i and j from the conservation laws

of momentum:

mi
−→v i + mj

−→v j = mi
−→v ′

i + mj
−→v ′

j, (7.4)
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angular momentum:

mi[
−→r ′

i ×−→v i] + mj[
−→r ′

j ×−→v j] = mi[
−→r ′

i ×−→v ′
i] + mj[

−→r ′
j ×−→v ′

j], (7.5)

and total energy
miv2

i

2
+

mjv2
j

2
+ Uij =

miv′2
i

2
+

mjv′2
j

2
+ U ′

ij, (7.6)

where Uij and U ′
ij are the values of the pair potential before and after the collision. The

DMD algorithm is more efficient than standard MD for low density systems [230]. The

positions and velocities of the particles are updated only when they collide. As in regular

MD, it is possible to work in different ensembles in DMD.

The temperature of the system is calculated according to the equipartition theorem.

For a three dimensional system with N particles, the instantaneous temperature T is

T =
1

3NkB

N∑

i=1

miv
2
i . (7.7)

For the constant temperature simulations, a modified Berendsen algorithm [223, 275]

can be applied to rescale the velocities of the particles by multiplying all the velocities at

each time step ∆t by a factor
√

T ′/T

T ′ = T (1 − κT ∆t) + T0κT ∆t (7.8)

where T ′ is the new instantaneous temperature, T0 is the temperature of the heat bath,

and κT is the heat exchange coefficient.

The average pressure P of the system is computed using the virial theorem, which

relates the time average of the total kinetic energy to the time average of the virial. Thus

P is calculated at the moment of collision t" during the time interval ∆t over particles i(*)

and j(*) that are involved in the collision * with the change in momentum −→p i("):

P =
NkB

V
〈T 〉∆t − 1

3V ∆t

∑

"

∆−→p i(")(t") · [−→r i(t") −−→r j(t")] (7.9)

Constant pressure simulations are performed using the Berendsen algorithm [276] that

rescales the positions of the particles of the system and the box vector each ∆tP time

steps:

−→r ′
i = −→r i + −→r iκP (P̄ − P0) (7.10)
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−→
L =

−→
L +

−→
L κP (P̄ − P0) (7.11)

where
−→
L = (Lx, Ly, Lz) is a vector containing the lengths of the edges of the simulation

box, P0 is the barostat pressure, P̄ is the average pressure during ∆tP and κP is the

pressure rescaling coefficient.



Chapter 8

Nanoparticle Confinement in

Anomalous Liquids

Many experiments in recent years have shown that there is a number of liquids whose

properties are highly anomalous [243]. For example, data for liquid metals, metalloids,

nonmetals, oxides and alloys, including Ga, Bi Te, S, Be, Mg, Ca, Sr, Ba, SiO2, P, Se,

Ce, Cs, Rb, Co, Ge, Ge15Te85 [243], reveal the presence of a temperature of maximum

density (TMD) below which the density decreases under isobaric cooling. The most famous

example of anomalous liquid is water, whose TMD at 1 atm is at approximately 4oC.

Another anomaly that is attracting considerable attention is the possible existence of a

liquid–liquid phase transition (LLPT) for single-component systems. Based on simulations

for water [66], it has been proposed that the two coexisting liquids, the high density

liquid (HDL) and the low density liquid (LDL), would differ in density and local structure.

Liquid polymorphism is observed in experiments on P, [254–256], P(OC6H5)3 [257–259] and

yttrium oxide-aluminum melts [260]. Data consistent with a LLPT arise from experiments

for single-component systems, such as water [173], silica [261, 262], C [263], Se [264], Co

[265], among others [266–268]. Here we ask the question how nanoconfinement of an

anomalous liquid may change its behavior. The question is relevant for the vast arena of

nanotechnological applications and for the lively debate about the properties of confined

water in nanoscopic and biological systems [129, 138, 139, 157, 162–164, 218].
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8.1 Simulation details

To approach the problem we focus on the effects of the structure of a fixed confining

matrix of nanoscopic particles (NPs) on the phase diagram of a liquid with anomalous

behavior and with a LLPT ending in a liquid-liquid critical point (LLCP). As model

liquid we consider (i) a ramp potential [100, 223, 269], and for comparison (ii) a shoulder

potential [240–242].

Potential (i) has a hard-core at distance r = a, and a linear ramp for a < r ≤ b

decreasing from interaction energy UR > 0 to U0 < 0, plus a linear ramp for b < r ≤ c

increasing from UR to 0. We adopt b/a = 1.72, c/a = 3 and UR = 3.56U0. For this set of

parameters the LLCP lies well above the melting line [228]. The interaction with the NPs

is modeled by the hard sphere repulsion.

Potential (ii) has a repulsive shoulder and an attractive well with energy minimum

U0, [240–242] with parameters chosen to fit a potential proposed for water [270]. The

interaction with NPs is given by a 1/r100 power law that crosses the zero of the interaction

energy at the unit distance a. Results presented in the following, if not otherwise indicated,

are for the potential (i), with consistent results for potential (ii).

Both potentials (i) and (ii) display water-like anomalies and a LLPT [100, 223, 240–

242, 269]. For both we perform simulations at constant number N of particles, constant

volume V and constant temperature T , with periodic boundary conditions. For (i) we

employ a discrete molecular dynamics algorithm by discretizing the linear ramp potential

into steps, with ∆U = U0/8 = 0.125 [225]. For (ii) we integrate the equations of motion

using velocity Verlet integrator and we adopt the Allen thermostat [240–242].

We confine the liquid particles in a fixed matrix of NNP = 64 nanoparticles of diameter

DNP = 3a. The liquid particles interact with NPs via hard core repulsion at distance

r0 = (a + DNP)/2. We consider three different structures for the matrix: a perfect cubic

lattice (CUBE); a cubic lattice with Gaussian distortions (DIST) with a standard deviation

of 1/4 of the separation between centers of NPs, which still preserves an approximately

periodic and ordered structure of the confinement (Fig.8.1a); and a completely random

(RND) configuration of NPs obtained by simulating a gas of hard spheres (Fig.8.1b). The
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volume fraction of NPs is xNP = VNP/V = 24.5% in a cubic simulation box with fixed

volume V/a3 = (20.6)3, and VNP/a3 = NNP4π(r0/a)3/3 volume of NP. We repeat the

analysis for a random configuration of NPs with diameter 5a, keeping constant xNP and

the size of the simulation box. We control ρ = N/(V −VNP) of liquid particles by adjusting

N . We account for the excluded volume by rescaling the pressure P by V/(V − VNP).

8.2 Results

For potential (i), the bulk liquid displays a LLCP at kBT bulk
C /U0 = 0.375, P bulk

C a3/U0 =

0.243, and ρbulk
C a3 = 0.37 [100, 223, 269]. Figures 8.1(c) and 8.1(d) show simulated isochores

for DIST and RND confinement, respectively, with the HDL-LDL spinodal lines calculated

from (∂P/∂ρ)T = 0 and (∂2P/∂ρ2)T 1= 0, and the LLCP obtained from the merging of the

spinodal lines where (∂P/∂ρ)T = (∂2P/∂ρ2)T = 0. For each confinement we find that the

LLCP shifts to lower T , higher ρ, and higher P relative to the bulk liquid (Fig.8.2a). As

the disorder in the confining matrix increases, T shift becomes more pronounced while ρ

and P shifts are reduced. We find the same qualitative trend in the LLCP shifts for the

liquid with potential (ii), and a progressive approach of the LLCP to the bulk case when

the NPs concentration decreases (Fig.8.2b), consistent with previous results for NP-liquid

mixtures [218].

Although the periodic DIST confinement preserves the LDL-HDL coexistence region

observed in bulk liquid [100, 223, 269], which is consistent with a strong first-order LLPT,

the RND confinement shrinks the coexistence region (Figs. 8.1c and 8.1d), hinting at a

weakening in the LLPT. This weakening is qualitatively consistent with recent numerical

results for supercooled water in random hydrophobic pore-like confinement [129].

The region of density anomaly is bounded by the lines of TMD and temperature of

minimum density (TminD) located by the extrema of the isochores. In the bulk system

the TminD line for high densities is hindered by the glass transition line and cannot be

observed in the equilibrium liquid. Here we observe that the periodic structure of the

confinement can dramatically affect density anomaly manifestations. Comparatively to

the bulk, confinement decreases TMD and increases TminD, shrinking the T range of the
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Figure 8.1: Effect of confinement. Snapshots of the anomalous liquid (green) confined in

a fixed matrix of NPs (yellow) in a DIST (a) and RND (b) configuration. Polynomial fits

of simulated isochores of densities 0.89 ≤ ρ/ρbulk
C ≤ 1.59 (bottom to top at T/TC = 1) for

DIST (c) and RND (d). Randomness reduces the temperature and pressure of the LLCP

(circles), the separation between the HDL (lower filled triangles) and LDL spinodals (upper

open triangles) and the separation between the TMD (diamonds) and the temperature of

minima of densities (TminD, squares). Samples of error bars on P are given in panel (c).

Lines connecting symbols are guides for the eyes. Insets: cuts through the simulation box

at density above (I), between (II) and below (III) the coexistence densities. The black

circles (with a maximal radius of 3.5a) mark regions where liquid particles stick to the

NPs, as discussed in the text. Outside these regions the liquid density is represented by a

color code going from blue (high liquid density) to red (low liquid density).
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Figure 8.2: The confinement affects the parameters of the LLCP. Color-coded circles

represent the LLCP parameters in the P −T − ρ phase space (a) for the liquid confined in

the fixed matrix of NPs with CUBE, DIST and RND configuration. Increasing disorder in

the confinement, from CUBE to DIST to RND, shifts the LLCP down in ρ, T , and P . (b)

Upon decreasing concentration xNP (label near the symbols) for the CUBE confinement

of the liquid with potential (ii), the LLCP approaches the bulk case. We find the same

behavior for potential (i).
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density anomaly. While for the DIST confinement the density anomaly is still well defined,

it appears much less pronounced in RND case. For a RND matrix of large confining NPs

with diameter 5a, TMD and TminD are completely absent (not shown).

8.3 Discussion

To understand the origin of the different effects for the different confinements, we

first study the density of the liquid in the vicinity of NPs. We find that a layer of liquid

adsorbs onto the NPs, as emphasized by the NP-liquid particle radial distribution functions

gNP−liq(r)(Fig.8.3a). We understand the increase of density near the NP surface as a

consequence of the maximization of entropy. By sticking to the fixed NPs, the adsorbed

liquid particles allow more free space to the the rest of the liquid, maximizing the entropy

of the system (depletion effect). This result evokes a similar effect found for water forming

a high-density layer of ≈ 5 Å at confining surfaces, regardless of the hydrophobic or

hydrophilic interaction with the surface [191, 271–274].

We find that, by increasing randomness in the confinement, the probability of overlap

of NP exclusion volumes increases and the depletion effect decreases. As a consequence,

the density of liquid near the NPs decreases (Fig.8.3b). In addition, we analyze the density

fluctuations and the associated measurable response function, the isothermal compressibil-

ity KT (Fig.8.3a), of the liquid in the vicinity of the NPs. We find that the local KT is

extremely small right at the interface, consistent with a tight packing of liquid particles

around the NPs. Near the first minimum of gNP−liq(r) the local KT is, instead, twice

as high as the bulk, consistent with [271]. High vicinal density of liquid rationalizes the

density increase of the LLCP (Fig.8.2), because, when part of the liquid is adsorbed onto

the NPs, an average liquid density larger than bulk is necessary to build up the critical

fluctuations. The shift is more pronounced for CUBE and DIST confinement, with respect

to RND, because the more ordered the confinement the larger the NP surface available for

the depletion effect.

To understand the distribution of local density inside the simulation box, we performed

Delaunay tessellation for a set of NPs in both RND and DIST confinements, partitioning
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Figure 8.3: (a) The liquid adsorbs onto the NPs. The NP-liquid particle radial distri-

bution functions gNP−liq(r) at T/T bulk
C = 1.12 for CUBE (leftmost), DIST (center) and

RND (rightmost) confinements for density ρ/ρbulk
c = 1.59 (thick lines) display large max-

ima (in parenthesis) at the closest NP-liquid particle distance r = r0 ≡ 2a. Normalized

local compressibility KT kBT (broken lines) computed from the fluctuations of the num-

ber of particles in volume 5.5a3 shows large peaks near the minimum of gNP−liq(r). The

results for different confinements are shifted horizontally for clarity. (b) Number of liquid

particles adsorbed onto a NP, at a distance r0 ≤ r ≤ 2.5a, where the first minimum of

gNP−liq(r) occurs, for DIST (blue squares) and RND (red circles) for a range of densities at

fixed rescaled temperature τ = (TRND − TRND
c )/TRND

c = (TDIST − TDIST
c )/TDIST

c = −0.13.

Arrows mark the location of the critical density ρRND
c (red) for RND and ρDIST

c (blue) for

DIST. Lines are guides for the eyes. (Inset) The rescaled LDL-HDL coexistence region,

with the chosen value for τ , for DIST (gray) and RND (white) confinements, ending in

the LLCP (circles).
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the total volume into space-filling irregular tetrahedra with four nearest neighbor NPs

as vertices (Fig.8.4a,b insets). We find that the RND confinement, with respect to the

DIST case, induces a larger heterogeneity in the distribution of local densities ρv in each

tetrahedra at any fixed value of the global density ρ (Fig.8.4a,b). The significant overlap of

ρv distributions for the HDL and the LDL phases in RND confinement (Fig.8.4a) suggests

the presence of disordered mesoporous microdomains of various densities (Fig.8.1d insets)

that contribute to the weakening of the LLPT. This is not observed in DIST case (Fig.8.4b),

where the distributions of ρv are closely centered around the average global ρ with no

overlap between HDL and LDL phases, preserving a strong LLPT.

The fact that for RND confinement the local density is more heterogeneous and the

liquid-liquid coexistence occurs at the local scale within Delaunay tetrahedra, allows us to

rationalize the T -decrease of the LLCP with respect to the more ordered confinements and

the bulk. Local heterogeneity inhibits the global LLPT, driving the LLCP temperature to

a lower value. Due to the positive slope of the LLPT, the decrease of LLCP temperature

implies a decrease of the LLCP pressure (Fig. 8.2). The presence of density heterogeneity,

along with the reduced depletion effect in the RND confinement matrix, gives us the key

to understand the differences between ordered and disordered confinement.

8.4 Conclusion

In conclusion, we predict that anomalous liquids, with a LLPT, preserve their bulk

phase diagram and density anomalies when are confined in a matrix of periodically ordered

NPs. Moreover, in the case of small distortion of the ordered confinement, the homogeneous

crystal nucleation is inhibited at temperatures lower than in bulk, allowing the direct

observation of the TminD locus. A strong depletion effect induces a large increase of

density in the vicinity of the NPs. The effect is smaller when the confinement has a random

structure. Randomness induces the occurrence of disordered density domains weakening

the LLPT, narrowing the LLPT coexistence region, and washing out the density anomalies.

It is interesting to mention that these results could qualitatively explain recent ex-

periments for confined water, the prototypical anomalous liquid. While the TminD locus
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Figure 8.4: RND confinement induces heterogeneity in local densities. (a) The distri-

bution of local density ρv/ρbulk
c of the liquid included in Delaunay tetrahedra of the RND

confinement for the LDL global density ρ/ρbulk
c = 0.91 (white histogram) partially overlaps

with that for the HDL ρ/ρbulk
c = 1.59 (black histogram). (b) The overlap is not present

for the DIST case. In both panels an arrow marks the critical density, ρRND
c for RND

and ρDIST
c for DIST. Insets: Delaunay tetrahedra for RND (top) and DIST (bottom) case,

colored according to the value of ρv, from high (dark gray) to low (light gray).
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has been observed in supercooled water under hydrophilic confinement by MCM-41 silica

nanoporous matrix [69], its absence has been reported in hydrophobic mesoporous mate-

rial CMK [150]. MCM-41 forms a very regular matrix [69], while CMK consists of grains,

each with a disordered, 3D interconnected bicontinuous, pore structure [150]. Therefore,

as shown in our model for a generic anomalous liquid, the disparity of results for different

kinds of confinements may arise from the different amount of disorder in the confining

structures.



Part IV

Lysozyme in an aqueous solution of

sugar



Chapter 9

All-atom simulations of lysozyme in

aqueous solution of trehalose

9.1 Introduction

Water molecules play a crucial role in determining protein structure, dynamics, and

functionality. As a result of the essential presence of water, preservation of the structural

and functional integrity of biomolecules is a key problem in current research. One of the

most interesting state-of-the-art question is to find methods of preserving proteins at low

temperatures while avoiding water crystallization. It is generally accepted that carbohy-

drates are one of the most important classes of pharmaceutical glass-formers for prolonging

the shelf life of labile biological molecules. Sugars are often used in pharmaceutical, food

industry, and biomedical applications to prepare glassy matrices for long-term storage of

biological materials [284]. In recent years, trehalose, a naturally occurring disaccharide of

glucose [285], received considerable attention for its extraordinary biopreservation ability

[286, 287]. It has been demonstrated that trehalose is naturally produced by several organ-

isms in response to severe external stresses such as temperature changes or dehydration

[288]. In addition, trehalose showed the ability to stabilize living cells subjected to freezing

[289, 290].
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Despite its importance in cryopreservation and desiccation protection, the microscopic

mechanism responsible for the ability of trehalose, and sugar in general, as an effective

bioprotectant is still unclear.

It has been previously demonstrated that water molecules interacting with trehalose

have completely different dynamical behavior with respect to that of bulk-like water [220].

In aqueous solutions of trehalose, a “destructuring” effect on the water network has been

observed in addition to a dramatic slowing-down of water dynamics [291].

Several hypotheses have been suggested to explain the superior effectiveness of tre-

halose in preserving biomolecules. The “water-replacement” hypothesis assumes that sug-

ars hydrogen-bond to biomolecules during dehydration or freeze-drying, acting as substi-

tutes of hydration water molecules [292]. Alternative scenarios have been proposed in

which some specific properties of sugar/water solutions are responsible for the bioprotec-

tive capability. Similarly to the encapsulation of insects in amber, Green and Angell [293]

advanced that biomolecule motions are inhibited due to the vitrification upon cooling of

the sugar/water solutions. Raman scattering results about protein-trehalose interactions

led Belton and Gil [294] to propose a different mechanism: trehalose would be particu-

larly capable of creating a cage containing sluggish water molecules around the protected

biostructure which would serve both for maintaining a high level of hydration and for

smoothing molecular motions, which would lead to denaturation of proteins upon cooling.

9.2 Computational setup

We performed molecular dynamics (MD) all-atoms simulations on the on the hen-egg

lysozyme protein immersed in a mixture of water and and α,α-trehalose. The system

contained 1 lysozyme protein, 491 trehalose molecules and 13982 water molecules. The

charges on the lysozyme residues were neutralized adding 8 Cl− counterions. The ratio of

trehalose to water molecules 1:28.5 corresponds to a weight percentage φ = 40 wt% (not

considering the protein and the ions), with the trehalose molarity being approximately

M + 1.33 mol/l. This concentration was chosen because previous studies have shown that

the relative effect of trehalose on water dynamics becomes particularly noticeable at this
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threshold concentration [295, 296].

The geometrical structure of the lysozyme was obtained from crystallographic exper-

imental data [297] (Protein Data Bank entry 193L). The bonded and non-bonded inter-

actions parameters for the lysozyme and for trehalose were taken from the CHARMM

force-field for proteins [298, 299] and for sugars [300, 301]. The water solvent was modeled

using the SPC/E potential [302].

The initial configuration of the system was obtained placing the lysozyme at the center

of the cubic simulation box and distributing the other molecules at random positions. After

a short energy minimization run, the system was equilibrated for 4 ns with the position

of the protein atoms restrained, after which the starting configuration was produced. We

studied three temperatures T = 300 K, T = 280 K and T = 260 K. At all temperatures

the system was equilibrated for 10 ns before running the production run for another 10 ns.

Configurations of the the higher temperatures were used as starting configuration for

the lower ones. The pressure was kept fixed at the atmospheric pressure. Temperature

and pressure were controlled by weak coupling algorithms [276]. At all temperatures the

average density of the system is ρ + 1.2 g/cm3.

The equation of motions were integrated using the Verlet leap-frog algorithm and a

time step of 1 fs. Periodic boundary conditions were applied. The cut-off radius for non-

bonded Lennard-Jones short ranged interactions was set to 1 nm, while the electrostatics

was dealt employing the particle-mesh Ewald (PME) method. The simulation package

GROMACS 4.5.3 [303] was used to carry out the simulations.

The simulations for bulk water were conducted on a sample of 500 SPC/E water

molecules, with simulations conditions identical to the one of the lysozyme–trehalose–

water–counterions system, where applicable.

9.3 Dynamics of water

To study the dynamical behavior of water in the lysozyme–trehalose aqueous solution,

we calculated for water oxygens the dynamical structure factor, FS(q, t), which is the



124

spatial Fourier transform of the tag-particle density autocorrelation function defined as

FS(q, t) =
1

N

〈
N∑

i=1

exp [i−→q · (−→r (t) −−→r (0))]

〉
, (9.1)

where N denotes the number of atoms, −→q the transfer momentum, and −→r i(t) the position

of atom i at time t. The brackets 〈· · ·〉 stand for the average over all time origins.

The oxygen FS(q, t) for bulk water shows a two-step relaxation behavior, a fast one

corresponding to the initial ballistic regime leading to the rattling in the cage, and a slow

one corresponding to the relaxing cage time region and referred to as α relaxation region.

It was proposed and verified by simulations that the FS(q, t) for supercooled water can be

well-described by the equation [304, 305]:

FS(qmax, t) = (1 − fqmax) exp

[
−

(
t

τshort

)2
]

+ fqmax exp

[
−

(
t

τα

)βα
]

(9.2)

where qmax is the peak of the structure factor. The Gaussian form takes into account the

initial fast relaxation of the particle trapped in the cage. fqmax is the Debye-Waller factor

related to the cage. The stretched exponential is the functional form connected to the

cage relaxation typical of glass formers.

For temperatures T = 300 K, 280 K, and 260 K, we compare in Fig. 9.1 the FS(qmax, t)

of the oxygen atoms of water molecules in the lysozyme–trehalose aqueous solution at the

peak of the oxygen–oxygen static structure factor with that of the bulk water. In the

insets, we emphasize the changes in FS(qmax, t) with temperature in bulk water and in the

lysozyme–trehalose aqueous solution.

It can be observed that whereas the fits of FS(qmax, t) for bulk water are consistent with

eq.(9.2), for water in the presence of trehalose in lysozyme–trehalose aqueous solution, al-

ready at ambient temperature, the correlator shows an additional tail at long times, which

does not allow to fit FS(qmax, t) with the eq.(9.2). The dynamics slows down dramatically

and a two-step process is seen. Computational and experimental results have found that

hydration water, that is, water in direct contact with biological molecules like proteins,

shows strong differences in the dynamics with respect to the bulk [130]. It was shown by

Magno and Gallo [220] that the tail appearing in the correlator of the aqueous solutions

comes from hydration water, and they proposed a new relation to fit the FS(qmax, t) that
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Figure 9.1: Self-intermediate scattering function FS(qmax, t) of the oxygen atoms of bulk

water, “Bulk”, (black circles) and of water in the aqueous solution of lysozyme in the

presence of trehalose, “Lyz-Tr”, (red squares) at the peak of the oxygen–oxygen structure

factor q = 2.25 Å−1, for T = 300 K (a), 280 K (b), and 260 K (c). Black lines are fits

to eq.(9.2), red lines are fits to eq.(9.3), only few of the simulated data points (symbols)

are shown for clarity. The tails of the correlators calculated for water in the lysozyme–

trehalose aqueous solution indicate the presence of an additional slower relaxation with

respect to the bulk. Insets: For temperatures T = 300 K, 280 K, and 260 K, (top) fits

to eq.(9.2) show changes in FS(qmax, t) with temperature for bulk water, “Bulk”, (black

lines); (bottom) fits to eq.(9.3) show changes in FS(qmax, t) with temperature for water in

the aqueous solution of lysozyme and trehalose, “Lyz-Tr”, (red lines).
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implies two very well distinct dynamic behavior for water close to the biomolecules and

the remaining water:

FS(qmax, t) =
(
1 − fqmax − f ′

qmax

)
exp

[
−

(
t

τshort

)2
]

+ fqmax exp

[
−

(
t

τα

)βα
]

+ f ′
qmax

exp

[
−

(
t

τlong

)βlong
]

. (9.3)

In this equation, in addition to the Gaussian relaxation at short times, there are two

distinct Kohlrausch-William-Watts (KWW) functions. The first one corresponds to the

α relaxation of the systems and origins from the bulk-like water molecules that are not

in direct contact with the sugars. The second stretched exponential function accounts for

the much slower dynamical behavior of hydration water molecules. We see in Fig. 9.1

that this functional form is able to reproduce perfectly the shape of the FS(qmax, t) of the

water molecules in lysozyme–trehalose aqueous solutions. From the fits, we extracted the

α relaxation time τα and the relaxation time of the hydration water molecules τlong and

the respective stretching parameters. The α-relaxation times of pure water are also given

for comparison.

We present in Fig. 9.2, the temperature dependence of the relaxation times τα and τlong

and of the stretching parameters βα and βlong for the bulk water and water in the aqueous

solution of lysozyme in the presence of trehalose.

The above results indicate that water in aqueous solution of lysozyme in the presence

of trehalose can be maintained in a slow–dynamics regime at higher temperatures. There-

fore, upon a temperature change, trehalose protects earlier biomolecules by reducing their

conformational relaxations.

To study the dynamical behavior of water at some distance away from the surface of

trehalose or lysozyme, we define the following hydration shells. Water that forms hydrogen

bonds with the lysozyme or the trehalose is defined as the first hydration shell, I, with a

maximum distance of 3.4 Å away from the protein or sugar surface and donor–H–acceptor

angle greater than 120◦. The next hydration layer of water around trehalose, II, is defined

at distance of 5.8 Å.
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We then calculate the FS(qmax, t) for water excluding the first I* and the second II*

hydration shells and observe that it is enough to exclude only I* to find the long time

tail disappearing in the FS(qmax, t), Fig.9.3. We observe that as we progressively exclude

water layers close to the trehalose surface, water dynamics become bulk-like and can be

fitted with eq.(9.2). We conclude that the dynamic properties of noninterfacial water are

similar to those of the bulk. This is analogous to what is found for water close to hy-

drophilic surfaces where a bulk-like behavior is recovered once the water closest to the

surface is excluded [168, 306, 307]. These findings confirm the hypothesis that the biopro-

tecting functions of disaccharides are connected to their ability to maintain a favorable

environment for water in contact with biomolecules also despite the lowering temperature

or water content [294].

It is interesting to note that when we exclude the first hydration shell of water I* around

the lysozyme, we find that water dynamics are not dramatically changed in comparison to

the total unexcluded water behavior in the lysozyme–trehalose aqueous solution, Fig.9.4.

9.4 Residence Times

Water residence times could provide useful insights into the structural and dynamical

behavior of water in the first, or successive, hydration shells of protein or sugar atoms

exposed to the solvent [308].

At a given molecule (protein or sugar), C(t) is defined in terms of a binary function

pi(t, t′ + t; t0) that takes the value of 1 if the ith water molecule stays in the coordination

shell from the time origin t′ to time t′+t without getting out, in the interim, of this interval,

(except for a short interval of time t0) and takes the value of zero otherwise. Formally,

C(t) =
N∑

i=1

1

trun − t

trun−t∑

t′=0

pi(t, t
′ + t; t0) (9.4)

where N is the total number of water molecules in the system and trun is the length of the

simulation time; C(t) gives the average fraction of water molecules that still remain in the

coordination shell after a time t.

The relaxation trend of the C(t) provides information about the local dynamics of
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Figure 9.3: FS(qmax, t) for water with progressive exclusion of first hydration layer, I*,

(green triangles up), and then second hydration layer, II*, (blue triangles down) around

trehalose in the lysozyme–trehalose aqueous solution show approach to the relaxation

found in the bulk water (black dashed line reploted from Fig.9.1) for all investigated

temperatures T = 300 K (top), T = 280 K (middle) and T = 260 K. Only few of the

simulated data points (symbols) are shown for clarity. Solid lines (blue and green) and

dashed line (black) are fits to eq.(9.2) for water with excluded I* and II* shells, and

bulk water respectively. Dash-dotted lines (red) are fits to eq.(9.3) for all water in the

lysozyme–trehalose aqueous solution (reploted from Fig.9.1). Therefore, the long time

tails of the total correlator of the solution shown in the Fig. 9.1 come only from water

hydrogen bonded to the disaccharides. Symbols in insets: (top) α-relaxation, τα, times for

water in bulk, “Bulk”, and in aqueous solution of lysozyme and trehalose excluding first

I* and second II* hydration layers around trehalose. (bottom) βα stretching parameters

for water in bulk, “Bulk”, and in aqueous solution of lysozyme in the presence of trehalose

excluding first I* and second II* hydration layers around trehalose.
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the first I* hydration layer around lysozyme in the presence of trehalose (black filled

symbols). (c) βα and βlong stretching parameters for total water in aqueous solution of

lysozyme in the presence of trehalose (red empty symbols) and in water excluding the first

I* hydration layer around lysozyme in the presence of trehalose (black empty symbols).
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hydration water. The survival time correlation functions of water in the proximity of the

protein or sugar surface [310] is usually fitted with a KWW function:

C(t) = A · exp

[
−

(
t

τR

)βR
]

(9.5)

where τR provides the time scale over which the process evolves and gives an estimate of

the residence time of water in the considered solvent layer; the stretching parameter βR is

a signature of the nonexponential trend of the phenomenon.

We were able to fit C(t) with the eq. (9.5) for water in the second hydration layer

around the trehalose Fig.9.5. However, two distinct KWW were required to fit water in

the first hydration shell of both trehalose and lysozyme:

C(t) = (1 − A) · exp

[
−

(
t

τ ′
R

)β′
R

]
+ A · exp

[
−

(
t

τ ′′
R

)β′′
R

]
(9.6)

where τ ′
R and τ ′′

R are a short and a long time decay constants, respectively. These decays

correspond to solvent molecules that stay in the hydration shell for prolonged periods of

time or enter and then immediately leave [309, 311, 312].

Stretched exponential functions are commonly used to describe the relaxation in amor-

phous, disordered systems, we can then relate the above-reported behavior for the survival

distribution function with an additional phenomenological indication of the glassy charac-

ter of hydration water.

9.5 Radial distribution

The structural organization of water at the protein interface can be described by the

protein–solvent radial distribution function g(r) representing the relative probability of

finding any solvent molecule whose oxygen is at a distance r from a specific solute atom.

We measure g(r)Lyz−W of water and g(r)Lyz−Tr trehalose around the center of mass of the

lysozyme.

From Fig.9.6 we observe that aqueous solution of trehalose is distributed very close

to the surface of the lysozyme. We also notice that as the temperature decreases to

T = 260 K, there is an increase in both water and trehalose at the protein surface.
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Figure 9.5: Semi-log plot of the survival time correlation function C(t) of (a) water in the

first I (black empty symbols) and second II (red empty symbols) layers around trehalose

labeled “I-Tr” and “II-Tr” respectively; (b) water in the I layer around lyzosyme (green

empty symbols labeled “I-Lyz”). Only few simulated data points (symbols) are shown for

clarity. The red solid lines (a) are the fitting curves obtained by eq.(9.5) for simulated

data points inside the II layer around trehalose, II-Tr; black (a) and green (b) dashed

lines are the fitting curves obtained by eq.(9.6) for I layer around trehalose (I-Tr) and

lysozyme (I-Lyz) respectively. (c) τ ′
R and τ ′′

R times are short and long decay constants

respectively for all water in the first I hydration layer around lysozyme (green stars) and

trehalose (black filled triangles). Decay constant τR for water in the second II hydration

layer around trehalose (red crossed circle). Dotted lines are guides for the eyes.
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Figure 9.6: Radial distribution functions g(r)Lyz−W of water (black lines with gray shad-

ing to baseline) and g(r)Lyz−Tr trehalose (red lines) around the center of mass of the

lysozyme. We present three investigated temperatures T = 300 K (top), T = 280 K

(middle), T = 260 K (bottom). Blue vertical lines mark the minor and major radii of

an approximately elliptical shape of the lysozyme. Inset: pictorial representation of the

2 nm × 6 nm × 8 nm cut of the simulation box of aqueous solution of lysozyme (colorful

cartoon representation), trehalose molecules (orange segments), and water molecules (blue

spheres). Blue circles mark the minor and major radii of lysozyme respectively.
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In addition in Fig.9.7, we present 2 nm layer of the simulation box at T = 300 K

with the following dimensions 2 nm × 6 nm × 8 nm in three dimensions looking down

the x, y, and z axes respectively. Together with the radial distribution function, Fig.9.7,

suggests that the aqueous solution of trehalose with very slow dynamics of water (as we

shoved earlier) surrounds the lysozyme. Thus we support the hypotheses of the inhibition

of protein motion due to the vitrification upon cooling, “insect in amber” as proposed by

Green and Angell [293].

9.6 Conclusion

In summary, we have shown that water slow dynamics in the presence of disaccharides

such as trehalose shows two different well distinct relaxation processes, a faster one that

shows bulk-like features due to noninterfacial water and a slower one characterizing the

dynamical properties of hydration water molecules. This well-distinct dynamic differenti-

ation has recently been observed through light scattering [313, 314] and Fourier transform

infrared spectroscopy [315] experiments on trehalose aqueous solutions.

This work supports the hypothesis that trehalose has effect in “destructuring” the

network of water and in slowing down its dynamics around the lysozyme, as was previously

reported by [295].
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(a)

(b)

(c)

Figure 9.7: Visualization of lysozyme–trehalose aqueous solution layer of thickness 2 nm

at T = 300 K with the following dimensions 2 nm × 6 nm × 8 nm in three dimensions

looking down the x (a), y (b), and z (z) axes respectively. Lysozyme is visualized in red

cartoon, trehalose in yellow spheres, and water in blue spheres.
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[208] D. Paschek, A. Rüppert, and A. Geiger, A European Journal of Chemical Physics

and Physical Chemistry 9, 2737 (2008).
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• “Large decrease of fluctuations for supercooled water in hydrophobic nanoconfine-

ment”, Poster presentation, HES70:Horizons in Emergence and Scaling the H.Eugene

Stanley Symposium, Boston University, Boston MA, USA. 03/18/2011.

• “Phase diagram of supercooled water in a disordered matrix of hydrophobic nanopar-

ticles” Poster presentation, Water & Aqueous Solutions Gordon Research Confer-

ence, Holderness NH, USA. 08/10/2010.

• “Structural study of copper(II) complexes of bis(1,4,7-triaza-cyclononane) ligands

with polymethylene bridging groups”, Seminar speaker, Department of Chemistry,

University of Massachusetts Boston, Boston MA, USA. 03/08/2005.
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AWARDS

• Provost Award, Science and Engineering poster competition, Boston University,

Boston MA, USA. 2011

• University Honors, University of Massachusetts Boston, Boston MA, USA. 2006

• Departmental Honors in Physics and Chemistry, University of Massachusetts Boston,

Boston MA, USA. 2006

• Ethel and Herman Rosansky Chemistry Award, University of Massachusetts Boston,

Boston MA, USA. 2005

• ACS Award in Analytical Chemistry, University of Massachusetts Boston, Boston

MA, USA. 2004

• Undergraduate Summer Research Fellowship, Princeton University, Princeton NJ,

USA. 2004

• Litton Industries Merit Award, University of Massachusetts Boston, Boston MA,

USA. 2003

• Women Merit Award, University of Massachusetts Boston, Boston MA, USA. 2003

• Director’s List for consistent summa cum laude performance, University of Mas-

sachusetts Boston, Boston MA, USA. 2002-2006

• Dean’s list, University of Massachusetts Boston, Boston MA, USA. 2001-2006


