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ANOMALIES OF WATER AND SIMPLE LIQUIDS

(Order No. )

ZHENYU YAN

Boston University Graduate School of Arts and Sciences, 2009

Major Professor: H. Eugene Stanley, University Professor and Professor of Physics

ABSTRACT

This thesis applies statistical physics approaches and computer simulations to

investigate quantitatively the relationship between the structure and the dynamic

and thermodynamic anomalies observed in water and some other simple liquids.

In Chapter 1, we give a general introduction to the properties of water. In Chapter

2 we address the question of whether spherically-symmetric potentials are also able to

reproduce the structural anomalies found in systems with local tetrahedral order. We

find that water-like structural order anomalies exist for the two-scale “ramp poten-

tial”. Our findings suggest that the water-like relationship between structural order

and anomalies is related to the presence of two different length scales in the potential.

In Chapter 3, we use the ratio of characteristic length scales of the two-scale ramp

potential as a control parameter to investigate the evolution of dynamic, thermody-

namic and structural anomalies. In this manner we show that the family of tunable

spherically-symmetric potentials so generated evolves continuously between water-like

and hard sphere behavior. These findings suggest that strong orientational interac-

tions in the first shell of water are not necessary for a liquid to show thermodynamic,

dynamic and structural anomalies, and highlight the importance of the second shell

of water.

In Chapter 4, we investigate how much orientation-dependent first-shell inter-

action and the second-shell environment each contribute to water’s anomalies. We

show that the changes in the second shell of water are the structural bases for the

anomalies. In Chapter 5, we study the quantitative connection between our ideal-
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ized ramp potential and water’s pair potential, as well as the relation between the

regions of anomalies in their respective phase diagrams. Finally in Chapter 6 we show

that the “two-body excess entropy” is a useful quantity for predicting the regions of

thermodynamic, dynamic and structural anomalies of water.
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Chapter 1

General Introduction

1.1 Phase Diagram of Water: Low Density and

High Density Water

Water is the most important substance on earth and is essential for human life.

Water can exist in different solid, liquid and gas states and has many peculiar prop-

erties that are important to the normal functions of biological bodies. Effort in this

thesis will concentrate on one topic, understanding the anomalies of water. First we

begin with a general introduction to water’s properties.

Fig. 1.1 shows the phase diagram of water in a vast range of natural conditions:

the temperature 0 K< T < 1000 K, and pressure 0.1 Pa< P < 1 TPa. The typical

conditions exist on Earth, Mars and Venus are marked on the figure. Water at

atmosphere pressure P = 1 atm is a stable liquid in the range between the melting

point TM = 273 K and boiling point TB = 373 K. Below the melting point, water has

hexagonal ice structure at atmosphere pressure [1]. For T > TB or T < TM , liquid

water can also exist in a metastable state as superheated or supercooled water with

respect to gas or ice phase. In nature the impurities in the water provide nucleation
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Figure 1.1: The phase diagram of water in a large range of temperature and pres-

sure. The letters ‘E’, ‘M’ and ‘V’ indicate typical surface conditions on Earth, Mars

and Venus. It shows water can be in gas state at low pressure and high temperature,

in liquid state at medium pressure and temperature, and in solid state at low temper-

ature and high pressure. Water can have many different solid ice structures. Under

the normal condition of our living earth (marked by ‘E’), water is in liquid state,

which will change into solid state if temperature is lowered, or change into gas state if

temperature is increased. In the figure, the lines are the coexistence lines of different

gas, liquid and solid phases. (Figure from Prof. M. Chaplin http://www.lsbu.ac.uk/)
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centers, and water easily freezes below TM and boils above TB [2].

In Fig. 1.1 there is also a triple point where solid, liquid and gas phase water coexist

stably. There is a liquid-gas critical point (circle) at high temperature T = 647 K

(pressure 22 MPa, density 322 kg/m3), because at this point liquid water is hot

enough and gaseous water is under enough pressure so that their densities become

identical, and the two phases become indistinguishable from each other. Many of

the solid forms of water at low temperature are metastable at low pressure, which

means water can be supercooled to very low temperature without crystallization.

There is also a possible second liquid-liquid critical point (circle) at low temperature

T = 217 K, (pressure 340 MPa, density 1130 kg/cm3), where metastable high density

liquid and low density liquid coexist and become indistinguishable.

The phase diagram in Fig. 1.1 shows that water can be in at least twelve forms of

ice at low temperature and high pressure. Impurities in water will help the formation

of ice crystals in water, a process called “heterogeneous nucleation”. If experiments

can avoid such impurities and irregularities in the wall of container, water can be su-

percooled to the “homogeneous nucleation” temperature TH (see Fig. 1.2), although

it is not clear yet if TH in the figure is the absolute limit of metastability or whether a

lower TH value can be achieved. Under usual situations when water is cooled slowly,

for example, with a cooling rate (qc ≈1 K/s) below TH one obtains ice Ih. However

if it is cooled rapidly (qc ≈ 105 K/s) to very low T < Tg, the glass transition tem-

perature, water can bypass crystallization and become an amorphous solid, or glassy

water as shown in the photos of Fig. 1.3. Glassy water lacks long-range structural

order compared with crystalline phase, and possesses a similar structure to the liquid.

Glassy water is rigid and hard to diffuse like a solid.

Heated from very low temperature, water crystallizes at crystallization tempera-

ture TX . Therefore in the temperature range TX < T < TH , water will crystallize.

It is hard to get metastable liquid water in this range, which is called “no man’s

land”. The glassy water at atmosphere pressure is low-density amorphous (LDA)
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ice. Increasing pressure will increase the density of LDA and high-density amorphous

(HDA) ice can be obtained as shown in the photos of Fig. 1.3 [3]). The two types

of glassy water LDA and HDA have been extensively studied and are found to be

different in structure. The transition from one form to another is abrupt with about

a 25% change in density and can be reversed. Such change suggests a thermodynamic

phase transition.

A coherent picture of supercooled and glassy water has been pursued. Based on

the HDA-LDA phase transition of glassy water, the liquid-liquid phase transition

theory hypothesizes that there is a first order phase transition between low density

liquid (LDL) and high density liquid (HDL) in the region of “no man’s land”, and the

transition between HDA and LDA is the low temperature observation of this liquid-

liquid phase transition [4] (see Fig. 1.2). Computer simulations show the LDL and

HDL can coexist and separate in liquid water and LDL water has smaller local density

than average, while HDL has larger local density [3] (see Fig. 1.3). HDL and LDL

phases are indistinguishable at higher T > TC′, the temperature of the liquid-liquid

critical point (LLCP). Above T ′

C the critical fluctuation associated with the critical

point can explain well the dramatic change in thermodynamic response functions such

as isothermal compressibility KT , specific heat CP and thermal expansion coefficient

αP .

1.2 Anomalies of Water

Most liquids become denser upon cooling and more viscous upon compression.

However, water and many other liquids with local tetrahedral order [5] (e.g., silica,

silicon, and carbon) show a decrease in density upon cooling (density anomaly) and

a decrease of viscosity upon pressurizing (diffusion anomaly). These liquids share

many other thermodynamically anomalous properties than those mentioned above.

For instance, experiments in phosphorus indicate the presence of a liquid-liquid phase
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Figure 1.2: Phase diagram of water reproduced from Ref. [3], showing the phase

relations between liquid water, LDL, HDL, LDA and HDA: C denotes the known

liquid-gas critical point and C’ the hypothesized ‘second’ (liquid-liquid) critical point,

F denotes the line of first-order phase transitions that emanates from C’ and separates

the high-density and low-density phases HDL and LDL that occur for temperatures

below Tc′ . The curves denoted L and H are the limits of metastability of the HDA and

LDA phases, respectively. Cooling supercooled water with a cooling rate (≈1 K/s)

below TH produces ice Ih crystal. But water can be hyperquenched from T > TH and

transforms into glassy water at T < Tg, and then crystallize at TX if heated again. So

there is a “no man’s land” between TH and Tg. Tg is the glass transition temperature

below TX , which is the crystallization temperature.
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Figure 1.3: Low density and high density water. Upper two panels reproduced

from Ref. [3] show configurations of LDL and HDL from molecular dynamics trajec-

tories, coexisting and separating in liquid water. Lower two panels are photo shots

of low density and high density amorphous ice. Photos from Prof. Osamu Mishima

http://www.nims.go.jp/water/top.html.
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transition [6] and similar results are obtained from computer simulations in silica [7],

silicon [8], and water [4].

Among the different thermodynamic, dynamic and structural properties of water,

lots of anomalies have been found compared to typical liquids. The most well known is

that water’s density reaches maximum at 4◦C degree (Fig 1.4). Experiments also show

that water has a diffusion anomaly because it can diffuse faster upon compression in

some range of temperature and pressure [9] (Fig 1.5). The response functions of water

in Fig. 1.6 increase sharply upon cooling below melting temperature TM compared

to the slow change of typical liquids [10]. The response functions are associated

with the microscopic fluctuations of entropy and volume: kTV KT =< (δV )2 >,

kCP =< (δS)2 >, and kTV αP =< δV δS >. Therefore below TM , the thermodynamic

fluctuations increase sharply. Recently the fluctuations have been connected with the

so called Widom line of water, which basically is the extension of the liquid-liquid

coexistence line into the one-phase region at temperature T > TC′ above the liquid-

liquid critical point, and there are maximum fluctuations of volume and entropy in

the Widom line region due to the competition between the LDL and HDL liquids [11].

It is also shown that response functions actually reach a maximum at the Widom line

instead of increasing to infinity [11].

One interesting question is to identify the regions of anomalies in the phase di-

agram. For example from experiment [9](Fig. 1.5), one can identify the range of

density where diffusion increases with pressure for different T , and find this region

in the P − T phase diagram. Fig. 1.7 shows anomalous region of density and dif-

fusion [12] using experimental data [9]. Fig. 1.7 also shows the similar anomalous

regions obtained from molecular dynamic simulation of SPC/E water. The simula-

tion can generate data for negative pressure, therefore it includes a complete region

compared to the only positive pressure region of experiment.
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Figure 1.4: Density anomaly of water. Density of water as a function of tem-

perature at different pressures shows that water at atmospheric pressure has maxi-

mum density at T = 277 K, which is the temperature of maximum density (TMD).

Below this temperature, water expands upon cooling and this is called the density

anomaly of water. There is a region of density anomaly in the phase diagram of

liquid water spanning a range of temperature and pressure (see Fig. 1.7). (Figure

from http://www.engineeringtoolbox.com/)
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Figure 1.5: Diffusion anomaly of water. Temperature and pressure dependence of

self diffusion coefficient of water. The data from different experiments are plotted

with different symbols. The data consistently show that water’s diffusivity increases

with pressure in a range of temperature and pressure, and this is called diffusion

anomaly. There is also a region of diffusion anomaly in the phase diagram of water

(see Fig. 1.7). The dashed line corresponds to the temperature and pressure of the

TMD line. (For details, see original figure in Ref [9]).
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Figure 1.6: Schematic figures of thermodynamic response functions of water. (a) the

isothermal compressibility KT ≡ (∂ ln ρ/∂P )T , (b) the constant pressure specific heat

CP ≡ T (∂S/∂T )P , and (c) the thermal expansion coefficient αP ≡ −(∂ ln ρ/∂T )P .

The dashed lines are for the typical liquid. The thermodynamic fluctuations of su-

percooled water become much larger below the melting temperature TM and the

functions have sharp change. (Figures from Stanley et al. [13])
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Figure 1.7: Anomalous regions of water. Upper panel: Regions of density and

diffusion anomalies in the P −T phase diagram of water obtained from experimental

data [9, 12]. The diffusion anomaly region is wider than the density anomaly region.

Lower panel: Regions of density and diffusion anomalies in the P − T phase diagram

of water obtained from SPC/E MD simulation [12, 14]. The experimental data can

only show the region in the positive pressure range, while simulations can also show

region in negative pressure. (Figures are reproduced from Ref. [12].)
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1.3 Relation Between Structure and Anomalies of

Water

Much effort has been expended to understand the relationship between the struc-

ture and the dynamic and thermodynamic anomalies observed in water. These

anomalies are not unique to water. Other liquids with local tetrahedral order (e.g.,

silica and silicon) also exhibit thermodynamic and dynamic anomalies [5]. A possible

explanation of these anomalies is the tendency of these substances to form local open

structures not present in simple liquids. For water, the hydrogen bonding between

each molecule and its four nearest neighbors form the open tetrahedral structure as

shown in Fig. 1.8.

It has been proposed that these anomalies may arise from a liquid-liquid critical

point (LLCP) in the deeply supercooled state of water [4]. The change of water struc-

ture between LDL (with low density, low entropy, low energy) and HDL (with high

density, high entropy, and high energy) is related to water’s thermodynamic and dy-

namic anomalies. For example, the structure change from HDL to LDL upon cooling

(see Fig. 1.2) is related to the negative correlation between the total entropy and vol-

ume fluctuations, and the negative thermal expansion coefficient (density anomaly)

is due to the relation kTV αP =< δV δS >. The structural anomaly is also re-

lated to the anomalous diffusion increase with density due to Adam-Gibbs equation

D ∝ exp[−B/(TSc)], where Sc is the configurational entropy [23], proportional to the

logarithm of the number of configurations of the system.

However, establishing a precise and quantitative link between the microscopic

structure and the dynamic and thermodynamic anomalies of tetrahedral liquids has

proved elusive until recently. Errington and Debenedetti [19] (ED) have studied the

microscopic structural order in liquid water (SPC/E model) by using simple geomet-

rical metrics or order parameters. They used two different metrics: a translational

order parameter t [20], quantifying the tendency of particle pairs to adopt preferential
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Figure 1.8: Tetrahedral structure of water molecules. The typical tetrahedral struc-

ture formed by a water molecule and its four nearest neighbors through the hydrogen

bonding interaction. Two hydrogen atoms (donor) of a water molecule bond to two

oxygen atoms (acceptor) of two nearby water molecules, at the same time its oxygen

atom bonds to two hydrogen atoms of two other water molecules. Hydrogen bond

lifetimes are 1 - 20 ps [15] whereas broken bond lifetimes are about 0.1 ps, and

the fraction of breaking hydrogen bonding persisting for longer than a picosecond is

insignificant [16–18], meaning that the tetrahedral network is essentially complete at

ambient temperatures. At high temperature and pressure, the tetrahedral structure

becomes disordered and one can use the local tetrahedral order parameter to quan-

tify the change of local structural order of water [19]. (Figure from Prof. M. Chaplin

http://www.lsbu.ac.uk/)
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Figure 1.9: The radial distribution function g(r) between oxygen-oxygen, oxygen-

hydrogen and hydrogen-hydrogen atoms of water molecules under low (solid line) or

high (dashed line) pressures. Results were obtained from neutron diffraction [22].

g(r) defines the probability to find a molecule at distance r from a center molecule

located at origin. g(r) changes with temperature and pressure accompanied by the

change in local structural order. One can also quantify the translational order of

system by integrating over g(r) [20, 21]. (Figure from A. K. Soper et al. [22])
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separations as shown in Fig. 1.9, and a bond-orientational order parameter q [19, 24]

quantifying the extent to which a molecule and its four nearest neighbors arrange in

a tetrahedral local structure, as is the case in hexagonal ice (Fig. 1.8).

Ref. [19] found that the structural order of water changes abnormally with den-

sity. The decrease in order upon compression constitutes a structural anomaly (see

Fig. 1.10): simple hard spheres or Lennard Jones liquids, in contrast, always become

more ordered upon compression. They also found a dome-shaped region in the (T, ρ)

plane within which isothermal compression leads to a decrease in t and q. ED further

found that dynamic and thermodynamic anomalies define nested domes in the (T, ρ)

plane: the structural anomalies dome contains the dynamic anomalies dome, which

in turn contains the thermodynamic anomalies dome (Fig. 1.10(b)). This means that

whenever the thermal expansion coefficient is negative, the diffusivity must necessarily

increase and structural order must decrease upon isothermal compression,

A useful way of investigating structural order in liquids is to map state points into

the t − q plane (Fig. 1.11). Such a representation was introduced by Torquato and

coworkers [26], who first applied it to sphere packing and referred to it as an order

map. ED used the order map to investigate structural order in SPC/E water [19].

Because of the distinctive features discovered in the ED study, in what follows we

refer to water-like order maps as the ED order map. Using molecular dynamics sim-

ulation of the SPC/E [27] model, ED found that the state points accessible to liquid

water define a two-dimensional region in the t− q plane (Fig. 1.11 right panel inset),

meaning that in general t and q are independently variable in liquid water (i.e., equi-

librium state paths exist along which one order metric varies while the other does

not). ED showed that all state points exhibiting structural, dynamic or thermody-

namic anomalies define a line on the (t, q) plane (Fig. 1.11 right panel), meaning that

when SPC/E water exhibits anomalous behavior, its translational and orientational

order metrics become strictly coupled. This is clear evidence of the relationship be-

tween structure and water anomalies. Simulations of Shell et al. subsequently found
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Figure 1.10: Relation between structure and anomalies of SPC/E water. (a) The

orientational and translational order parameters of water can be computed for differ-

ent temperatures and densities. The sketch shows both structural orders of water as

a function of density at constant temperature. There is a maximum in orientational

order at a low density and a minimum in translational order at a high density. Be-

tween the low and high densities, both structural orders decrease with density, and

this is defined as structural anomaly. (b) Errington et al. [19] find that SPC/E water

has a structural anomaly and there is a region of structural anomaly in the phase

diagram of liquid water spanning over a range of temperature and pressure, which

encloses the density and diffusion anomaly regions. (From S. Sastry [25]).
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Figure 1.11: Order map of simulated SPC/E water. To further investigate rela-

tionship between the orientational structural order and translational order of water,

Errington et al. [19] plot the translational and orientational orders against each other

on the order map. They find that the two order parameters inside the structural

anomalous region are correlated because they fall on a narrow strip region just above

the inaccessible region in the order map. (Figure from Errington et al. [19])
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qualitatively similar behavior in molten silica’s order map [28]. However, in the case

of silica, it was found that state points corresponding to anomalous behavior define a

narrow stripe in the (t, q) plane instead of a strict line. Furthermore, unlike in water,

the region of dynamic anomalies was found to contain that of structural anomalies.

1.4 Simple Liquids with Water-like Anomalies

Compared to water, typical simple liquids such as hard sphere and Lennard Jones

liquids have no anomalous behavior in their thermodynamic, dynamic and structural

properties (Fig. 1.6 dashed lines). The structures of simple liquids are more closely

packed and simple atoms usually have twelve nearest neighbors in the first shell com-

pared to the tetrahedrally coordinated four neighbors in water’s first shell as shown

in Fig. 1.12. For simple spherically-symmetric liquids, including hard spheres [26, 29]

and Lennard-Jones [20] the order map has a positively-sloped line in the (t, q) plane,

indicating that translational and orientational orders are always strictly and posi-

tively correlated. In this case the appropriate metric for orientational order does not

measure tetrahedrality; rather, the bond-orientational order parameter introduced by

Steinhardt et al. [30] measures the degree to which the nearest neighbors adopt a fcc

or hcp structure. An important result from these studies is the fact that the order

map for the Lennard-Jones system above its critical density is identical to that of hard

spheres. Furthermore, in these simple systems that do not exhibit thermodynamic or

dynamic anomalies, compression always leads to an increase in the order metrics.

But there are exceptions because some simple liquids show waterlike thermody-

namic and dynamic anomalies and compression leads to an decrease in their order

metrics. In 1970 Hemmer and Stell [32] showed that in fluids interacting via pairwise-

additive, spherically-symmetric potentials consisting of a hard core plus an attractive

tail, softening of the repulsive core can produce additional phase transitions. This

pioneering study elicited a considerable body of work on core-softened potentials [32–
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Figure 1.12: Difference between the structures of water and simple liquids. (a)

Water molecules typically form hydrogen bonds with four neighbors on the corner of

tetrahedral structure, and water molecules have open, loosely packed network struc-

ture. The first coordination shell of water has only four to five neighbors depending

on pressure and temperature. (b) In a simple atomic liquid, the packing is much more

dense, and there is no tetrahedral structure due to the lack of orientational bonds,

instead there is usually a fcc, or hcp structure in its crystal phase. There are usually

twelve neighbors in the first coordination shell of simple atomic liquid. (Figure from

S. Sastry [25])
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Figure 1.13: Effective potential of water. Upper panel: Effective potential of water-

water interaction computed from radial distribution function of water [31]. There is a

soft core ramp (energy barrier) in the effective potential, which water molecules need

to overcome to move closer to each other when low density water becomes high density

water under pressure. Lower panel shows the typical low density and high density

configurations of water clusters. Simple potentials can be derived from the effective

potential. Simple liquid system can be studied using such simple potentials to see

whether water-like anomalies can be obtained from simple potentials even without

orientational interactions in the potential. (Figures reproduced from [31] and [3])
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40]. This generic term denotes continuous potentials with inflections in the repulsive

core [33], discontinuous potentials with the core softened by shoulders or ramps (see

Fig. 1.13 and Fig. 1.14) [32, 34, 36–39], or lattice models with nearest-neighbor at-

traction and next-nearest neighbor repulsion [40]. It is now well-established that

such potentials can generate water-like density and diffusion anomalies [32–37, 39–41]

and can even show a liquid-liquid transition [38] because the different length scales

in the potential allow the structural change between low and high density liquids. As

shown in Fig. 1.13(a) the core-softened potentials are originated from the effective

potential of water, with the soft core mimicking the energy barrier in the effective

potential of water.

1.5 Overview of Thesis

These important findings about simple liquids with water-like anomalies imply

that strong orientational interactions, such as those that exist in water and silica, are

not a necessary condition for a liquid to have thermodynamic and dynamic anomalies.

But it is still not clear whether such strong orientational interactions are necessary

for a liquid to have structural anomalies. Here in Chapter 2 and 3 of this thesis we

investigate the question of whether spherically-symmetric potentials are also able to

reproduce the structural anomalies found in systems with local tetrahedral order. We

also systematically investigate the effect of tuning the parameters of simple potentials.

It is also not clear why simple liquids interacting via spherically-symmetric poten-

tials can generate water-like structural, dynamic and thermodynamic anomalies and

what are the structural bases for these anomalies? In Chapter 4, we investigate how

much orientation-dependent first-shell interactions and the second-shell environment

each contribute to water’s anomalies. We show that the changes in the second shell

of water provide the structural bases for the anomalies.

In Chapter 5, we study the quantitative connection between the two-scale ramp
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Figure 1.14: Different core-softened models. Different types of simple potentials

are able to generate water-like anomalies. (a) the square well potential [36], or (b)

the model potential formulated by combining the Lennard Jones potential and the

Gaussian potential [42]. The simple potential can be changed in different forms by

tuning parameters of potential, but in order to have water-like anomalies, they all need

to have a soft core (a well, or a ramp) in the potential acting like the energy barrier in

the effective potential of water. The soft core can cause water-like structural change

between low density and high density simple liquids when simple particles migrate

from soft core towards hard core upon compression. The other anomalies of simple

liquids are related to the structural changes. (Figure from [36] and [42])
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potential and water’s pair potential, as well as the relation between the regions of

anomalies in their respective phase diagrams.

Finally in Chapter 6 we investigate the relation of water anomalies to the excess

entropy, We find that the excess entropy can not only predict the regions of structural,

dynamic and thermodynamic anomalies of water, but also predict the location of the

Widom line of water in the phase diagram.



Chapter 2

Structural Order for One-Scale and

Two-Scale Potentials

2.1 Introduction

Most liquids become denser upon cooling and more viscous upon compression.

However, water and many other liquids with local tetrahedral order [5] (e.g., silica,

silicon, carbon, and phosphorus) show a decrease in density upon cooling (density

anomaly) and an increase of diffusivity upon pressurizing (diffusion anomaly). These

liquids share many other thermodynamic anomalous properties than those mentioned

above. For instance, experiments in phosphorous indicate the presence of a liquid-

liquid phase transition [6] and similar results are obtained from computer simulations

in silica [7], silicon [8], and water [4]. A possible explanation of these anomalies

is the tendency of these liquids to form bonds resulting in local open structures not

present in simple liquids. Therefore, much effort has been expended to understand the

relationship between the structure and the dynamic and thermodynamic anomalies

observed in tetrahedral liquids.

Several recent studies have investigated thermodynamic and dynamic anomalies

using spherically-symmetric potentials. Simple spherically-symmetric potentials with
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a ‘core-softened’ or a repulsive interaction at short distances are able to generate

water-like density and diffusion anomalies [33, 34, 36–41, 43], and can even show a

liquid-liquid transition [38]. These findings in simple liquids imply that strong orien-

tational interactions (as observed in water or silica) are not a necessary condition for

a liquid to have thermodynamic and dynamic anomalies. It is still not clear whether

such strong orientational interactions are necessary for a liquid to have structural

anomalies. Here we address the question of whether spherically-symmetric poten-

tials are also able to reproduce the structural anomalies found in systems with local

tetrahedral order.

Errington and Debenedetti [19] (ED) have studied the microscopic structural or-

der in liquid water by using simple geometrical metrics or order parameters. The

structural order was characterized using two different metrics: a translational order

parameter t [20], quantifying the tendency of particle pairs to adopt preferential sep-

arations, and a bond-orientational order parameter q [19, 24] quantifying the extent

to which a molecule and its four nearest neighbors arrange in a tetrahedral local

structure, as is the case in hexagonal ice. A useful way of investigating structural

order in liquids is to map state points onto the t − q plane. Such a representation

was introduced by Torquato and coworkers [26], who applied it to sphere packings

and referred to it as an order map. ED used the order map to investigate structural

order in SPC/E water [19]. Because of the distinctive features discovered in that

study, in what follows we refer to water-like order maps as the ED order map. ED

found that the state points accessible to the liquid state in the order map fall into

a two-dimensional area, meaning that in general t and q are independent. However,

for those state points where the dynamic and thermodynamic anomalies occur, the

t − q parameters fall on a line in the ED order map, meaning that they are strictly

correlated. This is a clear evidence of the relationship between structure and water

anomalies. Shell et al. [28] used simulation to test the ED order map in silica, an-

other liquid with local tetrahedral order. They studied the ED order map in silica
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and found it qualitatively similar to water. However, in this case, the t − q values

corresponding to the state points in the ED order map for anomaly regions do not

fall on a single line as in water but fall on a stripe region. Further, the state points

showing diffusion anomaly are not all contained in this stripe region of ED order map.

In this chapter we perform molecular dynamics simulations to investigate the

relationship between structural order and water-like dynamic and thermodynamic

anomalies in spherically-symmetric potentials having either one or two characteristic

length scales. The first potential has only one length scale which is the diameter of

the ramp without the hard core, and the second potential has two length scales: one is

the diameter of a ramp(softcore) and another one is the diameter of a hard core with a

ratio of 1.76. Structural order is characterized by translational and orientational order

parameters analogous to those used in previous cases for water and silica. We find

that dynamic and thermodynamic anomalies exist for both one-scale and two-scale

ramp potentials, and water-like structural order anomalies exist only for the two-

scale ramp potential. Our findings suggest that the water-like relationship between

structural order and anomalies is related to the presence of two different length scales

in the potential.

2.2 Methods: Molecular Dynamic Simulation and

Structural Order

It is possible to define order metrics analogous to the t − q parameters used for

water or silica. The ED order map was studied for different models of spherically

symmetric potentials, e.g., hard spheres [26, 29] and Lennard-Jones [20] system. In

these systems, where no dynamic or thermodynamic anomalies are observed, the

liquid state points always fall on a single line on the ED order map. In other words,

in contrast to the case of silica or water, the q − t parameters are always strongly

correlated. In light of these findings, it is natural to inquire about the ED order
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map of systems that are spherically symmetric and, in addition, exhibit water-like

anomalies in their thermodynamic and transport properties.

Here we perform discrete molecular dynamics simulations to study the ED or-

der map of a liquid with spherically symmetric atomic interactions that shows both

thermodynamic and dynamic water-like anomalies. This model was introduced by

Jagla [34] (see Fig. 2.1).

The potential energy U(r) of a pair of particles separated by a distance r is given

by (see Fig. 2.1)

U(r) =



















∞ r < σ0

U1(σ1 − r)/σ1 σ0 < r < σ1

0 r > σ1

(2.1)

The shorter distance σ0 corresponds to the hard-core distance, and the longer dis-

tance σ1 characterizes a softer repulsion range that can be overcome at high pressure.

We will identify the model defined by Eq. (2.1) with λ ≡ σ1/σ0 = 1.76 as the two-

scale ramp potential (2SRP) model, and the model with σ0 = 0 as the one-scale ramp

potential (1SRP) model. We use NVT ensemble for a system composed by N = 1728

(2SRP) or 850 (1SRP) particles with periodic boundary conditions and control the

temperature with the Berendsen thermostat. The details of the simulation are given

in Ref. [39]. However, we note that we use different units than in Ref. [39]: lengths

are measured in units of σ1 and energy is measured in units of U1. We also check

that the results do not depend on the number of particles and the value of σ1 and U1

after renormalization.

We use the translational order parameter [19, 20, 28], used in water [19], silica [28],

and Lennard-Jones systems [20],

t ≡
∫ sc

0

|g(s) − 1|ds. (2.2)

Here s≡rρ1/3
n is the radial distance scaled by the mean interparticle distance, g(s)

is the pair correlation function, and sc a numerical cutoff that can be set to a suitable

value (we choose sc so that it corresponds to one-half the simulation box size). For
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Figure 2.1: The ramp potential introduced by Jagla [34]. σ0 corresponds to the

hard-core distance, σ1 characterizes a softer repulsion range that can be overcome at

high pressure. The 1SRP has σ0 = 0, while the 2SRP has two length scales with

λ ≡ σ1/σ0. Typically λ = 1.76 corresponds to the ratio of distance of the first and

the second shell of water.
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a completely uncorrelated system, g(s) ≡ 1, and thus t = 0. For systems with

long-range order, the modulations in g(s) persist over large distances, causing t to

grow.

An orientational order parameter introduced by Steinhardt et al. [30] and used in

Refs. [20, 26, 29, 44] is modified to characterize the average local order of the system.

For each particle, we define 12 vectors (or bonds) connecting the central particle with

each of its 12 nearest neighbors. Each bond is characterized by two angles (θ, ϕ) and

the corresponding spherical harmonic Yℓm(θ, ϕ) can be computed. The orientational

order parameter associated with each particle i is

Qℓi ≡
[

4π

2ℓ+ 1

m=ℓ
∑

m=−ℓ

|Y ℓm|2
]

1
2

. (2.3)

Here, Y ℓm(θ, ϕ) denotes the average of Yℓm(θ, ϕ) over the 12 bonds associated

with particle i. For ℓ = 6 [20], Qℓ has maximum value for most crystals such as

fcc, hcp and bcc [30]. The values of Q6i for each molecule in the system obey a

Gaussian distribution, and the averaged value of Q6i over all the particles [45], Q6s,

is used to characterize the local order of the system. In general, Q6s grows in value

as the crystallinity of a system increases. For example, in fcc lattice, Qfcc
6s = 0.574,

and for uncorrelated system, Q6s = 1/
√

12 ≈ 0.289. Thus, Q6s provides a measure

of orientational order in the system. We note that fcc is the structure of the stable

crystal at low pressure in the 1SRP and 2SRP models [39].

2.3 Results: Two-scale Ramp Potential has Wa-

terlike Anomalies

Figs. 2.2(a) and 2.2(b) show the density dependence of t for the 1SRP and 2SRP

at different temperatures T . The behavior of t(ρ) is qualitatively the same in both

models. At low-T , t(ρ) shows a clear minimum and maximum and, hence, a range of

ρ where t decreases with increasing ρ. This anomaly implies that the system becomes
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less ordered upon compression. In fact, for the case of hard-spheres and LJ systems,

t increases monotonically with ρ [20]. As T increases, the extrema in t(ρ) disappear.

At high-T , for the 2SRP, t is a monotonically increasing function of ρ, as is the case

in normal liquids. However, for the 1SRP, t decreases with ρ. This behavior at high T

is probably a consequence of the absence of a hard core in the 1SRP pair interaction

potential. Therefore, upon compression particles can pass through each other and,

as ρ increases, the structure of the liquid resembles more the structure of the gas. As

expected, t(T ) and Q6s(T ) in both models decrease with T at fixed ρ, meaning that

the system becomes more disordered upon heating (Fig. 2.2).

Q6s as a function of density for both models is shown in Figs. 2.2(c) and 2.2(d).

At low T , Q6s(ρ) for the 1SRP is a monotonically increasing function of ρ, i.e.,

orientational order increases upon compression. Instead, Q6s(ρ) for the 2SRP at low T

shows a clear maximum, indicating a range of density for which Q6s(ρ) decreases with

ρ. We also note that at high pressure/density, the two models have different crystal

structures, hcp for 1SRP and rhombohedral for 2SRP. Thus the different Q6s(ρ) in

liquid state may be related to the difference in crystal formation. This anomalous

behavior where orientational order decreases upon compression disappears at high T .

At high-T , for both the 1SRP and 2SRP, Q6s is weakly ρ-dependent as is the case in

hard sphere and LJ systems [20] compared to low-T . At high-T , for both the 1SRP

and 2SRP, the ρ-dependence of Q6s is weak as is the case in hard sphere and LJ

systems [20]. We also note from Fig. 2.2 that, as expected, Q6s(T ) in both models

decreases with T at fixed ρ, meaning that the system becomes more disordered upon

heating.

Fig. 2.3 shows the isotherms from Fig. 2.2 in the ED order map representation.

For both the 1SRP and 2SRP, the state points fall on a two-dimensional region, i.e.,

t and Q6s can be changed independently. As is the case of silica and water [19, 28],

we also find an inaccessible region in the ED order map where no liquid state points

can be found. The structural anomalies correspond to the section of the isotherms
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Figure 2.2: Density-dependence of the structural order parameters. The upper

panels show the density-dependence of the translational order parameter t. The solid

lines are polynomial fits to the data, introduced as a guide to the eye. (a) One-scale

ramp potential (σ0 = 0). From top to bottom isotherms correspond to T =0.04, 0.05,

0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, and 0.13. At low temperature T < 0.08, there is

a range of ρ where t decreases with density, and there is translational order anomaly

for 1SRP. (b) Two-scale ramp potential with σ1/σ0 = 1.76. From top to bottom

isotherms correspond to T =0.027, 0.036, 0.045, 0.063, 0.082, 0.109, 0.145, 0.172, 0.2,

0.236, and 0.290. At low temperature T < 0.2, there is also a range of ρ where t

decreases with density, and there is translational order anomaly for 2SRP. The lower

panels (c)–(d) show the density-dependence of the orientational order parameter Q6s

for same sets of isotherms. 1SRP has no anomaly in Q6s, while 2SRP has anomaly

in Q6s.
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Figure 2.3: Order map of one-scale and two-scale potentials. (a) The ED order

map for the one-scale ramp liquid. Isotherms correspond to T =0.04, 0.05, 0.06, 0.07,

0.08, 0.09, 0.10, 0.11, 0.12, and 0.13 (from top to bottom), and arrow indicates the

direction of increasing density. For T ≤ 0.08, t has a maximum at a low density

and a minimum at a high density but Q6s shows no maximum. (b) The ED order

map for the two-scale ramp liquid. Isotherms correspond to T =0.027, 0.036, 0.045,

0.063, 0.082, 0.109, 0.145, 0.172, 0.2, 0.236, and 0.290 (from top to bottom). Q6s

and t have maxima at low densities, and t has minima at high densities. We can

identify a structurally anomalous region bounded by loci of maximum orientational

order (at low densities) and minimum translational order (at high densities) in which

both t and Q6s decrease upon compression. All state points within the structurally

anomalous region fall in a narrow stripe region adjacent to the inaccessible region

where no liquid state point can be found.
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in Fig. 2.2 where both Q6s and t decrease upon compression. Only for the 2SRP we

find such anomalies, as have been observed in both silica and water. The state points

corresponding to the structural anomalies do not fall, strictly speaking, on a single

line delimiting the inaccessible region in the ED order map (Fig. 2.3(b)). Instead,

these state points form a narrow stripe region, resembling the water ED order map

much more closely than the ED order map found for silica [28].

Next, we discuss the regions in the phase diagram where the structural, dynamic,

and thermodynamic anomalies occur. In water, the region in the T -ρ or P -T plane

corresponding to both structural anomalies contains the region corresponding to the

diffusion anomaly which in its turn contains the region corresponding to the density

anomaly. In silica, the diffusion anomaly region contains the structural anomaly re-

gion, which also contains the density anomaly region. Fig. 2.4 shows the temperature

of maximum density (TMD) line and the diffusivity maxima/minima (DM) line for

our 1SRP and 2SRP models. The TMD defines the boundary where the density

anomaly occurs while the DM defines the boundary where the diffusion anomaly oc-

curs. The ED order map in Fig. 2.3(b) shows that the points along isotherms where

both t and Q6s decrease with density fall between the Q6s maximum and the t mini-

mum along the isotherms. By definition, the structural anomaly region in the T − ρ

plane is delimited by the location in the T − ρ plane of the Q6s maximum and the

t minimum. Fig. 2.5(b) shows the different anomaly regions on the T − ρ plane for

2SRP. Fig. 2.5(b) shows that the relation among the regions of various anomalies for

the 2SRP is the same as in the case of water [19], i.e., the structural anomaly region

contains the diffusion anomaly region which also contains the density anomaly region.

For the 1SRP, there is no clear Q6s maximum (i.e., Q6s shows no anomaly), so

we are not able to identify a structural anomaly region. However, in this case the

structural anomaly can be identified by those state points along an isotherm where

t decreases upon compression. Therefore, the maximum and minimum values of t

in Fig. 2.3(a) define the structural anomaly region. Fig. 2.5(a) shows that with this
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Figure 2.4: Density and diffusion anomalies in the P -T plane. Temperature of

maximum density (TMD) and diffusivity minima and maxima (DM) lines for the two

potentials in the P -T plane. The region of diffusion anomaly is defined by the loci

of DM inside which the diffusivity increases with density. The thermodynamically

anomalous region is defined by TMD line, inside which the density increases when

the system is heated at constant pressure.
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definition the structural anomaly region contains the diffusion anomaly region which

also contains the density anomaly region. We show in Fig. 2.5(b) that for the 2SRP,

defining the structural anomaly boundaries using the extrema of t does not alter

the relationship between the regions of various anomalies. Furthermore, comparing

Figs. 2.5(a) and 2.5(b), we observe that the effect of reducing the hard core distance

σ0 is to open the structural anomaly region (curves C and A).

In summary, we find that the 2SRP shows not only density and diffusion anomalies

but also the same structural anomalies found in tetrahedral liquids such as silica

and water. Furthermore, the 2SRP also shows the same relation among structural,

dynamic and density anomalies. Our finding suggests that the water-like relationship

between structural order and anomalies may be due to the presence of two different

length scales. When eliminating the hard core interaction with σ0 → 0, we find

no water-like relation between structure and dynamics. This suggests that the ratio

between the two length scales in the 2SRP, σ1/σ0 is the relevant variable in the

interaction potential.
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Figure 2.5: Relationship between the structural order and the density and diffusion

anomalies. (a) For the one-scale ramp liquid, the open region bounded by the loci of

t minima (curve A) and t maxima (curve C) [see Fig. 2.3(a)] defines the structurally

anomalous region. This region contains the diffusion anomaly (delimited by the DM)

and the density anomaly (delimited by the TMD). (b) For the two-scale ramp liquid,

the structurally anomalous region can be defined by the region between the loci of

t minima (curve A) and by the loci of either t maxima (curve C) or Q6s maxima

(curve B) [see Fig. 2.3(b)]. The structurally anomalous region contains the diffusion

anomaly region which also contains the density anomaly region. Only the two-scale

ramp potential shows the same relation between the structural, diffusion, and density

anomaly regions as observed in water.



Chapter 3

A Family of Tunable

Spherically-Symmetric Potentials

3.1 Introduction

Water’s density and diffusion anomalies, which disappear at high enough tem-

perature and pressure, are not unique to water. Other liquids with local tetrahedral

order (e.g., silica and silicon) also exhibit thermodynamic and dynamic anomalies [5].

A possible explanation of these anomalies is the tendency of these substances to form

local open structures not present in simple liquids. However, establishing a precise

and quantitative link between the microscopic structure and the dynamic and ther-

modynamic anomalies of tetrahedral liquids has proved elusive until recently.

Ref. [19] studied the relation between microscopic structure and the anomalies

of liquid water by introducing two simple metrics: a translational order parameter

t [20], and an orientational order parameter q [19, 24]. Using molecular dynamics sim-

ulation of the SPC/E [27] model, ED found a dome-shaped region in the (T, ρ) plane

within which isothermal compression leads to a decrease in t and q. This decrease in

order upon compression constitutes a structural anomaly: simple liquids, in contrast,

always become more ordered upon compression. ED further found that dynamic and
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thermodynamic anomalies define nested domes in the (T, ρ) plane: the structural

anomalies dome contains the dynamic anomalies dome, which in turn contains the

thermodynamic anomalies dome. This means that whenever the thermal expansion

coefficient is negative, the diffusivity will increase upon isothermal compression. ED

showed that all state points exhibiting structural, dynamic or thermodynamic anoma-

lies define a line on the (t, q) plane, meaning that when water exhibits anomalous

behavior, its translational and orientational order metrics become strictly coupled.

This is clear evidence of the relationship between structure and water anomalies.

Shell et al. subsequently found qualitatively similar behavior in molten silica’s order

map [28]. However, in the case of silica, it was found that state points corresponding

to anomalous behavior define a narrow stripe in the (t, q) plane instead of a strict

line. Furthermore, unlike in water, the region of dynamic anomalies was found to

contain that of structural anomalies.

For simple spherically-symmetric liquids, including hard spheres [26, 29] and Lennard-

Jones [20] the order map was found to be a positively-sloped line in the (t, q) plane,

indicating that translational and orientational order are always strictly and positively

correlated. In this case, of course, the appropriate metric for orientational order does

not measure tetrahedrality; rather, the bond-orientational order parameter introduced

by Steinhardt et al. [30] was used. An important result from these studies is the fact

that the order map for the Lennard-Jones system above its critical density is identical

to that of hard spheres. Furthermore, in these simple systems that do not exhibit

thermodynamic or dynamic anomalies, compression always leads to an increase in the

order metrics.

In 1970 Hemmer and Stell [32] showed that in fluids interacting via pairwise-

additive, and spherically-symmetric potentials consisting of a hard core plus an at-

tractive tail, softening of the repulsive core can produce additional phase transitions.

This pioneering study elicited a considerable body of work on so-called core-softened

potentials [32–40]. This generic term denotes continuous potentials with inflections
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in the repulsive core [33], discontinuous potentials with the core softened by shoul-

ders or ramps [32, 34, 36–39], or lattice models with nearest-neighbor attraction and

next-nearest neighbor repulsion [40]. It is now well-established that such potentials

can generate water-like density and diffusion anomalies [32–41, 46–48]. This impor-

tant finding implies that strong orientational interactions, such as those that exist in

water and silica, are not a necessary condition for a liquid to have thermodynamic

and dynamic anomalies.

The above discussion implies the existence of two well-defined classes of liquids:

simple and water-like. The former which interact via spherically-symmetric non-

softened potentials, do not exhibit thermodynamic nor dynamic anomalies, and their

order map is a line. In water-like liquids, interactions are orientation-dependent;

these liquids exhibit dynamic and thermodynamic anomalies, and their order map

is in general two-dimensional but becomes linear (or quasi-linear) when the liquid

exhibits structural, dynamic or thermodynamic anomalies. Intermediate between

these well-defined extremes is the class of core-softened liquids, which interact via

spherically-symmetric potentials but can also exhibit water-like thermodynamic and

dynamic anomalies.

Two questions arise naturally from this emerging taxonomy of liquid behavior.

First, is structural order in core-softened fluids hard-sphere or water-like ? Second,

is it possible to seamlessly connect the range of liquid behavior from hard spheres to

water-like by a simple and common potential, simply by changing a physical param-

eter ?

In Chapter 2 [21] we addressed the first question. We showed that a core-softened

potential with two characteristic length scales can not only give rise to water-like

diffusive and density anomalies, but also to an ED water-like order map. This im-

plies that orientational interactions are not necessary in order for a liquid to have

structural anomalies. In this work we address the second question. Specifically, we

use the ratio of characteristic length scales as a control parameter to investigate the
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evolution of dynamic, thermodynamic and structural anomalies. In this manner we

show that the family of tunable spherically-symmetric potentials so generated evolves

continuously between water-like and hard sphere behavior. To our knowledge this is

the first time that essential aspects of the wide range of liquid behavior encompassed

by hard spheres and tetrahedrally-coordinated network-formers can be systematically

traversed by varying a single control parameter.

This chapter is structured as follows. Sections 3.2, 3.3, and 3.4 provide details

on the interaction potential, simulation method, and order parameters, respectively.

Results are presented in Section 3.5. Conclusions and some suggestions for future

work are provided in Section 3.6.

3.2 Tunable Ramp potential

We perform discrete MD simulations to study the equation of state, diffusion co-

efficient and structural order as measured by the ED order map, for a fluid whose

particles interact via a pairwise-additive, spherically-symmetric potential that gives

rise to both thermodynamic and dynamic water-like anomalies. The model was intro-

duced by Jagla [34]; the potential energy U(r) between a pair of particles separated

by a distance r is given by the same equation as Eq. (2.1) in Chapter 2 (see Fig. 3.1),

U(r) = U1(σ1 − r)/σ1 for σ0 < r < σ1, while U(r) = ∞ for r < σ0 and U(r) = 0

for r > σ1. Because of the shape of potential, it is called the ramp potential. The

constant slope of the ramp potential for σ0 < r < σ1 keeps the force between particles

f constant, so the product of separation and force rf will decrease when the separa-

tion r decreases. This satisfies the mathematical meaning of core-softening [40] and

under these conditions the thermodynamic (density) anomaly can be qualitatively

explained by invoking the virial theorem [40].

Of interest is the ratio between the two characteristic length scales, σ0 and σ1,

λ ≡ σ0/σ1, (3.1)



41

σ1

U1

0 r

U0

σ1

U(r)

σ1

λ=0 λ=1

σ0
λ=

(pure ramp) (water-like)

σ0=0

λc

σ0/σ1

(hard sphere)

Figure 3.1: Ramp potential with two tunable length scales. The middle figure shows

the ramp potential with two characteristic length scales. σ0 corresponds to the hard

core, σ1 characterizes the onset of soft repulsion. When λ = 0 (left figure) we have a

pure ramp potential (no hard core). When λ = 1 (right figure) we have a hard sphere

potential. λc ∼ 0.6 is the ratio near which the system exhibits water-like structural,

dynamic and thermodynamic behavior.
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which can vary between 0 and 1. Ref. [21] investigated the one-scale (λ = 0) and

two-scale (λ = 4/7) ramp potentials. Here we investigate the full range 0 ≤ λ < 1,

with

λ = 0, 2/7, 4/7, 5/7, 6/7. (3.2)

3.3 MD simulation

We use discrete MD simulation; details are given in Ref. [39]. We use the NVT

ensemble for a system composed of 850 particles with periodic boundary conditions,

and we control the temperature with the Berendsen thermostat [49]. However, we

note that we use different units than in Ref. [39]: the distance r, number density ρ,

pressure P and temperature T are all normalized with respect to the soft core distance

σ1 and the potential U1 at r = 0 (i.e., densities are reported as ρσ3
1 , and temperature

as kT/U1). We also investigate systems with different number of particles (N = 1728)

and different σ1, U1 values, and confirm that the results do not depend on the number

of particles, the value of σ1 and U1 after normalization. The ratio λ is the only

determinating factor of properties here, so the results from different ratios can be put

in the same normalized frame to be analyzed. The simulation ranges of temperature

and density fully cover the region where density, diffusion and structural anomalies

occur.

The location of freezing lines for soft potentials requires special attention [50].

We verify that the systems we have studied are in the liquid phase by applying the

technique described in Ref. ([39]), in which the ramp potential’s phase diagram is

investigated for λ = 4/7, including both the melting and homogeneous nucleation

lines. In the supercooled state, the system can be equilibrated for a sufficiently long

time, and quantities such as the pressure and the potential energy fluctuate without

drift about average values that can be computed with high accuracy. As soon as

nucleation occurs, the potential energy decreases sharply, and the pressure experi-
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ences periodic jumps because of finite system size and the use of periodic boundary

conditions. When such an event occurs we disregard the data obtained after nucle-

ation. Moreover, it has been shown for the hard-sphere [26, 29] and Lennard-Jones

systems [20], that the structural order parameters jump discontinuously when the

system crystallizes. In our system we observe only continuous changes in the order

parameters, which clearly indicates that the system is in the liquid state.

3.4 Translational and orientational order parame-

ters

3.4.1 Translational order parameter

The translational order parameter [19, 20, 28] is defined same as Eq. (2.2), t ≡
∫ sc

0
|g(s) − 1|ds. We choose sc so that it corresponds to one-half the simulation box

size, and we verify that our system size is always large enough so that g(s) = 1

at half the box size. For a completely uncorrelated system, g(s) ≡ 1, and thus

t = 0. For systems with long-range order, the modulations in g(s) persist over large

distances, causing t to grow. Between these limits, t will change as a consequence of

the dependence of g(r) upon T and ρ.

3.4.2 Orientational order parameter

An orientational order parameter based on spherical harmonic function was intro-

duced by Steinhardt et al. [30] and used in Refs. [20, 26, 29, 44]. In this definition, all

vectors connecting nearest neighbors (i.e., particle pairs whose separation is less than

the first minimum of the radial distribution function) are considered. Each of these

vectors, also called ‘bond’, defines an azimuthal and polar angle, and the correspond-

ing spherical harmonic function is evaluated. The orientational order parameter used

in Refs. [20, 26, 29, 44] involves the average of each spherical harmonic function over
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all bonds.

The orientational order parameter used for water and silica in Refs. [19, 28] in-

volves, first, the evaluation of the local tetrahedral order for each particle with re-

spect to its four nearest neighbors, and then, the average of this quantity over all the

molecules of the system. In the definition of the orientational order parameter used in

Refs. [20, 26, 29, 44] there is no such concept of ‘local order’ for an individual particle.

Moreover, the number of bonds associated to each particle is not fixed, but instead

it changes with temperature and pressure. These two differences led, in Ref. [21],

to the introduction of a slightly modified version of the original orientational order

parameter introduced by Steinhardt et al. in ref. [9]. The resulting order metric

is based on the idea of a ‘local order’ for each particle, analogous to Refs. [19, 28].

The ED maps obtained with the original (global) and modified (local) definitions of

orientational order are qualitatively similar.

In this work we use the same order parameter introduced in Ref. [21]. We define

twelve bonds connecting each particle with its twelve nearest neighbors. Each bond is

characterized by its azimuthal and polar angles (θ, ϕ) and the corresponding spherical

harmonic Yℓm(θ, ϕ) is computed. The orientational order parameter associated with

each particle i is same as Eq. (2.3), Qℓi ≡
[

4π
2ℓ+1

∑m=ℓ
m=−ℓ |Y ℓm|2

]
1
2

. This definition

of order parameter is analogous to that used in water. For water, the solid at low

pressure is hexagonal ice where each molecule has four neighbors. The orientational

order parameter is maximum in the ice configuration and decreases as the system

becomes less ice-like. For the ramp potential, the solid phase at low pressure has a

fcc structure where each particle has twelve nearest neighbors. Q6 has a maximum

value in the fcc lattice (Qfcc
6 = 0.574) and decreases as the system becomes less

correlated (for uncorrelated systems, Q6 = 1/
√

12 = 0.289).
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3.5 Results and Discussion

3.5.1 Structural anomalies and order map

Since the pair correlation function g(r) is used to compute the translational order

parameter t (Eq. (2.2)), we first discuss the effect of density on g(r). Fig. 3.2 shows

the effects of compression on g(r) at low temperature, T = 0.04, for the various values

of λ considered in this study. In all cases, there is no inner peak at r = σ0 for ρ = 1

and 1.21, and only the outer peak at r = σ1 is present at these densities. The inner

peak at r = σ0, which is broad and of modest height at ρ = 1.66, becomes sharper and

more pronounced upon further compression. Interestingly, structural changes brought

about by compression become progressively longer-ranged as λ increases. Thus, for

λ = 0 and 2/7, the major changes in g(r) involve the development of structure at

length scales ≤ σ1 associated with the growth of the inner peak at r = σ0. However,

for λ = 4/7, 5/7 and 6/7, structural changes upon compression occur at distances

larger than σ1. In particular, for λ = 6/7, the effects of compression are clearly

discernible at r = 3σ1.

These effects of density on the pair correlation function underlie the evolution of

t upon compression, shown in Figs. 3.3(a1)-(e1). Consider for example the T = 0.04

isotherm when λ = 2/7. It can be seen that t displays a non-monotonic dependence on

density: it increases upon compression at low densities, 1.0 < ρ < 1.22, decreases over

the intermediate density range 1.22 < ρ < 1.76, and increases again at high densities,

ρ > 1.76. The initial increase at low densities is associated with the growth of g(σ1).

The emergence of structure associated with the inner (hard) core causes t to decrease

at intermediate densities because the initial, modest growth of g at r ∼ σ0 causes |g−1|
to decrease with respect to its low-density value of 1 (see Eq. (2.2)). Upon further

compression, the growth of g(σ0) above 1 eventually contributes additional area to

the integral of |g − 1|, causing t to increase. This qualitative behavior of t is similar

for λ = 0, 2/7 and 4/7, and is more pronounced at low T . For λ = 6/7, close to the
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Figure 3.2: Radial distribution function g(r) at T = 0.04 for different λ ≡ σ0/σ1

values. The arrows indicate the direction of increasing density. The density values

are 1.0, 1.21, 1.66, 2.19 for λ = 2/7, 4/7, 5/7 and 1.0, 1.21, 1.66, 1.86 for λ = 0, 6/7.

The distance r is normalized by σ1, the soft core length. The curves for different λ

are shifted vertically by integer numbers for clarity.
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Figure 3.3: Density-dependence of structural orders for different λ. The upper and

lower panels (a1)–(e1) and (a2)–(e2) show the density-dependence of the translational

order parameter t and orientational order parameter Q6 for λ = 0 (a1, a2), 2/7 (b1,

b2), 4/7 (c1, c2), 5/7 (d1, d2), and 6/7 (e1, e2). The solid lines are polynomial fits to

the data. In each panel, the different curves correspond to isotherms (top to bottom)

T = 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10.

hard sphere limit, the pronounced growth of the inner peak upon compression gives

rise to a monotonic density dependence of t, and structural changes upon compression

occurring at distances larger than σ1 have less effect since g converges to 1 by r/σ1 ∼
3. The case λ = 5/7 is clearly transitional, with non-monotonic behavior at low

temperature changing to hard-sphere-like monotonic growth of t upon compression

at high temperature.

Orientational order, as measured by Q6, shows a pronounced dependence on λ,

illustrated in Figs. 3.3(a2)–(e2). When λ = 0 (no hard core), Q6 increases monoton-

ically with density for all T . When λ = 2/7, Q6 begins to exhibit non-monotonic

behavior upon compression. For this particular value of λ the trend is very mild, and

is best described as a virtual insensitivity of Q6 to compression, except for an initial

increase at low enough densities. For λ = 4/7 and 5/7, orientational order exhibits a
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marked non-monotonic dependence on density, especially at low temperatures. When

coupled with the corresponding behavior of t, this corresponds to a water-like struc-

tural anomaly, whereby both order metrics decrease upon isothermal compression.

When λ = 6/7, which is close to the hard sphere value (λ = 1), orientational order

increases monotonically upon compression. Thus, there exists a narrow interval of λ

within which the ramp fluid shows water-like structural order, whereas in the pure

ramp (λ = 0) and quasi-hard-sphere limits (λ ∼ 1) Q6 behaves conventionally upon

compression. The fact that t displays strongly non-monotonic behavior for λ = 0 and

2/7, while Q6 only shows very mild non-monotonic behavior at λ = 2/7 illustrates

the much weaker coupling of the two order metrics compared to the water-like case

(λ = 4/7).

Cross-plotting the order metrics against each other generates the order map, whose

evolution as a function of λ is depicted in Fig. 3.4. For all values of λ except 6/7,

state points fall on a two-dimensional region, signifying that t and Q6 can be varied

independently. As is the case for silica and water [19, 28], we find, for all values of λ,

an inaccessible region where no liquid state points can be found. In the pure ramp

(λ = 0) case, the pronounced non-monotonic dependence of t on density gives rise to

isotherms with well-characterized t-minima, the locus of which defines the boundary

between the accessible and inaccessible regions of the order map. For λ = 2/7, the

barely discernible non-monotonic dependence of Q6 on density gives rise to loops

along isotherms. The non-monotonic behavior of Q6 is fully developed for λ = 4/7.

This gives rise to an order map with states corresponding to structural anomalies

lying on a narrow stripe of the order map adjacent to the boundary between the

accessible and inaccessible regions. This behavior is strikingly analogous to that of

water. The insensitivity of structural order to temperature, a distinguishing feature of

hard spheres, can be clearly seen in Fig. 3.4(e) by the virtual collapse of all isotherms

in the λ = 6/7 case. The transition from water-like to hard sphere order map occurs in

the narrow interval 4/7 < λ < 6/7. In particular, for λ= 5/7, there is a clear evolution
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from water-like low-T behavior (T < 0.07) to hard-sphere-like high-T behavior (T >

0.07).

3.5.2 Thermodynamic, dynamic, and structural anomalies

We now discuss the regions of the phase diagram where structural, dynamic and

thermodynamic anomalies occur. In water [19], structural, dynamic, and thermody-

namic anomalies occur as nested domes in the (T, ρ) or (T, P ) planes. Structural

anomalies define the outer dome, within which isothermal compression results in a

decrease of both translational and orientational order. Dynamic anomalies define an

intermediate dome, lying entirely within the structural anomalies dome, and within

which isothermal compression leads to an increase in the diffusion coefficient. Ther-

modynamic anomalies define the innermost dome, within which water expands when

cooled isobarically. In silica [28], dynamic anomalies define the outer dome, struc-

tural anomalies the intermediate dome, and thermodynamic anomalies define the

inner dome. Thus, in both cases negative thermal expansion implies also diffusive

and structural anomalies, but in silica diffusive anomalies occur over a broader range

of densities and temperatures than structural anomalies, the opposite being true in

water.

Fig. 3.5 shows the loci of dynamic and thermodynamic anomalies for three values

of λ. The latter line was traced by locating extrema of isochores in the (P, T ) plane.

Similar to water and silica, in ramp fluids thermodynamic anomalies occur over a

narrower temperature and density range than dynamic anomalies. In other words, if

a ramp fluid is at a state point where it expands when cooled isobarically, its diffusion

coefficient necessarily increases upon isothermal compression. It can be seen that

upon increasing λ, the range of temperatures where anomalies occurs shrinks, and

there are no anomalies for λ = 6/7, whereas the upper limit of density (or pressure)

where anomalies can occur increases. The shrinking of the temperature range where

anomalies occur follows from the fact that increasing λ makes the fluid progressively
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Figure 3.5: Loci of thermodynamic and dynamic anomalies for ramp fluids with

different λ values. The region of diffusion anomalies is defined by the loci of diffu-

sion minima and maxima (DM) inside which the diffusivity increases upon isothermal

compression. The thermodynamically anomalous region is defined by locus of tem-

peratures of maximum density (TMD), inside of which the density increases when

the system is heated at constant pressure.
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anomalies in the T -ρ plane. For λ = 0 and 2/7, the domes of dynamic and thermo-

dynamic anomalies are bounded by loci of t maxima (C) and minima (A), between

which isothermal compression cause a decrease in translational order. For λ = 4/7

and 5/7, the domes of dynamic and thermodynamic anomalies are bounded by loci

of Q6 maxima (B) and t minima (A), between which isothermal compression cause

a decrease in both translational and orientational order (structural anomaly). This

cascade of anomalies is characteristic of water.

hard-sphere-like, and there are no anomalies in a hard sphere fluid.

Fig. 3.6 shows the relationship between the loci of dynamic, thermodynamic and

structural anomalies. In water, the low-density and high-density branches of the

dome of structural anomalies correspond to tetrahedrality maxima and translational

order minima, respectively. For the pure ramp case (λ = 0), the orientational order

increases monotonically with density over the range of temperatures explored here.

Accordingly, as seen in Fig. 3.6(a), the dynamic and thermodynamic anomalies domes

are bounded by loci of translational order extrema (maxima: line C; minima: line A).

Between lines C and A, compression leads to a decrease in translational order. For

λ = 4/7 and 5/7, the locus of orientational order maxima (B) provides a low-density

bound to the existence of thermodynamic and dynamic anomalies. Thus, for these

two values of λ, ramp fluids exhibit a water-like cascade of anomalies (structural,
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dynamic, thermodynamic). For λ = 2/7, Q6 maxima are barely discernible and the

two order metrics are only weakly coupled to each other. Accordingly, the locus

of weak orientational order maxima (B) is not a relevant indicator of dynamic or

thermodynamic anomalies.

3.6 Conclusion

In this work we have investigated thermodynamic, dynamic and structural anoma-

lies in ramp potential fluids, as a function of the ratio λ of length scales corresponding

to the inner hard core, and to the outer edge of the ramp. We find that thermody-

namic and dynamic anomalies exist for λ = 0, 2/7, 4/7 and 5/7, but not for = 6/7.

As in water and silica, the loci of anomalies form nested domes in the (T, ρ) plane,

inside which the thermal expansion coefficient is negative (inner dome) and the dif-

fusivity increases upon compression (outer dome). The limit λ = 1 corresponds to

hard spheres, and the absence of anomalies for λ= 6/7 indicates approach to hard

sphere behavior. The order map of this family of ramp fluids is water-like at λ = 4/7

and hard-sphere-like at λ = 6/7. Thus, by varying the ratio of characteristic length

scales, the family of ramp potentials spans the range of liquid behavior from hard

spheres to water-like.

These findings show that orientational interactions are not necessary for the ex-

istence of thermodynamic, dynamic, or structural anomalies. Instead, water-like be-

havior apparently emerges in this spherically-symmetric family of fluids through the

existence of two competing length scales, with their ratio λ being the single control

parameter. Although thermodynamic and dynamic anomalies exist almost over the

entire range of the control parameter, the combination of thermodynamic and dy-

namic anomalies plus a water-like order map occurs over a narrow range of λ. It is

interesting to note that a distinguishing feature of water is the fact that the ratio of

radial distances to the first and second peaks of the oxygen-oxygen pair correlation
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function is not ∼ 1/2, as in simple liquids, but ∼ 0.6. This is close to 0.571 (λ = 4/7,

the ratio of σ0 to σ1 that gives rise to water-like structural, dynamic and thermody-

namic anomalies). In water, isothermal compression pushes molecules from the second

shell towards the first shell, gradually filling the interstitial space [51]. Likewise, in

the ramp potential, isothermal compression pushes molecules from the soft core (σ1)

to the hard core (σ0). Further work is needed to establish whether a ratio of compet-

ing length scales close to 0.6 is generally associated with water-like anomalies in other

core-softened potentials, for example linear combinations of Gaussian [52] potentials.

In this work we used the terminology water-like to denote structural, diffusion, and

density anomalies. The increase in water’s isothermal compressibility upon isobaric

cooling, another of this liquid’s canonical anomalies, is also trivially captured by the

ramp potential, because thermodynamic consistency arguments [53] mandate that

the compressibility increase upon cooling whenever there exists a negatively-sloped

locus of density maxima in the (P, T ) plane.

The ramp potential, when supplemented by explicit [11, 35] or mean-field attrac-

tions [34], gives rise to liquid-liquid immiscibility and a critical point distinct from the

one associated with the vapor-liquid transition. A liquid-liquid transition has been

observed experimentally in phosphorus [6, 54], n-butanol [55] and triphenyl phos-

phite [56], and strong experimental evidence consistent with liquid-liquid immiscibil-

ity also exists for water [3, 57, 58]. Computer simulations of silicon [8], silica [7, 59],

carbon [60] and water [4, 61–66] also indicate the presence of a liquid-liquid transi-

tion. A systematic study of the effects of λ and the ratio of characteristic energies

(U1 and the attractive well depth) on the existence of a liquid-liquid transition, the

positive or negative slope of the line of first-order liquid-liquid transitions in the

(P, T ) plane, and the relationship, if any [38], between the liquid-liquid transition

and density anomalies, would shed important new light on the phenomenon of liquid

polyamorphism [5, 67, 68].

In summary we investigate the equation of state, diffusion coefficient, and struc-
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tural order of a family of spherically-symmetric potentials consisting of a hard core

and a linear repulsive ramp. This generic potential has two characteristic length

scales: the hard and soft core diameters. The family of potentials is generated by

varying their ratio, λ. We find negative thermal expansion (thermodynamic anomaly)

and an increase of the diffusion coefficient upon isothermal compression (dynamic

anomaly) for 0 ≤ λ < 6/7. As in water, the regions where these anomalies occur

are nested domes in the (T, ρ) or (T, P ) planes, with the thermodynamic anomaly

dome contained entirely within the dynamic anomaly dome. We calculate transla-

tional and orientational order parameters (t and Q6), and project equilibrium state

points onto the (t, Q6) plane, or order map. The order map evolves from water-like

behavior to hard-sphere-like behavior upon varying λ between 4/7 and 6/7. Thus,

we traverse the range of liquid behavior encompassed by hard spheres (λ = 1) and

water-like (λ ∼ 4/7) with a family of tunable spherically-symmetric potentials by

simply varying the ratio of hard to soft-core diameters. Although dynamic and ther-

modynamic anomalies occur almost across the entire range 0 ≤ λ ≤ 1, water-like

structural anomalies (i.e., decrease in both t and Q6 upon compression and strictly

correlated t and Q6 in the anomalous region) occur only around λ = 4/7. Water-

like anomalies in structure, dynamics and thermodynamics arise solely due to the

existence of two length scales, with their ratio λ being the single control parameter,

orientation-dependent interactions being absent by design.

It is generally accepted that strong orientation-dependent interactions underlie

many of the distinctive properties of associating, network-forming liquids such as

water. Atomic liquids, on the other hand, exhibit simpler behavior, and in particular

do not show structural, thermodynamic, or dynamic anomalies of the type discussed

here. In this work we have shown that key properties of these apparently distinct

categories of liquids can be bridged systematically by varying the ratio of two length

scales in a family of spherically-symmetric potentials in which orientation-dependent

interactions are absent by design. What other spherically-symmetric potentials, in
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addition to those possessing competing length scales, may give rise to water-like

anomalies, is among the interesting questions arising from this study that we will

pursue in future work.



Chapter 4

Structure of the First and Second

Neighbor Shells of Water

4.1 Introduction

It is known both from experiments [22, 69–72] and simulations [73–76] that the

first shell of a central water molecule, usually defined by the first minimum of the

oxygen-oxygen pair correlation function g(r), can accomodate between four and five

water molecules, depending on pressure [77]. The signature of this first shell, defined

by the first maximum of g(r), barely changes with pressure. In contrast, the properties

of the second shell, which extends between the first and second minima of g(r), are

highly dependent on pressure, indicating that large structural changes occur in this

shell upon compression [22, 70].

The structural order of water has been quantified by two measures [19]: a local

orientational order parameter q, which quantifies the extent to which a molecule and

its four nearest neighbors adopt a tetrahedral local structure in the first shell, and a

translational order parameter t, which quantifies the tendency of molecular pairs to

adopt preferential separations. While q depends only on the four nearest neighbors

of a central molecule in its first shell, t depends on all the neighbors of the central
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molecule.

Water in the liquid phase displays: (i) a thermodynamic anomaly (density decrease

upon cooling or, equivalently, entropy increase with pressure); (ii) a dynamic anomaly

(increase of diffusivity upon compression); (iii) a structural anomaly (decrease of both

q and t upon compression) [19]. Several other liquids with local tetrahedral order [5]

such as silica, silicon, carbon and phosphorous also show waterlike anomalies. In the

case of water [19] and silica [28], computer simulation studies show that the anomalies

(i)-(iii) in the liquid phase are closely related. For example, in the case of water, the

region of thermodynamic anomaly in the temperature-density (T -ρ) plane is enclosed

by the region of dynamic anomaly, which in turn is enclosed by the region of structural

anomaly [19].

Recent studies show that simple liquids interacting via spherically-symmetric po-

tentials can exhibit waterlike anomalies [21, 34, 35, 39, 78], suggesting that strong ori-

entational interactions in the first shell are not necessary for a liquid to show ther-

modynamic, dynamic and structural anomalies and pointing out the importance of

the second shell of water [78]. In light of these findings, it remains unclear how much

the strongly orientation-dependent first-shell interactions and the second-shell envi-

ronment each contribute to water’s anomalies. To address these questions, we first

modify the definition of first and second shells for the purpose of quantitative study.

Then we define the orientational and translational order parameters within each shell

and study their changes with T and ρ.

4.2 Definition of the First and Second Shells of

Water

We perform constant volume isothermal (NVT) molecular dynamics simulation

of 512 TIP5P (five-site transferable interaction potential) water molecules. Our sim-

ulations are performed using a cubic box with periodic boundary conditions. We
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Figure 4.1: Anomalous regions in the T -ρ plane of TIP5P water. (i) The density

anomaly region is defined by the locus of density maxima (TMD), inside of which

the density increases when the system is heated at constant pressure. (ii) The dif-

fusion anomaly region is defined by the loci of diffusion maxima or minima (DM),

inside which the diffusivity increases with density. (iii) The structural anomaly re-

gion is defined by the loci of translational order minima (tmin) and maxima (tmax), or

orientational order maxima (qmax), inside which both translational and orientational

orders decrease with density (see Fig. 4.3).

control the temperature using a Berendsen thermostat. The TIP5P model repro-

duces the thermodynamic properties of liquid water over a broad region of the phase

diagram [79] although it does not reproduce well the phase diagram of solid wa-

ter [80]. However our study concentrates on the liquid or supercooled phase of water

at low T without crystallization. In particular, we find that the TIP5P model reveals

similar relations between the thermodynamic, dynamic and structural anomalies (see

Fig. 4.1) as observed in ref. [19] using the SPC/E model.

The first and second shells of water can be defined according to the first and

second minima of g(r). For this definition, the number of molecules in each shell will



60

change with pressure and temperature [51, 74, 77, 81]. But the orientational measures

that most concern us are the tetrahedral arrangement of nearest neighbors, and bond

orientational order in next-nearest neighbors of a central molecule. To see how these

orders evolve across a broad range of state points, we must base our comparison on

a fixed number of nearest and next-nearest neighbors. Moreover, the minima in g(r)

become not obvious at high ρ, and g(r) becomes almost featureless beyond the first

peak at high ρ (see Fig. 4.2(b)). Hence we choose a less ambiguous shell definition

by denoting the nearest four and next-nearest twelve neighbors of a central water

molecule as the first and second shells respectively.

We first study the average effect of density on different shells by dividing g(r) into

three regions. We compute the average number of neighbors of a central molecule at

a distance r as

N(r) ≡ 4πn

∫ r

0

r′2g(r′)dr′, (4.1)

where n is the number density. We define r1 and r2 such that N(r1) = 4 and N(r2) =

16. Therefore, we can define three regions: 0 < r ≤ r1 (first shell), r1 < r ≤ r2

(second shell), and r > r2, where r1 and r2 depend on T and ρ. We find that in

general r1 and r2 decrease with increasing ρ for different T due to the compression

effect. Fig. 4.2(a) shows N(r) at T = 280 K and ρ = 1.00 g/cm3 (n = 33.4/nm3),

where r1 = 0.32 nm and r2 = 0.48 nm.

4.3 Structural Order of Different Shells of Water:

Importance of the Second Shell

Fig. 4.2(b) shows g(r) of TIP5P water at T = 280 K and a range of density

covering the anomalous regions of water of Fig. 4.1. Fig. 4.2(c) shows the change

upon compression,

∆g(r) ≡ g(r)|ρ − g(r)|ρ0, (4.2)
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Figure 4.2: The number of neighbors N(r) and Oxygen-oxygen pair correlation

g(r) of TIP5P water. (a) The number of neighbors N(r) around a central water

molecule. r1 and r2 correspond to the first and the second shell distances, defined

such that N(r1) = 4 and N(r2) = 16. (b) Oxygen-oxygen pair correlation function

g(r). (c) Difference ∆g(r) between g(r) at a given density and g(r) at ρ0, and (d)

Difference ∆N(r) between N(r) at a given density and N(r) at ρ0 for TIP5P water.

ψ characterizes the local slope. The bold portions of the curves correspond to water’s

second shell, r1 < r ≤ r2, showing that the largest changes upon compression occur

in the second shell.
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where ρ0 = 0.88 g/cm3. Fig. 4.2(d) shows the corresponding change,

∆N(r) ≡ N(r)|ρ −N(r)|ρ0. (4.3)

Fig. 4.2(b) shows that as ρ increases, the first peak of g(r) decreases, so ∆g(r) < 0

at r = 0.28 nm in Fig. 4.2(c). This effect of ρ on g(r) is a result of having a fixed

number of neighbors at r ≈ 0.28 nm, normalized by n in the definition of g(r).

The change of the number of neighbors corresponding to the first peak of g(r) is

barely distinguishable (see Fig. 4.2(d)), i.e. ∆N(r) ≈ 0 − 0.2 for r ≈ 0.28 nm. This

implies that the distance defined by the first peak of g(r) is practically impenetrable

and thus, it roughly resembles a hard core. The main changes in g(r) (Fig. 4.2(b))

and ∆g(r) (Fig. 4.2(c)) occur in the second shell. As the density increases, hydrogen

bond bending allows water molecules in the second shell to shift toward the first shell,

filling the interstitial space [22, 70]. The changes of g(r) with pressure for r > r2 are

minimal.

Fig. 4.2(d) shows in double logarithmic scale the relationship between ∆N(r) and

r. The slope of the curve, ψ, characterizes the power law dependence

∆N(r) ∝ rψ. (4.4)

There are three main regimes in the behavior of ∆N(r) as shown by the different

slopes ψ > 3, ψ < 3 and ψ = 3. The ψ = 3 regime at r > r2 is mainly due

to the density change, since g(r) ≈ 1 (∆g(r) ≈ 0) for r > r2, so ∆N(r) behaves

approximately as

∆N(r) ∝ ∆ρ r3, ∆ρ ≡ ρ− ρ0. (4.5)

Both the ψ > 3 and ψ < 3 regimes are located within the second shell. The increase

of ∆N(r) for r < r2 is not only due to density increase, but also due to the shift of

water molecules from the second shell around 0.45 nm toward the first shell around

0.28 nm. Thus, the regime where ψ > 3, for roughly r < 0.4 nm, is due to an in-

crease of g(r) (∆g(r) > 0), and ψ < 3 for roughly 0.4 nm < r < r2 is due to the
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decrease of g(r) (∆g(r) < 0). Note that ∆N(r) = 1 for r ∼ 0.33 nm, corresponding

to the fifth neighbor [77, 81], which is very close to the border of the first shell, where

∆g(r) has its maximum value. This fifth neighbor in the vicinity of the first shell of

water can produce a defect in the tetrahedral network of water at high density. This

defect leads to hydrogen bond bifurcation and offers paths with low energy barriers

between different network configurations of water. The defect is also related to diffu-

sion anomaly by lowering energy barriers for translational and rotational motions of

water molecules [77, 81].

The translational order parameter t in Eq. (2.2) is introduced by Truskett et

al. [29] and defined in refs. [19, 21, 28, 29, 82]

t ≡
∫ sc

0

|g(s) − 1|ds, (4.6)

where the dimensionless variable s ≡ rn1/3 is the radial distance r scaled by the mean

intermolecular distance n−1/3, and sc usually corresponds to half of the simulation

box size, which is large enough to have g(sc) ≈ 1. It equals to the area bounded

by the PCF g(s) and the line g(s) = 1. We can decompose the translational order

parameter t into t1, t2, and t3 for each shell of water by integrating

|g(s) − 1| (4.7)

over the three different regions

0 < s ≤ s1, s1 < s ≤ s2, s > s2, (4.8)

where

s1 = r1n
1/3, s2 = r2n

1/3. (4.9)

We note that

t = t1 + t2 + t3. (4.10)

The orientational order qi is used to quantify the tetrahedrality of the first shell,

defined as [19]

qi ≡ 1 − 3

8

3
∑

j=1

4
∑

k=j+1

[

cos θjik +
1

3

]2

, (4.11)
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where θjik is the angle formed between neighbors j and k and the central molecule i.

The average value

q ≡ 1

N

N
∑

i=1

qi (4.12)

quantifies the orientational order of the system based on the molecules in the first

shell. For perfect tetrahedral order, q = 1; for an uncorrelated system, q = 0.

Because the second shell of the hexagonal ice crystal forms an hcp lattice, the

orientational order parameter for the second shell of water can be characterized by

Q6i, which quantifies the extent to which a molecule i and twelve of its neighbors adopt

the local fcc, bcc, or hcp structures. This orientational order parameter [30] is often

used for simple liquids [21, 26, 29, 82] because they have fcc or bcc crystal structures.

In order to compute Q6i, we first define twelve bonds connecting each water molecule

i with its twelve next-nearest neighbors in the second shell, and compute for each

bond its azimuthal and polar angles (θ, ϕ). Next we compute Y ℓm(θ, ϕ), the average

of the spherical harmonic function over the 12 bonds of the molecule i. Finally we

compute

Qℓi ≡
[

4π

2ℓ+ 1

m=ℓ
∑

m=−ℓ

|Y ℓm|2
]

1
2

. (4.13)

For ℓ = 6, the average value Q6 ≡ 1
N

∑N
i=1Q6i quantifies the orientational order of the

system based on the molecules in the second shell. Q6 is large [30] for most crystals

such as fcc (0.574), bcc (0.511), hcp (0.485). For uncorrelated systems,

Q6 = 1/
√

12 = 0.289. (4.14)

Fig. 4.3 shows the density dependence of all six order parameters at three tem-

peratures covering the anomalous region of TIP5P water (see Fig. 4.1). Although t1

is much larger than t2 and t3, it is apparent that t2 makes the most important con-

tribution to the anomaly of t (decrease of t with increasing density), compared to t1

and t3. t1 also makes a small contribution to the t anomaly at low T = 240 K due to

a small decrease in the first peak of g(r) upon compression. The anomalous behavior
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Figure 4.3: Structural order parameters for different shells of water. Translational

order parameters t (total), t1 (first shell), t2 (second shell), t3 and orientational order

parameters q (first shell), Q6 (second shell) of TIP5P water as function of density

at different T . The anomalous decrease of orientational order upon compression

occurs in both shells (q, Q6), but the anomalous decrease of translational order upon

compression mainly occurs in the second shell (t2).
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of t becomes weak at T = 280 K and disappears at T = 320 K. The orientational

order parameters q and Q6 both show similar anomalous behavior. The distribution

of individual qi shifts from high q (ice-like) at low ρ and T to low q (less tetrahedral)

at high ρ and T as shown in Fig. 4.4(a) and (d), due to increased hydrogen bond

bifurcation [77] as interstitial molecules move closely to the first shell (Fig. 4.4(c)

and (f)). Q6i always has approximately normal distribution as shown in Fig. 4.4(b)

and (e) because there is no direct bonding between a central water molecule and its

second shell neighbors.

4.4 Order maps of Different Shells of Water: Im-

portance of the Second Shell

A useful way of investigating structural order in fluids is to map state points

onto the t-q plane, a representation called the order map [19, 21, 26]. The order map

for TIP5P water (i.e., using t and q) is shown in Fig. 4.5(a). This order map is

similar to the one found in ref. [19] using the SPC/E model. Its main characteristic

is the correlation of the two order parameters in the anomalous regions where both

q and t decrease with density, as shown by the isotherms collapsing onto a line.

Recently an entropy-based measure of structural order in water [83] has revealed that

the correlated order map is invariant to the choice of different measures, suggesting

that such correlation is a general feature of waterlike liquids. Fig. 4.5(b)-(h) shows

the different order maps obtained by considering the order parameters in different

shells. The only one that shows the states in the thermodynamically, dynamically

and structurally anomalous regions collapsing onto a line, is the panel (f) (i.e. the

t2-Q6 order map of the second shell), indicating that the changes in the second shell

are related to anomalies of water.

The first shell order map t1-q in (c) is not correlated because t1 has only small

changes with increasing density due to the impenetrable hard core at 0.28 nm, while
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Figure 4.4: Histograms of local orientational order and the fifth neighbor distance

for water. Histograms of (a) the local orientational order qi in the first shell, (b) Q6i

in the second shell, and (c) distance r5i between a central water molecule i and its

fifth neighbor of TIP5P water. (a), (b), and (c) show the changes for three different

ρ at fixed T = 280K. (d), (e), and (f) show the changes for three different T at

fixed ρ = 1.00 g/cm3. Upon compression or heating over the anomalous regions

of the phase diagram, the fifth neighbor (and other interstitial water molecules in

the second neighbor shell) shift towards first shell (see also Fig. 4.2 and ref. [76]),

corresponding to anomalous changes of structural order in the first and second shells,

as quantified by Fig. 4.3 and Fig. 4.5.
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q changes significantly with density. In the second shell, t2 and Q6 both change

significantly and simultaneously with density so that they are well correlated. Our

work quantitatively shows that the second shell is related to anomalies of water by

its gradual shift towards first shell upon compression. In addition to water, other

tetrahedral liquids such as silica, silicon, carbon and phosphorous [5] may also exhibit

similar behavior, and a detailed, shell-based study of their order parameters may prove

useful.

In summary we perform molecular dynamics simulation of water using the TIP5P

model to quantify structural order in both the first shell (defined by four nearest

neighbors) and second shell (defined by twelve next-nearest neighbors) of a central

water molecule. We find that the anomalous decrease of orientational order upon

compression occurs in both shells, but the anomalous decrease of translational order

upon compression occurs mainly in the second shell. The decreases of translational

and orientational orders upon compression (“structural anomaly”) are thus correlated

only in the second shell. Our findings quantitatively confirm the qualitative idea that

the thermodynamic, structural and hence dynamic anomalies of water are related to

changes in the second shell upon compression.



Chapter 5

Correspondence Between Water

and Ramp Potential

5.1 Introduction

Liquid water is peculiar as reflected by its thermodynamic and dynamic anoma-

lies [2, 19], such as the density decrease upon isobaric cooling (density anomaly) and

the increase of diffusivity upon isothermal compression (diffusion anomaly). It has

been proposed that these anomalies may arise from a liquid-liquid critical point

(LLCP) in the deeply supercooled state of water [4]. Several other liquids (e.g.,

silica, silicon, carbon, and phosphorous) with local tetrahedral order [5, 28, 82] also

may show water-like anomalies. These anomalies of water and the LLCP can be

reproduced by simple liquids interacting via core-softened spherically symmetric po-

tentials which lack the strong orientational interaction expected in tetrahedral liquids

[11, 21, 32–34, 39, 42, 78, 84–88].

Water also possesses structural anomalies which occur when metrics describing

both translational and orientational order decrease upon compression, as found in

both the SPC/E and TIP5P (five point transferable intermolecular potential) water

models [19, 89]. Water’s structural anomaly is also reproduced by a family of core-
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softened spherically symmetric potentials possessing two characteristic length scales

σ0 and σ1 (see the ramp potential in Fig. 5.1(a)) [21, 86]. In order to exhibit a

water-like structural anomaly, the ratio λ ≡ σ0/σ1 must lie within a small interval

around 0.62, the ratio of the distances to water’s first and second neighbor shells,

0.28 nm/0.45 nm[21].

A quantitative connection between the ramp potential and water’s pair potential

has not been established, as well as the relation between the regions of anomalies

in their respective phase diagrams. In this work, we show that the effective pair

potential derived from the TIP5P water model [79] can be approximated by a two-

scale spherically symmetric repulsive ramp potential, allowing us to assign physical

units to the temperature and pressure of the ramp model. We perform molecular

dynamics simulations using both the TIP5P and ramp potentials and compare the

regions of anomalies in the corresponding phase diagrams. We find that the regions

of anomalies in both phase diagrams are quantitatively similar if (i) pressure P and

temperature T are measured in terms of (T − TC) and (P − PC) respectively, where

(TC , PC) are the coordinates of the LLCP of the corresponding system; and (ii) a ramp

particle corresponds to two TIP5P molecules. We present quantitative arguments

supporting point (ii) and provide a simple picture to explain the similarities observed

in the TIP5P and ramp potentials. A ramp liquid particle corresponds effectively

to two water molecules, one molecule plus 1/4 of each of its four neighbors. The

water-like anomalies in the ramp potential are due to the ability of the particles to

reproduce, upon compression or heating, the migration of water molecules from the

second shell to its first shell.

5.2 Effective Potential of Water

The TIP5P model is a well-known water model and its parameters are defined

in physical units, so values of P and T from simulations can be compared directly
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Figure 5.1: Effective potential of water approximated by a ramp potential. (a) The

two-scale spherically symmetric repulsive ramp potential: σ0 corresponds to the hard

core distance, σ1 characterizes a softer repulsion range that can be overcome at high

P and T . The central ramp particle (black) and its twelve nearest neighbors form a

hcp crystal structure in a range of densities corresponding to the density anomaly. (b)

The pair correlation function, g(r), and (c) spherically symmetric effective potential,

Ueff(r), from the simulations using the TIP5P model at T = 280K and ρ = 1.00 g/cm3

(solid line). For hexagonal ice, the twelve neighbors in the second shell of the center

water molecule (black) also has a hcp structure while the four nearest neighbors in

the first shell are located in the corner of a tetrahedron. Ueff(r) can be approximated

by a ramp potential (dashed lines). By calculating the area of g(r) for r ≤ σ0 we find

that the hard core of the ramp particle roughly incorporates two water molecules (see

also Fig. 5.2).
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with experiments [79]. Instead, thermodynamic properties in the ramp potential are

given in terms of potential parameters, such as {σ0, U0}, and the particle mass, m.

To compare the phase diagrams of the ramp potential to that of the TIP5P model,

we will define σ0 and U0 in units of ‘nm’ and ‘kcal/mol’, respectively, and m in units

of ‘g/mol’. We do this by calculating Ueff(r), the effective spherically symmetric pair

potential between water molecules from the TIP5P model simulations.

The interaction between water molecules usually include the Van der Waals’ force

and Coulomb interactions. There is no direct way to get the corresponding physical

parameters of water for σ0, σ1, U0 and U1 in the ramp potential. But we can com-

pute the potential of mean force or the effective potential between the TIP5P water

molecules by applying the technique in ref. [90]. To get effective potential, first we

compute the oxygen-oxygen (O-O) pair correlation function (PCF), g(r), from MD

simulation of water. Then we get the total correlation function

h(r) = g(r) − 1 (5.1)

and apply the Fourier transform of isotropic liquids to get h(k). Next we solve for

the direct correlation function, c(r), by invoking the the Fourier transform

h(k) = c(k) + µc(k)h(k) (5.2)

of Ornstein-Zernike (OZ) equation, which have the form

h(r) = c(r) + µ

∫

d3r′c(r′)h(|~r − ~r′|). (5.3)

Here µ is the number density of water molecules. Finally we use hypernetted chain

(HNC) approximation [91] to get generic effective pair potential of TIP5P water

UE(r) = KbT{g(r)− 1 − ln[g(r)] − c(r)}. (5.4)

Ueff(r) is obtained from the oxygen-oxygen pair correlation function g(r), by solving

the Ornstein-Zernike equation and using the hypernetted chain approximation [90].
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The resulting Ueff(r) depends on T and density ρ [92], but has no significant change

for different state points in the anomalous region. For the TIP5P model, the range of

anomalies is approximately 220 K< T < 320 K and 0.90 g/cm3 < ρ < 1.16 g/cm3 [89].

We select a state point located in the middle of the anomalous regions, at T = 280 K

and ρ = 1.00 g/cm3, and calculate g(r) and Ueff(r) [see Fig. 5.1(b) and Fig. 5.1(c)].

We find that Ueff(r) is similar to the effective pair potential obtained from the ex-

perimental g(r) [90], and shows a hard-core-like steep repulsion at r ≈ 0.26 nm and

an approximately linear repulsive region covering the distance spanned by the second

shell of a central water molecule, approximately 0.32 nm < r < 0.45 nm. The shallow

minimum at r = 0.28 nm is caused by hydrogen-bonding attraction and corresponds

to the first peak of g(r), while the minimum at r = 0.45 nm with

UE1 ≡ Ueff(0.45 nm) = −0.45 kcal/mol (5.5)

corresponds to the second peak of g(r). Ueff(r) also shows a maximum at r ≈ 0.32 nm

with

UE0 ≡ Ueff(0.32 nm) = 0.66 kcal/mol (5.6)

that corresponds to the first minimum of g(r).

Fig. 5.1(c) also shows that a ramp potential is a good approximation to Ueff(r).

In the figure we set σ1 = 0.45 nm and define the ramp part of the potential such that

it intersects the plot of Ueff(r) at

(UE0 + UE1)/2. (5.7)

The intersection of the ramp part of the potential with the hard core of Ueff(r) is

used to define U0 and σ0. This results in σ0 = 0.267 nm, which is located between

0.28 nm, the first peak position of g(r) and 0.26 nm, roughly the infinite repulsion

part of Ueff(r). Therefore,

λ ≡ σ0/σ1 = 0.593 (5.8)

and

U0 = Ueff(σ0) − Ueff(σ1) = 1.31 kcal/mol. (5.9)
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Figure 5.2: A sketch of a water molecule and 1/4 of each of its four nearest neighbors

in a tetrahedral arrangement. Only oxygen atoms are shown for clarity. Mass of this

unit corresponds effectively to the mass of a spherically symmetric ramp particle.

The hexagonal ice (the low pressure crystal of water) can be obtained by combining

these units in an hcp lattice (the low pressure crystal of the ramp potential model).

We notice this figure is in the spirit of Walrafen pentamer [93] with the difference

that the former consists of only two water molecules.

U0 is approximately the energy barrier that water molecules need to overcome to

migrate from the second shell to the first shell positions in terms of the effective

potential. It is also roughly the energy that ramp particles need to overcome to reach

the hard core distance.

5.3 Effective Physical Units of Ramp Potential

To define m in physical units, we argue that spherically symmetric ramp particle

has an effective mass corresponding to the mass of two water molecules. This is

based on the crystalline phases of water (hexagonal ice) and ramp potential (hcp)

[see Fig. 5.1]. The hexagonal ice can be formed by combining units such as that

shown in Fig. 5.2. To form the hexagonal ice, such units must form an hcp network.
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Therefore, if the crystalline structure of the ramp potential model is identified with

that of hexagonal ice, a ramp particle must be identified, on average, to the unit

shown in Fig. 5.2. The mass of a water molecule is mw = 18 g/mol, thus, the mass

of a ramp particle is

m ≈ (1 + 4 × 1/4) mw = 36 g/mol. (5.10)

Alternatively, the present argument implies that the number density of the ramp

potential model corresponds to twice the number density of water, and this will be

relevant when comparing the pressures of the ramp and TIP5P models [94]. To test

the idea that a ramp particle corresponds approximately to two water molecules, we

calculate the average number of neighbors, N0, that a water molecule has within a

distance of r < σ0 = 0.267 nm. Using the g(r) from Fig. 5.1 we get

N0 ≡ 4πn

∫ σ0

0

r′2g(r′)dr′ ≈ 1, (5.11)

(here, n is the number density), in agreement with our view. The correspondence

between one ramp particle and two water molecules is also supported by computer

simulations of the ramp potential with λ = 0.581 and an attractive part [11, 85].

Such a ramp potential model has both liquid-gas (LG) and liquid-liquid (LL) critical

points. Application of the values for σ0, U0, and m that we use here to the data

from [11, 85] results in

ρLG ≈ 0.314 g/cm3 (5.12)

and

ρLL ≈ 1.188 g/cm3. (5.13)

These values approximately coincide with the experimental critical density of wa-

ter [95]

ρLG ≈ 0.322 g/cm3 (5.14)

and the LL critical density of TIP5P water [96, 97]

ρLL ≈ 1.13 g/cm3. (5.15)
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5.4 Quantitative Connection Between Water and

Waterlike Simple Liquid

To compare the regions of anomalies in the phase diagrams of the TIP5P and

ramp potentials, we first obtain the LLCP coordinates, (PC , TC , ρC). The LLCP in

the TIP5P model is accessible in MD simulations and is located at [64, 98]

TC = 217 K, PC = 340 MPa, ρC = 1.13 ± 0.04 g/cm3. (5.16)

Instead, for the ramp potential of Fig. 5.1(a), the LLCP is located at temperatures

below those accessible in simulations [39]. In this case, the LLCP can be located by

extrapolating the isochores in the P −T phase diagram to low-T (the isochores cross

each other at the LLCP). This procedure indicates that the LLCP is located at

TC = 16.5 K, PC = 967 MPa, ρC = 1.19 g/cm3. (5.17)

Fig. 5.3 shows the phase diagrams of the TIP5P and ramp potential models, ob-

tained by MD simulations (for details see [21, 39, 89]). To emphasize the quantitative

similarities of these diagrams we place the origins of P and T axes at the LLCP of

the corresponding models. In both models, the density anomaly region is within the

diffusion anomaly region, which is enclosed by the structure anomaly region. A com-

parison of panels (a) and (b), or (c) and (d), shows quantitative similarities in the

regions of anomalies of both models. For example, the density anomaly region covers

approximately the ranges for both models,

−500 < P − PC < 0 MPa, T − TC < 60 K, 0.9 < ρ < 1.15 g/cm3. (5.18)

Similarly, the diffusion anomaly region covers approximately the ranges for both

models,

−500 < P − PC < 0 MPa, T − TC < 90 K, 0.9 < ρ < 1.2 g/cm3. (5.19)
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Figure 5.3: Three anomalous regions of TIP5P water. (a) Three anomalous regions

of TIP5P water in modified P -T phase diagram. The dashed lines are the isochores

with density ρ=1.20, 1.16, 1.12, 1.08, 1.04, 1.00, 0.96, 0.92, 0.88 g/cm3 from top to

bottom. Density anomaly region (dark shade) is defined by TMD (temperature of

maxima density, filled square) lines. Diffusion anomaly region (medium shade) is de-

fined by the loci of DM (diffusion maxima-minima, filled circle). Structural anomaly

region (light shade) is defined by the loci of translational order minima (tmin, filled

down triangle) and maxima (tmax, filled up triangle), or orientational order maxima

qmax (filled diamond, Q6max for ramp liquid). Here t quantifies the tendency of molec-

ular pairs to adopt preferential separations, and q quantify the local tetrahedrality

of water (Q6 quantify the local orientational order of twelve nearest neighbors in the

first shell of a ramp particle). (b) Anomalous regions for the ramp liquid, here the

values of P and ρ are doubled in order to compare with the corresponding values of

water [see text]. The dashed lines are the isochores with density ρ=1.33, 1.28, 1.23,

1.18, 1.14, 1.09, 1.05, 1.02, 0.98, 0.94, 0.91, 0.88, 0.85, 0.82, 0.79, 0.77, 0.74 g/cm3

from top to bottom. (c) and (d) are the anomalous regions in the T -ρ phase diagrams.

‘C’ is the location of the LLCP.
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Figure 5.4: Probability distribution of the distance r1 of a central ramp particle and

its nearest neighbor at (a) constant T and (b) constant ρ. (c)-(d) Probability distri-

bution of orientational order parameter for a ramp potential particle corresponding to

panels (a) and (b), respectively. Upon heating or compression, ramp particles move

from the soft-core distance toward the hard-core distance and the orientation order

parameter decreases. Similar structural changes occur in water [89]. (e) Increase in

the number of neighbors, ∆N(r) ≡ N(r)|ρ1 − N(r)|ρ0 , where ρ1 = 0.88 g/cm3 and

ρ0 = 1.08 g/cm3, for the TIP5P and ramp potentials. We doubled the values of N(r)

and ∆N(r) obtained from the simulations using the ramp potential model (see text).



80

The structural anomaly regions show some differences, extending to higher-T for

the ramp potential model than for the TIP5P model.

Tc of water (217 K) is much higher than Tc of ramp liquid (16.5K) because of

the strong attractions in the water, and it can be explained by invoking the van der

Waals equation. For ramp liquid, we write the pressure, P = P (T, ρ), as a function

of T and ρ. The pressure exerted by the molecule on the walls of the container is

related to the number and frequency of the collisions with the wall. These are both

reduced by attractive forces between the molecules and included in the −aρ2 term,

P = P (T, ρ) − aρ2. (5.20)

The molecular attractions in water decrease P and isochore with higher ρ (solid lines)

will decrease much more than isochore with low ρ (dashed lines). The result is that the

critical point (crossover of isochores) moves to higher T , and becomes more accessible.

The anomalous regions also shift to higher T . This is also why ramp potential with

long range attraction [11] show clear critical point at higher renormalized Tc = 71 K

(using data from ref. [11]) compared to ramp without attraction [21, 39].

A possible reason for the quantitative similarities in the regions of anomalies of

water and ramp potential model is that this model is able to reproduce quantitatively

the observed migration of water molecules from the second shell toward the first shell

upon compression or heating [76, 77, 89]. We discuss first the probability distribution,

P (r1), of the distance between a ramp particle and its nearest-neighbor. Fig. 5.4(a)

shows the evolution of P (r1) upon isothermal compression. As density increases, the

maxima of P (r1) shifts from r = 0.42 nm ≈ σ1, at low density, to r = 0.267 nm = σ0,

at high density. Fig. 5.4(b) shows that a similar but less pronounced changes in P (r1)

occur upon isobaric heating. Thus, upon compression or heating, particles move from

the soft-core distance (corresponding to water’s second shell) toward the hard-core

distance (corresponding to water’s first shell) of the ramp potential. The probability

distribution, P (Q6), of the orientational order parameter, Q6 [21], of the ramp poten-

tial particles is shown in Figs. 5.4(c) (upon isothermal compression) and 5.4(d) (upon
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isobaric heating). Upon compression or heating, the maximum P (Q6) shifts to small

values of Q6, i.e. orientational order decreases. Similar structural changes occur in

water [76, 77, 89]. In particular, Figs. 5.4(a), (b) and Figs. 5.4(c), (d) can be compared

with the corresponding Figs. 4(c), (f) and Figs. 4(b), (e) of ref. [89] obtained for the

TIP5P model. For a quantitative comparison of the structural changes in the ramp

and TIP5P models, we calculate the number of neighbors, N(r), as a function of the

distance r from a central water molecule/ramp particle in both models. The increase

of N(r) with density, ∆N(r) in Fig.4(e), show similar change for both models. Thus,

the ramp potential reproduces quantitatively the migration of water molecules from

the second shell toward the first shell upon compression or heating.

In summary, our study makes a microscopic quantitative connection between a

ramp potential and TIP5P water model and shows that orientational interactions,

such as hydrogen bonding, are not necessary to reproduce water-like anomalous prop-

erties. In general, the ramp potential provides an understanding of the anomalous

features of tetrahedral liquids. These features are caused by a large empty space

around the tetrahedrally coordinated molecules, which is reduced as temperature and

pressure increase. In the ramp liquid, this empty space is created by the repulsive

soft core.



Chapter 6

Relation of Water Anomalies to

the Excess Entropy

6.1 Water’s Anomalies are Connected to the Struc-

ture of Water

The anomalies of water are related to its local tetrahedral structure. It is hypoth-

esized that at very low temperatures T , water undergoes a phase transition between

low density liquid (LDL) with large empty space around the tetrahedrally coordinated

molecules and the high density liquid (HDL) in which additional molecules enter the

first coordination shell and weaken its tetrahedrality [4, 22]. When the local structure

is characterized by translational and orientational order parameters, the regions of

anomalous behavior of these parameters, and also density ρ and diffusivity D are

enclosed in each other on the T −ρ phase diagram, thus forming a cascade of anoma-

lies [19]. This fact indicates that various anomalies are not independent but stem

from the same origin, namely the critical point which terminates the hypothesized

LDL/HDL phase transition coexistence line [4]. The continuation of this coexistence

line into the one-phase region forms the Widom line [11]. Response functions, such
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as isothermal compressibility KT and isobaric heat capacity CP have maxima near

the Widom line [99]. The Widom line is also related to the dynamic crossover of

water [11, 100].

The models interacting with a repulsive spherically symmetric potential [21, 32,

34, 38, 84, 87, 88, 101] display waterlike anomalies despite lack of highly directional

hydrogen-bonds, because the hard core of these potentials mimicks the rigid first

shell of water, while the repulsive soft core mimicks the energy barrier that water

molecules need to overcome to migrate from the second shell toward the first shell [21].

The repulsive soft core creates empty space in the structure which can be reduced

by compression or heating, and this mimics [21] the LDL/HDL structural transition

in water although there is no orientational interaction and tetrahedral structure in

these models. These two-scale repulsive potentials also exhibit waterlike structural

anomalies [21]. As a measure of structure, Ref.[88] used excess entropy,

Sex ≡ S − Sig ≡ S + kB ln ρ− c(T ). (6.1)

defined as the difference between S, the total entropy of a fluid, and Sig ≡ −kB ln ρ+

c(T ), the ideal gas entropy, where kB is the Boltzmann constant. Ref.[88] successfully

predicts the density and dynamic anomaly regions for a repulsive simple liquid with

waterlike anomalies. The connection between two-body excess entropy S(2) and the

“cascade of anomalies” also applies for fluids of particles with short-range attractions

relative to their diameter. This, and the relationship of the colloidal system’s proper-

ties to liquid water’s behavior, was first discussed in the Ref. [102]. The excess entropy

approach shows promise for application to molecular liquids. For example, study of

SPC/E water shows that S(2) can capture the structural anomaly of water [19, 103].

The scaling relation between the excess entropy and transport properties of different

materials has also been investigated [104].

These findings suggest that the anomalous properties of water are closely related

to its LDL/HDL structural changes. We propose that the excess entropy, as a measure

of structure and correlation between particles, can predict the regions of structural,
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dynamic and thermodynamic anomalies of water, and it can also predict the location

of the Widom line. To test this proposal, we perform constant volume isothermal

(NVT) molecular dynamics (MD) simulations of 512 TIP5P (five-site transferable

intermolecular potential) molecules [64]. TIP5P water model is able to reproduce the

thermodynamic properties of water over a broad region of phase diagram, such as the

temperature of maximum density of water around T = 277 K at atmosphere pressure.

TIP5P model also has a second critical point in the accessible region of the phase

diagram. Our simulations are performed using a cubic box with periodic boundary

conditions. We control the temperature using a Berendsen thermostat.

Figure 6.1 shows the anomalous regions in the P -T phase diagram obtained from

our MD simulations results. Our results are similar to results for the SPC/E wa-

ter [19]. We compute D from the long-time behaviour of the mean square displace-

ment of the water molecules 〈r2(t)〉, using the Einstein relationship 6D = d〈r2(t)〉/dt.
We also compute the translational and orientational (tetrahedral) order parameters

of water for different state points. Both order parameters have been widely used to

investigate the structure of model liquids [19, 21, 28, 87].

6.2 Excess Entropy as a Measure of Structure: Re-

lation to Translational Order

The excess entropy of water can be estimated from the two-body contribution S(2)

arising in the expansion of the entropy in terms of partial N -body distribution func-

tions using structural information in the form of oxygen-oxygen (O-O) pair correlation

function (PCF) g(r) [87, 88, 105]

Sex ≈ S(2) = −2πρkB

∫

{g(r) ln[g(r)] − [g(r) − 1]}r2dr, (6.2)

and it can estimate the excess entropy to a reasonable level of accuracy for different

model liquids [106–108]. It also captures the structural anomaly of liquid silica [87]



85

220 240 260 280 300 320 340 360

-200

0

200

400

600

800

TMD
DM
tmax
tmin
qmax

ρC=1.13g/cm
3

P
 (

M
P

a)

T(K)

Pc=340 MPa, Tc=217 K
TIP5P water

WidomC

Figure 6.1: Three regions of the TIP5P phase diagram obtained from our MD

simulations. Figures regenerated from Refs. [21]. Density anomaly region is defined

by TMD (temperature of maxima density, �) lines, inside which the density increases

when the system is heated at constant pressure. Diffusion anomaly region is defined by

the loci of DM (diffusivity maxima-minima, •), inside which the diffusivity increases

with density at constant T . The structural anomaly region is defined by the loci of

translational order minima (tmin, H) and maxima (tmax, N), or orientational order

maxima qmax (�), inside which both translational and orientational orders decrease

with density at constant T (see refs. [19, 21] for details). The dashed line (Widom line)

is the loci of the response function maximum (specific heat CP ). C is the hypothesized

liquid-liquid critical point according to simulations of Ref. [64].
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and SPC/E water [103].

The main change of g(r) of water upon compression occurs in the range of the

second coordination shell [22], where water molecules migrate from the second shell

toward the first shell. If the value of g(r) is close to one, we can write that ln[g(r)] ≈
ln[1 + g(r) − 1] ≈ g(r) − 1. Thus from Eq.( 6.2),

S(2) ≈ −2πρkB

∫

{g(r)[g(r)− 1] − [g(r) − 1]}r2dr (6.3)

≈ −2πρkB

∫

[g(r) − 1]2r2dr. (6.4)

Expression (6.4) is similar to the translational order parameter t ≡
∫

|g(r)−1|dr [19,

29], which quantifies the degree to which a water molecule and its nearest neighbors

adopt preferential separations. This similarity is the reason why S(2) and t show

similar anomalies for water-like model liquids [19, 21, 28, 29, 87, 88].

We compute Sex using Eq.(6.2). Figure 6.2(a) shows the temperature and density

dependence of Sex of TIP5P water, qualitatively reproducing the result for SPC/E

water [103]. Sex shows normal behavior for T > 300 K when it decreases with

density. Below T = 300 K, Sex develops anomalous behavior, increasing with density

in an interval of density which widens upon cooling. This behavior is associated

with the continuous change of structure upon compression and heating from the

LDL-like local structure (open tetrahedral structure with low density, low entropy

and low energy) to the HDL-like local structure (more closed structure with high

density, high entropy and high energy) [22]. The anomalous change of Sex is related

to the density anomaly due to negative thermal expansion coefficient, arising from the

relation kTV αP = 〈δV δS〉, which predicts the anti-correlation between the entropy

and volume fluctuations. The Sex anomaly is also related to the anomalous diffusivity

increase with density due to Adam-Gibbs equation D ∝ exp[−B/(TSc)], where Sc is

the configurational entropy [23].
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Figure 6.2: Excess entropy of the TIP5P model of water S(2). (a) Tempera-

ture and density dependence of S(2). From bottom to top, the isotherms cor-

respond to T = 230, 240, 259, 260, 270, 280, 290, 300, 310 K. (b) Temperature and

density dependence of (∂S
(2)

∂ ln ρ
)T . From top to bottom, the isotherms correspond to

T = 230, 240, 259, 260, 270, 280, 290, 300 K. The horizontal lines indicate the values

of (∂S
(2)

∂ ln ρ
)T above which there is anomalous behavior of ρ and D respectively (see

discussion below Eq.(6.5)). Note that (∂S
(2)

∂ lnρ
)T is plotted in log scale, therefore only

positive values can be seen, so the curve for T = 310 K is not shown.
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6.3 Anomalies are Quantitatively Related to Ex-

cess Entropy

Ref. [88] has shown that in order to have waterlike density and diffusivity anoma-

lies, ( ∂Sex

∂ ln ρ
)T needs to be larger than some specific value. Due to the Maxwell relation,

the density anomaly ( ∂ρ
∂T

)P > 0 is equivalent to the entropy anomaly (∂S
∂ρ

)T > 0.

Thus from the definition of excess entropy in Eq. (6.1), it follows that ( ∂Sex

∂ ln ρ
)T > c kB

with c = 1. From the empirical Rosenfied scaling relationship between diffusivity and

excess entropy D ρ1/3

T 1/2 = 0.6 exp(0.8Sex/kB) established for various liquids [104], it

follows that ( ∂Sex

∂ lnρ
)T > c kB with c = 0.42 is a necessary condition for the diffusion

anomaly.

Therefore the condition to have density and diffusivity anomalies can be written

as

(
∂Sex
∂ ln ρ

)T > c kB, (6.5)

where for the density anomaly c = cρ = 1, and for the diffusivity anomaly c = cD =

0.42 [88]. To predict the regions of density and diffusivity anomalies, we show density

and temperature dependence of ( ∂S(2)

kB∂ lnρ
)T in Fig.6.2(b). The anomalous regions for

density and diffusivity can be identified by finding the range of density between which

the value of ( ∂S(2)

kB∂ ln ρ
)T for different T is greater than cρ or cD, respectively.

Figure 6.3(a) and Figure 6.3(b) compare the regions of anomalies for density

and diffusivity, respectively, in T − ρ plane with the predictions of Eq. (6.5) (open

symbols). Figure 6.3(c) compares the regions of structural anomaly quantified by

the anomalous behavior of Sex and the order parameters t and q obtained from MD

simulations. These results indicate that Eq.(6.5), not only relates the behavior of the

excess entropy to the anomalies in spherically symmetric ramp model [88], but also

applies to water. It would be interesting to test the results of our simulation using

experimental data on the O-O PCF for a wide range of temperatures and densities.
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Figure 6.3: Comparison of the boundaries of anomalous regions with the prediction

based on the excess entropy calculation within T − ρ plane for TIP5P water. (a)

Density anomaly region. (b) Diffusion anomaly region. Filled symbols are results

based on MD simulations and open symbols are results based on the prediction of

Eq.(6.5). (c) Comparison of the loci of excess entropy extrema from Fig. 6.2 with the

structural anomaly regions found by MD simulations. The open triangles denote the

loci of excess entropy S(2) extrema. The filled triangles denote the loci of extrema

of translational order t. The filled diamonds denote loci of maxima of orientational

order q.
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6.4 Widom Line is Quantitatively Related to Ex-

cess Entropy

Near the critical point, the total correlation function h(r) ≡ g(r) − 1 has an

asymptotic behavior for r → ∞ [91]

h(r) ∼ r−(d−2+η) exp(−r/ξ), (6.6)

where ξ is the correlation length, d is dimension (3 in our case) and η ≈ 0 is correlation

function decay exponent. So using Eq.(6.6), we can rewrite Eq.(6.4) as

S(2) ≈ −2πρ

∫

|h(r)|2r2dr

∼ −2πρ

∫

exp(−2r/ξ)dr = −πρξ.

We find

(
∂S(2)

∂ρ
)T ∼ ξ + ρ(

∂ξ

∂ρ
)T = ξ + ρ(

∂ξ

∂P
)T (

∂P

∂ρ
)T . (6.7)

Near the critical point of fluids, the scaling law between P and ρ can be expressed as

|P −Pc| = A|ρ−ρc|δ, where A is constant, Pc and ρc are critical pressure and density,

and δ ≈ 5 is the critical exponent [91]. Therefore the term (∂P
∂ρ

)T ∝ |ρ − ρc|4 → 0

upon approaching ρc. Eq.(6.7) suggests that we can estimate the Widom line of water

by finding the maximum of (∂S
(2)

∂ρ
), since the Widom line corresponds to the locus of

maxima of the correlation length.

Figure 6.4(a) shows that (∂S
(2)

∂ρ
)T as function of density and temperature reaches

a maximum at a specific density ρmax(T ) along fixed T path, or reach a maximum

at a specific temperature Tmax(ρ) along fixed ρ path. The contour plot of (∂S
(2)

∂ρ
)T

in Fig.6.4(b) predicts two lines corresponding to the loci of maxima in (∂S
(2)

∂ρ
)T along

constant-T and constant-ρ paths. These two (bold) lines asymptotically approach

each other as they come closer to the critical point. The common asymptote provides

quantitative prediction of the Widom line based on the excess entropy. Therefore the

excess entropy computed from O-O PCF can predict the location of the Widom line
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and therefore the approximate location of other response functions maxima, such as

CP , KT . The excess entropy can also predict the location of the dynamic transition

from fragile to strong behavior in the supercooled water [11].

The relationship between configurational entropy Sc and diffusivity D of water

is known to be well approximated by the Adam-Gibbs equation [23]. A different

relation between Sex and D was proposed for water-like core-softened repulsive sim-

ple potential liquid and binary Lennard-Jones alloy [109] and SPC/E water [103]:

D(T ) ∝ exp[b(ρ)Sex], where b(ρ) is a T -independent parameter and ρ is constant.

Our calculation (Fig. 6.5) confirms these results for the TIP5P water.

In summary using the TIP5P potential (five-site transferable intermolecular po-

tential) we perform molecular dynamics simulations to investigate the relationship

between the excess entropy and anomalies of water. We find that the two-body excess

entropy is an ideal quantity to predict the regions of structural, dynamic and ther-

modynamic anomalies of water in its pressure-temperature and density-temperature

phase diagrams. From the excess entropy we can also predict the location of the

Widom line, associated with the hypothesized liquid-liquid critical point in super-

cooled water. Our results implies that it is possible to estimate the thermodynamic

and dynamic anomalies of liquid from the structural change, and it is also possi-

ble to relate structural change to the correlation length maximum and therefore the

hypothesized LDL/HDL critical point.
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Figure 6.4: (a) The 3D plot shows the the temperature and density dependence of

(∂S
(2)

∂ρ
)T with the contour plot projected on the T − ρ plane. There is a locus of the

maximum in (∂S
(2)

∂ρ
)T along the constant-T path and constant-ρ path. (b) The 2D

contour plot of (∂S
(2)

∂ρ
)T shows that the locus of the maximum in (∂S

(2)

∂ρ
)T forms two

lines (the bold lines) along constant-T path and constant-ρ path respectively.
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Figure 6.5: The relation between diffusivity and the negative of the excess entropy

of water along isochores. The temperature range for each density is 240-300 K.



Appendix A

Molecular Dynamics Simulation

A.1 Temperature Computation in MD

The total energy of our system is defined as:

Etot = 〈K〉 + 〈U〉 , (A.1)

where K and U are the kinetic and potential energy, respectively. The kinetic energy

is a sum of contributions from the individual particle |pi|2/(2mi), while the evaluation

of the potential contribution involves summing over all pairs of interacting particles

〈U〉 =
∑

Uij . (A.2)

For a three dimensional system of interacting hard-sphere particles, we have

〈
N

∑

i=1

|~pi|2/mi〉 = 2〈K〉 = 3NkBT , (A.3)

where momentum of particle i is ~pi = mi~vi. The temperature in the system T is

calculated according to Eq. (A.3) and the instantaneous temperature can be defined

as

T = 2K/3NkB =
1

3NkB

N
∑

i=1

|~pi|2/mi . (A.4)
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To maintain the temperature constant or to slowly cool the system down, we use

the Berendson [110] method of velocity rescaling, multiplying all the velocities at each

time step ∆t by a factor
√

T ′/T , which is determined by

T ′

T
=

(

1 +
To
T

(κ∆t) − κ∆t

)

. (A.5)

Therefore, we use the relation

T ′ = T (1 − κ∆t) + κ∆tTo , (A.6)

where To is the temperature of the heat bath, T the instantaneous temperature before

rescaling, T ′ the instantaneous temperature after rescaling, and κ the heat exchange

coefficient. We choose κ = 0.01 to keep the temperature constant and κ = 0.0001 to

slowly cool the system down. We calculate the time interval ∆t as the time interval

during which exactly N collisions occur. Average ∆t is thus equal to two average

collision intervals in a system.

A.2 Pressure Computation in MD

It is believed that the true thermodynamics average of a quantity f can be achieved

in MD by averaging over sufficiently large time ∆t,

〈f〉∆t ≡
ℓ

∆t

∫ t+∆t

t

f(t)dt . (A.7)

The calculation of pressure in MD has another difficulty, since in MD periodic bound-

aries are used and there are no container walls to create external pressure on the

system. Nevertheless, pressure can be effectively computed using the virial theorem,

which relates the time average of the total kinetic energy to the time average of the

virial.

In classical mechanics, it can be proven that for any system kept for a sufficiently

long period of time ∆t in a finite region of the 6N dimensional phase space,
〈

N
∑

i=1

miv
2
i

2

〉

∆t

= −
〈

N
∑

i=1

~fi · ~ri
2

〉

∆t

, (A.8)
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where ~fi are the forces acting on the particles, ~vi are the particle velocities, and ~ri

are the particle coordinates. The virial which is the right hand side of Eq. (A.8) can

be presented as the contribution from external forces acting from the walls of the

container and intermolecular forces

~fi = ~f ext
i + ~f int

i ; (A.9)
N

∑

i=1

~fi · ~ri =

N
∑

i=1

~f int
i · ~ri +

N
∑

i=1

~f ext
i · ~ri . (A.10)

For a liquid confined in a container with rigid walls in the absence of such external

fields as gravity, the pressure acts perpendicular to the surface, pointing inside the

container and is constant at any point of the surface. Thus

〈

N
∑

i=1

~f ext
i · ~ri

〉

= −
∫

S

dP~r · ~ndS = −PV d , (A.11)

where n is normal to the surface, d is the dimensionality, and the integral is taken

over the surface of the container S, where dS is the surface element. Combining

Eqs. (A.8), (A.10), and (A.11) we have

P =
2

V D

〈

N
∑

i=1

miv
2
i

2

〉

∆t

− 1

V D

〈

N
∑

i=1

~f int
i · ~ri

〉

∆t

. (A.12)

Note that
∑N

i=1miv
2
i /2 is, by definition, equal to (D/2)kBNT and

P =
NKB

V
〈T 〉∆t −

1

V D

〈

N
∑

i=1

~f int
i ri

〉

∆t

. (A.13)

When the system has walls, this equation gives the value of the pressure acting from

the walls to the system. In the absence of walls, it gives the value of the internal

pressure in the system. Thus this equation provides the basis for the computation of

pressure in molecular dynamics simulations.

In discrete molecular dynamics, the force f int
i is equal to zero except at the mo-

ments of collision with other particles, when it is equal to infinity. We count all the

collisions of a given particle i with a given particle j that occur in the time interval
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from t to t+ ∆t, using index Kij = 1, 2, 3, . . . We denote the times of these collisions

tKij
and the change in momentum in particle i at the moment tKij

as

∆~PKij
= mi[~vi(tKij

+ ǫ) − ~vi(tKij
− ǫ)] , (A.14)

where ǫ is an infinitesimally small value. Since the force acting on the particle i is

the derivative of momentum with respect to time,

f int
i =

N
∑

j=1

∑

Kij

∆PKij
δ(t− tKij

) , (A.15)

where δ(t− tKij
) is a Dirac δ-function and the sum over Kij is taken over all collisions

between particle i and j during time interval (t, t+ ∆t).

Integration involved in the averaging over time [see Eq. (A.7)] eliminates δ-functions

and we obtain

P =
NKb

V
〈T 〉∆t −

1

∆tV D

N
∑

i=1

∑

Kij

N
∑

j=1

(∆~PKij
~ri) . (A.16)

Finally, we can count all the collisions that occur in interval (t, t + ∆t) by index

ℓ. Each collision is specified by the particles i(ℓ) and j(ℓ) involved in the collision

(i < j) and is counted twice in the sum of Eq. (A.16)—the first time when i is from

the first sum and the second when i is from the second sum. According to momentum

conservation, ∆P (ℓ)i = −∆P (ℓ)j. Thus we rewrite (A.16) as

P =
NKb

V
〈T 〉∆t −

1

∆tV D

∑

ℓ

{∆~Pi(tℓ)[~ri(tℓ) − ~rj(tℓ)]} , (A.17)

where the sum is taken over all collisions ℓ that occur at moment tℓ during time

interval ∆t and

∆~Pi(ℓ) = mi[~vi(tℓ + ǫ) − ~vi(tℓ − ǫ)] . (A.18)

We use the Eq. (A.17) to compute the interval pressure in our system and record

this value into a file at times which are multiples of ∆t. We use ∆t = 100, which

corresponds to hundreds of collision intervals, so that the recorded pressure does not

fluctuate much and it is also much smaller than the total simulation time, allowing

us to perform the error analysis.
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A.3 Discrete Molecular Dynamics

The molecular dynamics of molecules interacting via hard sphere discontinuous

potentials, must be solved in a way which is qualitatively different form the molecular

dynamics of soft bodies, such as Lennard-Jones type systems. Whenever the distance

between two particles becomes equal to a point of discontinuity in the potential (i.e.

at square-well distance or soft-core distance), then a collision occurs. Depending

on the model, the particle velocities will suddenly change. The primary aim in the

simulation is to locate the time, collision pairs, and all impact parameters for every

collision occurring in the system, in chronological order.

Between collisions, particles move along straight lines with constant velocities.

When the distance between the particles becomes equal to r, for which U(r) has a

discontinuity, the velocities of the interacting particles instantaneously change. The

interaction time tij for two particles with coordinates ~ri, ~rj and velocities ~vi, ~vj satisfies

the quadratic equation

(~rij + tij~vij)
2 = R2

ij ,

where Rij = a, b, c, depending on the initial distance between particles ~rij = ~ri − ~rj

and their relative velocity ~vij = ~vi−~vj . This quadratic equation may have two positive

roots, two negative roots, two roots of different signs, or no roots at all. The roots

are determined by the formula

tij =
−(~vij , ~rij) ±

√

(~vij , ~rij)2 + v2
ij(R

2
ij − r2

ij)

v2
ij

,

where the sign is “plus” if roots have different signs or minus otherwise. The value of

Rij = a, b, c is selected to minimize tij . If there are no positive roots, it means that

the particles will not interact and tij = ∞.

We find the average particle collision interval

δt = min
i<j

tij
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for all possible pairs of particles and propagate the system to time

t′ = t+ δt

so that

~r′i = ~ri + δt~vi.

At this moment, the distance between the centers of colliding particle-pairs becomes

equal to a, b, or c.

Finally, we find the new velocities ~v′i and ~v′j after the interaction. These velocities

must satisfy the momentum conservation law

mi~vi +mj~vj = mi
~v′i +mj

~v′j,

the angular momentum conservation law

mi[~r′i, ~vi] +mj [~r′j~vj ] = mi[~r′i, ~v′i] +mj [~r′j~v′j],

and the energy conservation law

miv
2
i

2
+
mjv

2
j

2
+ Uij =

miv
′2
i

2
+
mjv

′2
j

2
+ U ′

ij ,

where Uij and U ′

ij , are the values of the pair potential before and after interaction,

equal to U(Rij ± ǫ), depending on the direction of the initial relative velocity ~vij ,

initial distance ~rij , and the value of Rij . These equations are equivalent to six scalar

equations, which are sufficient to determine the six unknown components of the ve-

locities ~v′i and ~v′j. Introducing a new coordinate system with the origin at the center

of the particle j, and the x-axis collinear with the vector ~r′ij , we construct the ex-

pressions for the velocities that satisfy the momentum and the angular momentum

conservation laws:

~v′i = ~vi + A~r′ijmj ,

~v′j = ~vj −A~r′ijmi,
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where constant A is determined from the energy conservation law:

A = a
±

√

1 + 2(Uij − U ′

ij)(mi +mj)/(R2
ija

2mimj) − 1

mi +mj
,

where a = (~vij , ~rij)/R
2
ij . The sign “plus” in the expression for A corresponds to

the motion after the collision in the same direction as before the collision, i.e., the

particles penetrate into the attractive well or the soft core if they move toward each

other before the collision, or leave them if they move away from each other. Note

that this may happen only if the expression under the square root is positive, i.e, if

there is enough kinetic energy to overcome the potential barrier

R2
ija

2mimj

2(mi +mj)
≥ U ′

ij − Uij .

Otherwise, the reflection happens, the particles do not change their state U ′

ij = Uij ,

and the sign in the expression for A must be “minus”.

The minimization of the tij is optimized by dividing the system into small subsys-

tems, so that collision times are computed only between particles in the neighboring

subsystems. The final minimization is produced by a binary tree sorting among all

the subsystems. In each collision, only the particles in the neighboring subsystems

are updated. Each subsystem has its own collision table, in which the collision times

and the indexes of colliding particles are recorded. After the collision, all the records

involving colliding particles are removed from these tables and are replaced by the

new records, corresponding to the new velocities. This optimization allows us to

observe that the computational time grows as N lnN .

A.4 Introduction to TIP5P Model

In this thesis, we present results obtained from molecular dynamics simulations

using the TIP5P model for water. In the model, the molecules are rigid with two

positive charges q1 = 0.241e located on each hydrogen atom and two negative charge

q2 = −0.241e located on lone pair sites (see Fig. A.1).
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Figure A.1: TIP5P water model. In the TIP5P model water molecules are rigid

with four point charges. Two positive charges q1 = 0.241e on each hydrogen atom

and two negative charges with q2 = −q1 located on lone pairs. The OH distance is

l1 = 0.09572 nm and the O-lone pair distance is l2 = 0.070 nm. The HOH angle is

θ = 104.52o and the lone pair-oxygen-lone pair angle is ϕ = 109.47o. Oxygen atoms

interact each other with a Lennard-Jones potential. (Figure from Prof. M. Chaplin

http://www.lsbu.ac.uk/)
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The distance between the oxygen and hydrogen atoms is l1 = 0.09572 nm and

the distance between the oxygen and the lone pair sites are l2 = 0.070 nm. The

hydrogen-oxygen-hydrogen angle is θ = 104.52o and the lone pair-oxygen-lone pair

angle is ϕ = 109.47o. To avoid the overlapping the molecules, the model also use a

Lennard-Jones potential between oxygen atoms,

Vij(r) = 4ǫ

[

(

σ

rij

)12

−
(

σ

rij

)6
]

(A.19)

where rij is the distance between the i−th and j−th oxygen atoms. Here ǫ =

0.6694 kJ/mol and σ = 0.312 nm.

The TIP5P water model is one the most used rigid-molecule pair-potential models

for water, both for the study of the pure water simulations as well as for study of com-

plex system such as solvation water of biomolecules (protein, DNA). It successfully

reproduces experimental results, e.g., it shows a temperature of maximum density line

in the phase diagram [79] and the temperature of maximum density at atmosphere

pressure is T = 277 K, which is the best agreement with experiment among all water

modles. It is also possibile to observe a liquid-crystal transition in water using MD

simulation with TIP5P model [79], while it is very difficult to reproduce a crystalline

phase with older model such as SPC/E model.
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