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THERMODYNAMICS AND DYNAMICS OF SUPERCOOLED WATER

(Order No. )

MARCO G. MAZZA

Boston University Graduate School of Arts and Sciences, 2009

Major Professor: H. Eugene Stanley, University Professor and Professor of Physics

ABSTRACT

This thesis employs methods of statistical mechanics and numerical simulations to study

some aspects of the thermodynamic and dynamic behavior of liquid water.

As liquid water is cooled down into the supercooled state, some regions of the sam-

ple show correlated molecular motion. Previously, only the translational motion has been

the object of investigation. Given the importance of orientational dynamics for water, a

question that naturally arises is whether the rotational molecular motion also shows het-

erogeneous dynamics. We show that the most rotationally mobile molecules tend to form

clusters, “rotational heterogeneities”, and we study their dependence upon observation time

and temperature. Further, we show evidence that molecules belonging to dynamic hetero-

geneities are involved in bifurcated bonds.

Since the presence of dynamic heterogeneities is increasingly important as the tempera-

ture is lowered, one would expect a signature of this phenomenon in dynamical quantities.

We study the effect of dynamic heterogeneities on the origin of the breakdown of the Stokes–

Einstein and Stokes–Einstein–Debye relations for water. These relations link the diffusivity

to temperature and viscosity. We study the separation of time scales of dynamic hetero-

geneities and the diffusive regime. We also consider different sets of mobility, slowest and

fastest, for both translational and rotational heterogeneities.

A long–standing problem in biology is the seemingly universal loss of biological activity

of all biomolecules, a phenomenon termed the “protein glass transition”. We explore the

v



connection between the hypothesized liquid–liquid phase transition of water, and the protein

glass transition. We find that the protein glass transition coincides with the crossing of the

Widom line of hydration water.

Many different scenarios have been proposed to rationalize water’s thermodynamic

anomalies. We study a cell model for water using the Wolff cluster algorithm, which permits

rapid equilibration. We find that three different scenarios for the phase diagram of water

can be coherently described through the concept of H bond cooperativity. Finally, we study

an intriguing prediction of the cell model: the presence of two maxima in the specific heat

of water. We draw connections with recent experimental data.
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Chapter 1

Introduction

1.1 An important and peculiar liquid

The importance of water to human life is difficult to exaggerate. Early settlements of

people grew around sources of fresh water. The Nile River and the Tigris and Euphrates

had fundamental role in the history of civilization because they provided potable water,

irrigated the fields and were means of transportation. No surprise that water became an

archetypical symbol of life in every culture. Aristotle in his Physics considered water as a

fundamental element of the universe.

The study of the physics of water, in a modern sense, starts three centuries ago [1] when

the first anomaly of liquid water was recognized: if the temperature T is lowered below 4 ◦C

at atmospheric pressure the density decreases. Today we know a lot more about water, but

there are still some fundamental questions left without answer.

The thermodynamic phase diagram of water is rich and complex: more than sixteen

crystalline phases [2], two or more glasses [3], and possibly two critical points. Water is a

peculiar liquid, under many aspects. To start illustrating how the behavior of water deviates

from other liquids we plot in Fig. 1.1 the melting and boiling temperatures for water and

other hydride compounds of atoms of Group 6A. As the molecular weight decreases (from

right to left in Fig. 1.1) both melting and boiling temperatures monotonically decrease

except for the lightest atom: the oxygen in the water molecule. The dashed lines represent

1
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Figure 1.1: The melting and boiling temperatures for isoelectronic hydride molecules. Data

from Ref. [4].

simple extrapolations if water were to follow the behavior of the other isoelectronic hydrides.

We can notice that the difference between the real data and the extrapolated values is about

100 K for the melting point, and about 170 K for the boiling point. A very important

consequence of the shift of these two temperatures is that the stable liquid phase of water

is located well in the range of temperatures accessible on our planet. With a boiling point

at ≈ 200 K all the water on Earth would be in the gaseous phase. Since life started in

the oceans, this hypothetical “extrapolated” behavior of water would have hindered, if not

made impossible, the evolution of life as we know it.

In Fig. 1.2 we show the stable phase of the vapor, the liquid and some crystalline forms

that have a phase boundary with liquid water. It is also shown the solid–liquid–vapor triple

point, TTP = 273.16 K, PTP = 611.657 Pa, and the liquid–gas critical point, TC = 647.096 K

PC = 22.064 MPa. Another interesting feature of water that we can notice from Fig. 1.2

is the negative slope of the liquid–solid first–order transition line. We can easily derive an

important thermodynamic relation. When two phases of a substance are in equilibrium,
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Figure 1.2: Phase diagram of water showing the stable phase of vapor, liquid and some

crystalline ices.

the temperatures T , pressures P and chemical potentials µ must be equal [5]

T1 = T2 (1.1)

P1 = P2 (1.2)

µ1 = µ2. (1.3)

If we express the potential in terms of T and P we have

µ1(P, T ) = µ2(P, T ) (1.4)

from which we can immediately conclude that pressure and temperature of two phases

in equilibrium cannot be assigned independently, but one is a function of the other, for

example, P = P (T ). If we take the derivative of Eq. 1.4, we obtain

∂µ1

∂T
+
∂µ1

∂P

dP

dT
=
∂µ2

∂T
+
∂µ2

∂P

dP

dT
, (1.5)

since (∂µ/∂T )P = −s, where s is the specific entropy, and (∂µ/∂P )T = v, where v is the
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Figure 1.3: Density as a function of temperature at one atmosphere for liquid water. The

density decreases for T < 277 K. Data taken from Ref. [6].

specific volume, we finally obtain

dP

dT
=

∆s

∆v
(1.6)

which is called the Clausius–Clapeyron equation. In the case of the liquid–solid transition

of water, we already recognized the negative slope of the first–order line in the P −T plane,

i.e. dP/dT < 0. Upon cooling the entropy must decrease, because CP ≡ T
(

∂S
∂T

)

P
> 0,

hence the entropy S is a monotonically increasing function of T . This implies that the

specific volume must increase in the phase transition from liquid to solid. The physical

origin of this volume increase upon cooling is the hydrogen (H) bond. The formation of a

H bond between two water molecules leads to a local volume expansion. This simple fact

is the origin of another thermodynamic anomaly of water with far–reaching consequences:

the density anomaly. In Fig. 1.3 we show the density of liquid water at one atmosphere as a

function of T . The presence of a maximum at 277 K is referred to as the “density anomaly”,

since for the vast majority of liquids the density decreases monotonically as T is lowered.
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Figure 1.4: Schematic representation of the stable and metastable phases of water at atmo-

spheric pressure. Figure courtesy of Dr O. Mishima.

Incidentally, this anomaly guarantees that the animals and the vegetation inhabiting rivers

and lakes survive winter, because the ice is limited to the surface.

For some time a substance can remain in the liquid phase even below the temperature

at which the stable thermodynamic phase is the solid. Such metastable state is called

supercooled. Water can be cooled at P = 1 atm to −38 ◦C. Upon pressurization, the

lowest temperature reached with supercooled water is −92 ◦C at P = 210 MPa [3]. Such

metastable state is possible because the liquid–gas transition is of first order, thus, in order

to form the two phases an energy barrier has to be overcome, corresponding to the surface

tension of the interface between the two phases. Furthermore, the initial formation of the

crystal, i.e. the nucleation process, is a kinetic process whose rate of occurrence can be

reduced by using samples free of impurities, or by using vessels with very smooth surfaces,

since any irregularity can initiate the nucleation process. However, the energy barrier to
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nucleation diminishes as the temperature is lowered, until reaching a temperature where

the energy barrier is of the order of kBT , where kB is Boltzmann constant, i.e. thermal

fluctuation. This temperature is named homogeneous nucleation temperature TH.

Below TH water crystallizes. But it is possible to avoid the crystalline phase altogether

by cooling very rapidly the sample (a typical cooling rate is ∼ 100 K/min [7]). What is

obtained is glassy water, i.e., an amorphous solid. The temperature at which the molecular

relaxation time reaches 100 s is conventionally called the “glass transition temperature”

Tg. For water Tg ≈ 165 K [8]. It is important to note that this is not a thermodynamic

transition in the standard sense (such as the liquid–gas transition), but rather a kinetic

event.

If glassy water is heated, it crystallizes to ice Ic (cubic ice). Therefore, there is an

interval 165 K . T . 235 K where it is impossible to probe the supercooled state; because

of these experimental limits this region of the phase diagram of water has been termed “no

man’s land”. In Fig. 1.4 we show a schematic of the phase diagram at 1 atm representing

the stable, metastable and glassy phases of water.

1.2 Thermodynamic anomalies

Water is a very anomalous liquid. To date sixty six anomalies have been recognized [9].

We have briefly described the density anomaly, but the set of anomalies can be broadly

divided in thermodynamic anomalies (such as the density maximum), dynamic anomalies

(such as the maximum in diffusivity as a function of T ), and material anomalies (such as

the dielectric constant). In this section we will discuss the thermodynamic anomalies.

When studying a thermodynamic system, pressure or temperature perturbations are

induced into the sample and its response to these is observed. It is therefore natural to

consider the following important thermodynamic response functions

i) the isobaric and isochoric specific heat

CP ≡ T

(

∂S

∂T

)

P

=

(

∂H

∂T

)

P

, (1.7)
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CV ≡ T

(

∂S

∂T

)

V

=

(

∂U

∂T

)

V

, (1.8)

where S is the entropy, H ≡ U + PV the enthalpy, V the volume, and U the total internal

energy of the system

ii) the isothermal compressibility

KT ≡ −
1

V

(

∂V

∂P

)

T

, (1.9)

iii) the adiabatic compressibility

KS ≡ −
1

V

(

∂V

∂P

)

S

, (1.10)

iv) the coefficient of thermal expansion

αP ≡
1

V

(

∂V

∂T

)

P

. (1.11)

Some useful relations among these quantities are

KT (CP −CV ) = TV α2
P , (1.12)

and

CP

CV
=
KT

KS
. (1.13)

In Fig. 1.5 we show the isobaric specific heat at atmospheric pressure for liquid water, both

stable and supercooled, down to 236 K. This type of anomalous increase is not found in

other molecular liquids, even those with water–like properties, such as H2O2 and N2H4 [10].

Similarly to CP , also the isothermal compressibility KT shows an anomalous increase upon

cooling, that becomes more pronounced in the supercooled state [Fig. 1.6]. From these

data there seems to be a singular temperature just below the lowest point reachable in

experiments. Indeed, it is possible to fit the data with power–laws

CP ∼ (
T

Ts
− 1)−0.36 (1.14)

KT ∼ (
T

Ts
− 1)−0.349, (1.15)
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Figure 1.5: Isobaric specific heat CP of water as a function of temperature at atmospheric

pressure. Data from Ref. [10]; the line is a guide for the eye.

Figure 1.6: Isothermal compressibility of water as a function of temperature at atmospheric

pressure. The dashed line is a polynomial extrapolation by Kell [6], the solid line is the plot

of Eq.(1.15). Adapted from Ref. [11].



9

Figure 1.7: Schematic temperature dependence of (top left panel) the isobaric specific heat

CP , (top right panel) isothermal compressibility KT , and (bottom panel) isobaric thermal

expansion coefficient αP for water. The behavior of a typical liquid is also shown with a

dashed line. Figure courtesy of Dr. F. W. Starr [12].

and a predicted singular temperature Ts = 228 K [11].

To illustrate why we call anomalous this behavior of supercooled water, we consider the

following relations that associate every response function to the corresponding fluctuation

〈

(δV )2
〉

= V kBTKT (1.16)

〈

(δS)2
〉

= NkBCP (1.17)

〈(δSδV )〉 = V kBTαP (1.18)

It is intuitive to think that as T is lowered thermodynamic fluctuations will decrease in

amplitude, and in virtue of Eq. 1.16, 1.17, 1.18 also the thermodynamic response functions

will decrease. Indeed, as shown with dashed lines in Fig. 1.7, for simple liquids the re-

sponse functions decrease upon cooling, but water behaves differently. CP and KT show
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minima at 35 ◦C and 46 ◦C respectively, and then increase anomalously upon cooling into

the supercooled regime.

This anomalous behavior is suddenly interrupted by crystallization. Since experiments in

the liquid phase are not possible below TH different theoretical models have been proposed to

explain the behavior of supercooled water. Computer simulations have played an important

role in establishing the plausibility of the different theories for liquid water. In the following

Section we review some theories actively debated in the literature.

1.3 Stability limit hypothesis

Pr
es

su
re

Spinodal

LG critical 
    point

TMD

Temperature

T
en

si
on

Figure 1.8: Schematic diagram of phase diagram on the (P , T ) plane predicted by the

stability limit hypothesis.

The stability limit hypothesis was proposed by Speedy in 1982[13]. It postulates the

existence of a continuous limit of stability of the liquid for the superheated, stretched and

supercooled states. In this scenario, the liquid spinodal, originating from the liquid–gas

critical point, changes its slope in the negative pressure region of the (P , T ) plane and

re-enters the positive pressure region at lower T in the supercooled state, see Fig. 1.8. This

limit of stability Ps(T ) is defined without reference to the phase on the other side of the
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spinodal. Since upon approaching a spinodal (∂P/∂V )T → 0, KT will diverge at Ps(T ).

It is possible to demonstrate from thermodynamic first principles that a spinodal must

change slope when it intersects a locus where αP = 0. The locus on the (P , T ) plane where

the density shows a maximum, called temperature of maximum density (TMD), provides

such an example.

A thermodynamic consequence of this scenario is that the intersection of the retracing

spinodal with the liquid–vapor coexistence line must be a critical point [3]. The presence of

a lower critical point in the liquid–vapor transition, altough possible, is not confirmed by

any experiment. This fact poses a serious challenge to the stability limit scenario.

1.4 Liquid–liquid critical point hypothesis

A more recent scenario proposed by Poole et. al. [14] hypothesizes the existence of a second

critical point in the phase diagram of water located in the supercooled state. This second

critical point is the terminus of a line of first–order phase transition between two liquids,

which, similarly to the liquid–gas critical point, are distinguished by the density: a low

density liquid (LDL) at low P and a high density liquid (HDL) at higher P . The critical

pressure and temperature of the liquid–liquid critical point (LLCP) predicted by computer

simulations [14] are respectively PC′ ≈ 100 MPa and TC′ ≈ 220 K. The LLCP scenario is

consistent with all the experimental evidence available to date. However, a direct verification

of the presence of the LLCP is still missing because freezing prevents to access that region

of the phase diagram (no man’s land). Figure 1.9 shows a schematic representation of the

phase diagram of water as predicted by the LLCP scenario.

An important consequence of the existence of a critical point for a substance is the

concept of “Widom line”. The correlation length ξ of a system grows upon approaching

the critical point and diverges at it [15]. If, for instance, we consider an isobaric path in

the (P , T ) plane in the neighborhood of the critical point, the thermodynamics response

functions will show a local maximum reflecting the presence of critical fluctuations. The

locus of maxima of correlation length is termed Widom line. Since asymptotically close to
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Figure 1.9: Schematic diagram of phase diagram on the (P , T ) plane predicted by the

liquid–liquid critical point hypothesis. Figure courtesy of Dr. O. Mishima.



13

the critical point every response function can be expressed as a power law in ξ, the loci of

maxima of response functions converge at the critical point, but they are otherwise distinct.

The Widom line that emanates from the LLCP projects into the experimentally acces-

sible supercooled region of water. Thus, the anomalous increases of CP and KT are, in this

scenario, an indirect manifestation of the LLCP.

1.5 The singularity–free scenario

In 1996 Sastry et al. proposed a thermodynamic picture that does not invoke critical be-

havior (a spinodal or the LLCP) in the phase diagram [16, 17]. Instead, the anomalous

behavior of response functions in water are related to the negative slope of the TMD line

in the (P , T ) plane.

Let us derive a general thermodynamic theorem that will prove useful in the following.

Along a path of constant αP ≡ V −1 (∂V/∂T )P we can write

dαP =

(

∂αP

∂T

)

P

dT +

(

∂αP

∂P

)

T

dP = 0 (1.19)

and performing the derivatives gives

∂

∂T

(

1

V

∂V

∂T

)

P

= −
1

V 2

(

∂V

∂T

)2

+
1

V

∂2V

∂T 2
= −α2

P +
1

V

∂2V

∂T 2
(1.20)

∂

∂P

(

1

V

∂V

∂T

)

P

= −
1

V 2

∂V

∂P

∂V

∂T
+

1

V

∂2V

∂P∂T
= KTαP +

1

V

∂2V

∂P∂T
. (1.21)

We can write

(

dP

dT

)

dαP =0

= −

(

∂αP

∂T

)

P
(

∂αP

∂P

)

T

. (1.22)

Along the TMD, αP = 0, we obtain

(

dP

dT

)

TMD

= −

∂2V

∂T 2

∂2V

∂P∂T

. (1.23)

Next we consider the following thermodynamic derivative
(

∂KT

∂T

)

P

= −

[

1

V

∂2V

∂P∂T
+KTαP

]

(1.24)
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By restricting to the TMD we obtain

(

∂KT

∂T

)

P,TMD

= −
1

V

∂2V

∂P∂T
. (1.25)

Using Eq. 1.25 into Eq. 1.23 yields the final result

(

∂KT

∂T

)

P,TMD

=
1

V

∂2V/∂T 2

(dP/dT )TMD

. (1.26)

The TMD is the locus of density maxima, and in the (P , T ) has a negative slope for

positive pressure, hence (dP/dT )TMD < 0; since ∂2V/∂T 2 is positive at the TMD, we

can conclude from Eq. 1.26 that KT must increase upon isobaric cooling. Therefore, in

the singularity–free scenario the increase of the response functions is a consequence of the

density anomaly, and it is predicted not to show any singular behavior [18]. Ultimately, it

is the anticorrelation between entropy and volume in water that causes the thermodynamic

anomalies. Upon cooling the entropy must decrease, and since, in water, ordering is achieved

through H bond formation, the volume will increase. Another interesting consequence of

Eq. 1.26 is the fact that if the TMD has an infinite slope, the locus of maxima of KT will

meet the TMD with a zero slope.

1.6 Overview of the Dissertation

In this first chapter of this Dissertation, we have introduced the physical problems of liquid

water, the experimental evidence and the currently discussed theoretical approaches. In

chapter 2 we study the importance of clusters of correlated molecular motion in water. These

regions of the fluid, known as dynamic heterogeneities, become increasingly important upon

cooling a liquid towards the glass transition temperature. Here we show the relation between

regions of correlated translational motion and regions of correlated rotational motion, and

how this is relevant to the diffusion mechanism for a cold dense liquid.

In chapter 3 we analyze how dynamic heterogeneities modify the diffusion in water

leading to the breakdown of hydrodynamic laws relating diffusion coefficient to temperature

and viscosity, the Stokes–Einstein and Stokes–Einstein–Debye relations. We find a general
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collapse onto a master curve for the diffusivity as a function of temperature measured for

different families of clusters, that differ by the amount of molecular mobility. Further,

we find that the largest contribution to the breakdown of the Stokes–Einstein and Stokes–

Einstein–Debye relations originates at the time scale when dynamic heterogeneities are more

prominent. This finding offers a link connecting the characteristic time scale of dynamic

heterogeneities, the end of the cage regime, with the diffusive regime.

In chapter 4 we consider the problem of the “protein glass transition”. There is exper-

imental evidence that nearly every biomolecules ceases any biological activity near 200 K.

We propose a connection between this phenomenon and the possible liquid–liquid phase

transition occuring in water. Upon cooling, water undergoes a transition from a disordered

liquid to a less dense liquid with short–range order. We find that this transition correlates

very closely with the protein glass transition.

In chapter 5 we introduce a microscopic cell model that is able to reproduce the thermo-

dynamic features of liquid water. We employ both Monte Carlo simulations and mean–field

analytical calculations to determine the phase diagram. Finally, in chapter 6 by tuning

a model parameter that physically corresponds to a three–body correlation among water

molecules, i.e., O-O-O correlation, we find that four seemingly different scenarios for water’s

phase diagram correspond to different degrees of cooperativity among hydrogen bonds.



Chapter 2

Dynamics of supercooled water

In this chapter we will first describe the Adam–Gibbs theory by following the original de-

scription given in their seminal paper [19]. Then we will describe the concept of dynamic

heterogeneities in supercooled water. The presence of heterogeneous dynamics in the trans-

lational and rotational molecular motion will be studied by using computer simulations.

2.1 Adam–Gibbs theory

The theory of Adam and Gibbs [19] describes T -dependent relaxation processes for the

liquid state starting from the concept of cooperatively rearranging regions (CRR). A CRR

is defined as a “subsystem of the sample which, upon a sufficient fluctuation in energy

(or, more correctly, enthalpy), can rearrange into another configuration independently of its

environment” [19]. When a liquid is supercooled the CRR grow and the local molecular

relaxation requires an increasing number of molecules with correlated motion. The growth

of these regions is reflected in a decrease of configurational entropy, because fewer and

fewer states are accessible to the system, hence the increase of the relaxation times. The

probability that a CRR changes state is calculated in terms of the dimension, or number of

molecules, z of the CRR, that we assume compact in shape. Further, we assume that the

subsystem interacts weakly with its surrounding. These CRR are in thermal and mechanical

equilibrium with each other, thus we can consider an isothermal–isobaric ensemble of N

16
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independent distinguishable subsystems comprising z molecules. The partition function is

∆(z, P, T ) =
∑

E,V

ω(z,E, V ) exp[−(E + PV )/kBT ] (2.1)

where ω is the number of configurations of z molecules with energy E and volume V . Thus,

the Gibbs free energy is given by

G = zµ = −kBT ln ∆. (2.2)

By summing over only the values of E and V involved in a transition, we obtain the partition

function for the CRR

∆′(z, P, T ) =
∑

E,V

ω′(z,E, V ) exp[−(E + PV )/kBT ] (2.3)

where now ω′ is the number of configurations of z molecules with energy E and volume

V that can rearrange cooperatively. The corresponding Gibbs free energy is G′ = zµ′ =

−kBT ln ∆′. The transition probability for a region of size z, Wz is then proportional to the

fraction of subsystems that can rearrange, i.e.∆′/∆. With the notation z∆µ = z(µ′ − µ) =

G′ −G, we obtain

Wz = A exp(−z∆µ/kBT ). (2.4)

We can assume the T -dependence of the pre–factor A negligible with respect to the expo-

nential. Also the dependence of ∆µ on z and T is small.

The average transition probability W is the sum of Wz over all possible values of z.

Furthermore, there is a lower limit z∗ to the size of a CRR.

W =

∞
∑

z=z∗

A [exp(−∆µ/kBT )]z , (2.5)

We can easily derive an expression for z∗ with the following argument. The configura-

tional entropy of the macroscopic system composed of NCRR number of CRR is

Sc = NCRRsc (2.6)
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where sc is the configurational entropy of a subsystem of size z. However Sc can be expressed

directly in terms of Wc, the number of configurations accessible to the system

Sc = kB lnWc. (2.7)

If we consider the system to be one mole, then we can write

sc =
kB

NCRR
lnWc = kB

z

NA
lnWc (2.8)

where NA is Avogadro number. Now, there must be a lower bound z∗ to z because in a

rearrangement there must be at least two configurations available; this corresponds to a

value of the configurational entropy per CRR given by

s∗c = kB
z∗

NA
lnWc =

z∗

NA
Sc. (2.9)

Thus we find

z∗ = NAs
∗
c/Sc. (2.10)

We can now perform the truncated sum

W =
A

1 − exp(−∆µ/kBT )
exp(−z∗∆µ/kBT ) . (2.11)

At low T the denominator 1 − exp(−∆µ/kBT ) is nearly T -independent, so we can absorb

it in the constant A, obtaining

W = A exp(−z∗∆µ/kBT ) . (2.12)

This result implies that the majority of the transitions occur in regions predominantly of

size z∗, the size of the smallest CRR. We now remember that from Eq. 2.10 z∗ ∝ 1/sconf ,

and that ∆µ is approximately T–independent; we can rewrite Eq. 2.12 as

W = A exp(−C/TSconf) (2.13)

where C has the dimension of energy. It was derived within the assumption of weak inter-

acton among cooperative regions.
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Equation 2.13 is commonly used in fitting experimental data; in these cases the Sconf

is approximated for supercooled liquids as the difference between the entropy of the liquid

and that of the crystal, Sconf ≃ Sliq −Scris; the right–hand side of this relation is calculated

from the specific heat and latent heat of fusion.

Since the inverse of W is a relaxation time τ , Eq. 2.13 predicts a divergence of τ when

Sconf goes to zero. Extrapolations of experimental data seem to indicate that Sconf goes

to zero for glass–forming liquids at a finite T called Kauzmann temperature, TK . Below TK

the supercooled liquid (a disordered state) would have an entropy lower than the crystal

(an ordered state). This hypothetical situation is termed the Kauzmann paradox. Exper-

imentally the glass transition occurs before this extrapolated T , thus this paradox seems

to remain only a theoretical pathology. Possibly, the origin of this paradox may lie in the

assumption of thermodynamic continuity between the liquid and glassy state [3].

If we assume that Sconf goes to zero linearly in T , Sconf ∝ (T − TK), we obtain

τ ∝ exp [B/(T − TK)] (2.14)

which is called “Vogel–Fulcher–Tamman” relation (VFT), used to fit experimental data.

2.2 Dynamic heterogeneities in water

Supercooled liquids are characterized by the non–exponential decay of ensemble–averaged

time correlation functions [20–24]. According to the mode coupling theory (MCT) [25, 26],

this decay can be expressed in terms of a stretched exponential function, exp
[

−(t/tr)
β
]

with tr ∼ (T − TMCT )−γ , where TMCT is the mode coupling temperature which is slightly

above the glass transition temperature, Tg. Two microscopic scenarios have been proposed

to explain this behavior, schematically shown in Fig. 2.1. In the spatially homogeneous dy-

namics scenario, correlation functions for different molecules decay in the same way, i.e., by

a unique stretched exponential function with a characteristic relaxation time tr and expo-

nent β. As shown in Fig. 2.1, in the “homogeneous” scenario, all molecules are equivalent.

As temperature is lowered, the locally averaged molecular displacement is the same at every
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Homogeneous
    scenario

Heterogeneous
    scenario

Hotter

Colder

Figure 2.1: Two possible scenarios proposed to describe diffusion in cold liquids. In the

spatially homogeneous dynamics scenario molecules relax in the same way, while in the

spatially heterogeneous dynamics (SHD) scenario, sets of more mobile molecules (in com-

parison to the average motion of the molecules in the system) form patches or clusters. The

size of these clusters increases upon cooling.
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point in the system. The homogeneous scenario is inconsistent with experiments [27–32]

and simulations [33–36], which identify dynamical heterogeneities in supercooled liquids and

spin glasses [37].

In the spatially heterogeneous dynamics (SHD) scenario, correlation functions for dif-

ferent molecules decay exponentially, but with a broad distribution of relaxation times[38].

The superposition of these individual exponential contributions produces a non-exponential

decay of the ensemble-averaged time correlation function, and the exponent β is a measure

of the width of the distribution of relaxation times. In the heterogeneous scenario, the

locally averaged molecular displacements are different depending on the part of the system

box we are looking at. One finds groups of molecules that are more mobile and groups that

are less mobile than the average molecule in the system. As the temperature is lowered,

patches formed by mobile molecules increase in size. These patches of mobile molecules

have a short lifetime; they appear and disappear constantly in different parts of the system.

Clusters composed of particles with high mobility have been found in numerical sim-

ulations of simple systems, e.g., Lennard-Jones (LJ) mixtures, indicating the presence of

spatially heterogeneous dynamics (SHD) [27, 33, 36, 39–47]. Hence, the SHD scenario for

the dynamics of liquids at low temperatures was confirmed. In this section we show that

SHD are also present in computer simulations of the SPC/E [48] water model. We study a

system with N = 1728 molecules at fixed density ρ = 1.0 g/cm3 varying the temperature

T from 200 K to 260 K in steps of 10 K. In order to increase statistics, we performed

two independent simulations for every temperature. We find that the T–dependence of the

diffusion constant can be expressed by:

D ∼ (T − TMCT )γ , (2.15)

where the mode coupling temperature TMCT = 193 K and the diffusivity exponent γ = 2.80.

We use the approach to define SHD clusters which was introduced in a study of a LJ

mixture [40] and in experiments on colloids [47]. We calculate the self part of the time-



22

Figure 2.2: Van Hove correlation function Gs(r, t
∗) and its Gaussian approximation G0(r, t

∗)

obtained using
〈

r2(t∗)
〉

, for T = 220 K. The tails of the distributions cross at r∗ ≈ 0.225

for all temperature.

dependent van Hove correlation function [49] Gs(r, t),

Gs(r, t) ≡
1

N

N
∑

i=1

〈δ(|~ri(t) − ~ri(0)| − r)〉 , (2.16)

where 〈· · · 〉 represents average over configurations and ~ri(t) are the coordinates of the oxygen

atom of the i-th molecule. The probability of finding an oxygen atom at a distance r at

time t from its position at t = 0 is given by 4πr2Gs(r, t)dr.

For both short times (when particles move ballistically) and long times (when particle

motion can be described by the diffusion equation), Gs(r, t) can be fitted by a Gaussian
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approximation

G0(r, t) =

[

3

2π 〈r2(t)〉

]3/2

exp
[

−3r2/2
〈

r2(t)
〉]

, (2.17)

where
〈

r2(t)
〉

is the mean square displacements of the oxygen atoms. However, deviations

of Gs(r, t) from G0(r, t) are well pronounced at intermediate times, corresponding to the

vibrations of the particle within the cage formed by neighboring molecules. We define t∗

as the value of time at which the deviation of Gs(r, t) from G0(r, t) is maximum, which is

achieved when the non-Gaussian parameter [20, 21]

α2(t) ≡
3

5
〈r4(t)〉/〈r2(t)〉2 − 1 (2.18)

reaches its maximum.

In Fig. 2.2, we see that Gs(r, t
∗) and G0(r, t

∗) intersect for large r at r∗, and that

Gs(r, t
∗) develops a tail for large r falling outside the Gaussian distribution. Molecules with

displacements r > r∗ can be considered as molecules that move more than expected (in

comparison to G0(r, t
∗)). We find r∗ is in the range 0.20–0.25 nm for all T (the oxygen-

hydrogen distance in a molecule for SPC/E is 0.1 nm). The fraction of molecules with r > r∗

at t = t∗ is given by φ ≡
∫ ∞
r∗ 4πr2Gs(r, t

∗)dr. Depending on T , we find 6% < φ < 8%.

For simplicity we fix φ = 7% for all T . Similar values of φ were found in atomic systems

[39, 40, 47] and in polymer melts [50].

Following Refs. [40] and [47], we define the mobility of molecule i at a given time t0 as

the maximum displacement of the oxygen atom in the interval [t0, t0 + ∆t],

µi(t0,∆t) = max{|~ri(t0) − ~ri(t+ t0)|, t0 ≤ t ≤ t0 + ∆t}. (2.19)

We will be interested in the “mobile” molecules defined as the fraction φ of molecules

with largest µi. We define a connected SHD cluster, also called a dynamic heterogeneity

(DH), for an observation time ∆t formed by mobile molecules. A pair of molecules is

assumed to be connected if their oxygen-oxygen distance at time t0 is less than 0.315 nm,
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which corresponds to the first minimum of the oxygen-oxygen radial distribution function.1

We find in water that SHD-clusters are similar to those in models of simpler liquids.

In LJ systems [39], monatomic liquids [51], and polymers [52], complex clusters are

composed of more elementary “strings” in which particles are arranged in a roughly linear

fashion. This is not so clear in simulations of water because the hydrogen bond network

constrains the geometry of the clusters.

2.3 Rotational and translational dynamic heterogeneities

Experiments and computer simulations have shown that dynamics in supercooled liquids

is spatially heterogeneous, i.e., one can identify transient regions with relaxation times

different by orders of magnitude [45, 46, 53, 54]. Simulations have shown that the most

mobile particles tend to form clusters [39, 55]. Different theoretical approaches have been

developed to understand spatially heterogeneous dynamics [19, 56]. In particular, Adam

and Gibbs (AG) [19] postulate the existence of cooperatively rearranging regions (CRR)

whose molecules change configuration independently of the rest of the system. Molecular

dynamics (MD) simulations [57, 58] have verified many of the predictions of the AG theory.

While there have been numerous studies of the heterogeneous nature of the translational

degrees of freedom (TDOF) in water, there are few studies of the heterogeneous nature of

the rotational degrees of freedom (RDOF). Here we systematically study the rotational

dynamics of water and compare with the translational dynamics. Previous work for other

systems suggests that translationally mobile molecules may have enhanced rotational mobil-

ity [59, 60], and the characteristic times for the RDOF are smaller than for the TDOF [61].

To this end we perform MD simulations of a system of N = 1728 water molecules interact-

ing with the extended simple point charge potential (SPC/E) for a range of temperatures

from 350 K down to 200 K at the fixed density of 1 g/cm3; for each temperature we run

1Alternatively, we also consider using a separation of 0.35 nm, the distance criterion commonly used by

hydrogen bond definitions [F. Sciortino and S. L. Fornili, J. Chem. Phys. 90, 2786 (1989)]. Preliminary

calculations indicated this alternative choice does not qualitatively affect our results.
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two independent trajectories to improve2 the statistics [23].

We first quantify the rotation of a molecule using the normalized polarization vector

p̂i(t), defined as the normalized vector from the center of mass of the water molecule to the

midpoint of the line joining the two hydrogens. In a time interval [t, t+δt], p̂i(t) spans an

angle δθ ≡ cos−1 ( p̂i(t) · p̂i(t+ δt)). We define a vector δ~ϕi(t) such that |δ~ϕi(t)| = δθ and

its direction is given by p̂i(t)× p̂i(t+ δt) . Thus the vector ~ϕi(t) ≡
∫ t
0 δ~ϕi(t

′)dt′ allows us to

define a trajectory in a ϕ-space representing the rotational motion of molecule i. One can

then associate a rotational mean square displacement (RMSD) given by

< ϕ2(t) >≡
1

N

∑

i

|~ϕi(t) − ~ϕi(0)|
2 (2.20)

and a rotational diffusion coefficient

DR ≡ lim
t→∞

1

4tN

N
∑

i=1

〈 |~ϕi(t) − ~ϕi(0)|
2〉 . (2.21)

The vector ~ϕi(t) is not bounded to the unit sphere, since otherwise Eq. (2.21) would give

DR = 0. Equations (2.20) and (2.21) were applied in [63] to study a linear molecular system.

If water molecules were linear, this one angle would suffice to fully describe the motion. To

account for the fact that water molecules are not linear, we consider rotations also of the

other two normalized principal vectors, which we label q̂i(t) and r̂i(t); we replace p̂i(t) in

the definition of ~ϕi with q̂i(t) and r̂i(t).

Figures 2.3(a) and 2.3(b) show the RMSD considering only the vector p̂ (similar results

hold for q̂ and r̂) and the temperature dependence of DR for all the three vectors, which

we label DR, p, DR, q and DR, r. Similar to Ref. [63] we observe: (i) the RMSD shows three

different regimes: a ballistic regime, where <ϕ2>∝ t2, a plateau or cage regime, where

molecules find themselves trapped in the cage formed by their neighboring molecules, and

finally a diffusive regime where <ϕ2 >∝ t, these three regimes are analogous to those

observed in studies of translational dynamics of supercooled liquids. (ii) DR increases with

T with a non-Arrhenius behavior. While the values of DR,p, DR,q and DR,r differ (as

2Note that classical simulations can not capture any perturbation in the dynamics due to quantum effects,

as discussed in [62]
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Figure 2.3: (a) RMSD for rotations of the polarization vector, p̂, in a range of temperatures

from 200 to 350 K. (b) Rotational diffusivity, DR, as a function of T−1 for all three principal

vectors, p̂, q̂ and r̂. The inset shows a schematic defining these vectors.
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found in [62]), they all show the same non-Arrhenius dependence on temperature. Note the

oscillations in Fig. 2.3(a) present for times of the order of 10−2 ps. These oscillations, not

present for linear molecules [63], correspond to the libration (hindered rotation) regime and

occur at the same time as the oscillations observed in the rotational correlation function of

water in [64].

We introduce the rotational counterpart of the self part of the time-dependent van Hove

distribution function, Gs(ϕ, t) [49],

Gs(ϕ, t) ≡
1

N

N
∑

i=1

〈δ(|~ϕi(t) − ~ϕi(0)| − ϕ)〉 , (2.22)

where 〈· · · 〉 represents average over configurations. With this formalism we recover the

usual interpretation for 4πϕ2Gs(ϕ, t) as the probability of having a molecule at time t with

angular displacement ϕ. In other words, that in the abstract ϕ-space, a molecule has moved

to a distance ϕ from its position at t = 0. For long times the diffusion equation for ~ϕi(t)

holds, and Gs(ϕ, t) is a Gaussian distribution

G0(ϕ, t) =

[

3

2π〈ϕ2(t)〉

]3/2

exp
[

−3ϕ2/2〈ϕ2(t)〉
]

. (2.23)

The deviations of Gs(ϕ, t) from G0(ϕ, t) can be quantified by the non-Gaussian parameter

[65] α2(t) ≡ 3〈ϕ4(t)〉/5〈ϕ2(t)〉2 − 1 . Figure 2.4(a) shows α2(t) for different temperatures.

α2(t) shows a clear maximum at t = t∗(T ) which corresponds to the beginning of the

diffusive regime for the RDOF [Fig. 2.3(a)]. We note that there is a small maximum at

t ≈ 10−2 ps: this is a consequence of the librational motion as shown in Fig. 2.3(a) 3. By

considering t∗(T ) we find that at all T the diffusive regime occurs for the RDOF at a slightly

earlier time than for the TDOF. Figure 2.4(b) shows Gs(ϕ, t) and G0(ϕ, t) for T = 200 K

and t = t∗(200K) ≈ 1.05 ns. As in [58] we find that Gs(ϕ, t
∗) and G0(ϕ, t

∗) intersect for

large ϕ at ϕ∗, and Gs(ϕ, t
∗) shows a large tail where the fitted Gaussian underestimate

the angular motion of the molecules. Molecules with ϕ > ϕ∗ can be considered with an

3Note that for t → 0, contrary to [58] for TDOF, α2(t → 0) ≈ 0.37. This value of α2 can be obtained

analytically from a Boltzmann distribution of a free rotator and noting that for short times ~ϕi(t) ≃ ~ωi(t) δt,

where ~ωi is the angular velocity for the i−th molecule.
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angular displacement higher than expected; this fraction f ≡
∫ ∞
ϕ∗ 4πϕ2Gs(ϕ, t) is found to

be ≈ 13%, showing a weak T -dependence.

In analogy to [40, 47, 58], we define the rotational mobility of a molecule at a given time

t0 as the maximum angular displacement in the interval [t0, t0 + ∆t] of the oxygen atom

Ψi(t,∆t) ≡ max{|~ϕi(t+ t0) − ~ϕi(t0)| , t0 ≤ t ≤ t0 + ∆t} . (2.24)

We focus our attention on the most rotationally mobile molecules and explore the possibility

that there exist clusters also among this category of molecules. To facilitate comparison

with the study [58] of translational heterogeneities (TH), we select the 7% of the most

rotationally mobile molecules 4 and define a cluster at time t0 over an observation time ∆t as

those molecules whose nearest neighbor oxygen-oxygen (O-O) distance at time t0 is less than

0.315 nm (first minimum of O-O radial distribution function). We find that the rotational

dynamics is spatially heterogeneous, since these molecules form clusters, which we will call

rotational heterogeneities (RH). Furthermore, we obtain different clusters depending on

which vector (p̂, q̂, or r̂) we consider. We refer to these as p̂- q̂- r̂-clusters.

Next we address the question of how these RH depend on the observation time. The

weight average cluster size is 〈n(∆t)〉w ≡ 〈n2(∆t)〉/〈n(∆t)〉 where 〈n(∆t)〉 is the average

number of molecules in a cluster in a time ∆t. To eliminate the contribution of random

clusters, we normalize 〈n(∆t)〉w by 〈nr〉w, i.e., the weight average cluster size obtained by

chosing randomly 7% of the molecules. Figure 2.5 shows 〈n(∆t)〉w/〈nr〉w for p̂-clusters as

a function of ∆t for different T (similar results hold for q̂ and r̂). In the same manner

as the translational case, the maximum in 〈n(∆t)〉w/〈nr〉w occurs at the end of the cage

regime of the RMSD, indicating that the cage breaking of the RDOF is highly correlated

with the cage breaking of TDOF. The RH become larger as T decreases. Figure 2.6(a)

shows 〈n(∆t)〉w/〈nr〉w for RH (obtained from p̂, q̂ or r̂) and TH at the corresponding tmax,

the time at which the corresponding weight average cluster size is largest. We find that

on average TH are larger than RH, and that RH reach their maximum size before the TH,

Fig. 2.6(b), i.e. tmax for RH is smaller than tmax for TH.

4Our results are not qualitatively effected by the choice of f , provided f . 15%.
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Self part of the van Hove distribution function, Gs(ϕ, t), for T = 200 K and t∗(200 K) ≈

1.05 ps, compared with the Gaussian approximation, G0(ϕ, t), obtained using 〈ϕ2(t∗)〉 also

at T = 200 K.
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Figure 2.7: (a) A snapshot of a typical cluster at T = 200 K. The red molecules belong to

TH, blue to RH and the green molecules belong to both clusters.(b) Fraction of molecules

in both a TH and RH for the three principal vectors; the strongest correlations are for

vectors q̂ and r̂. (c) RDF between the sets of translationally mobile and rotationally mobile

molecules for T = 200 K. The inset shows the corresponding ratios of these functions to

gbulk(r). For clarity gT−T is shifted by 5 and gR−R by 10 on the vertical axis; the ratio

involving gT−T is shifted by 3 and the ratio involving gR−R by 6 in the inset.
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It is natural to ask to what extent the RH and TH are formed by the same molecules.

We address this question by simultaneously analyzing the properties of RH and TH. We

considered the RH defined from p̂, but the same physical picture holds when using q̂ or r̂.

Figure 2.7(a) is a typical snapshot of the system, showing both TH and RH. The clusters

together form a larger entity characterizing the dynamical heterogeneities; the molecules

belonging to both kinds of clusters act as the “backbone” of such an entity. We find

that the fraction fRT of molecules simultaneously belonging to both clusters increases with

decreasing temperature. Figure 2.7(b) shows fRT at the lowest temperature simulated, for

the three kinds of RH. We observe that the maximum value of fRT is 6% for the case of p̂,

while this value becomes 27% for q̂ or r̂. Thus the q̂- and r̂-clusters couple more strongly

with the TH clusters.

To compare the structure of the TH and RH, we evaluate the radial distribution function

(RDF) of oxygen atoms within each kind of cluster, and between the two kinds of clusters.

Figure 2.7(c) shows the RDF for TH, for RH (defined from p̂, but the same results are

obtained by using q̂ or r̂), and for molecules which belong to both TH and RH. We see

that there is a strong tendency for mobile molecules (of either type) to be neighbors. The

RDF’s are qualitatively similar to the bulk RDF, gbulk(r), with maxima at r ≈ 0.28 nm

and r ≈ 0.45 nm (i.e., molecules are nearest or next-nearest neighbors); however, the

amplitudes of the first peak are strongly enhanced compared to bulk water. In order to

examine deviations from the bulk we normalize the RDF’s by gbulk(r) [inset of Fig. 2.7(c)].

All of the RDF’s display maxima at 0.32 nm, indicating that oxygens in TH and RH have

an enhanced tendency (with respect to the bulk) to be in the first interstitial shells of

each other and, therefore, have more than four nearest neighbors. Molecules with five or

more neighbors have bifurcated bonds and represent “defects” in the tetrahedral network

characterizing water [66, 67]. Therefore, our results suggest that the combined TH and RH

in water (i) are a consequence of the defects of the HB network, and (ii) are primarily

composed by molecules located at the defects of the HB network: evidence of the relation

between the structure and dynamics in water. Thus the physical picture needed to describe
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rotational heterogeneities resembles that needed for describing translational heterogeneities.



Chapter 3

Role of dynamical heterogeneities on

diffusivity

At temperatures where liquids have a diffusion constant similar to that of ambient tem-

perature water, the translational and rotational diffusion, Dt and Dr respectively, are well

described by the Stokes-Einstein (SE) relation [68]

Dt =
kBT

6πηR
(3.1)

and the Stokes-Einstein-Debye (SED) relation [69]

Dr =
kBT

8πηR3
. (3.2)

Here T is the temperature, η the viscosity, kB the Boltzmann constant and R is the

“molecular” radius. These equations are derived by a combination of classical hydrodynam-

ics (Stokes Law) and simple kinetic theory (e.g, the Einstein relation) [70]. Recently, the

limits of the SE and SED relations have been an active field of experimental [32, 71–75],

theoretical [76–83] and computational [61, 84–94] research. The general consensus is that

the SE and SED relations hold for low-molecular-weight liquids for T & 1.5Tg, where Tg

is the glass transition temperature. For T . 1.5Tg , deviations from either one or both of

the SE and SED relations are observed. Experimentally, it is found that the SE relation

holds for many liquids in their stable and weakly supercooled regimes, but when the liquid

is deeply supercooled it overestimates Dt relative to η by as much as two or three orders

34
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of magnitude, a phenomenon usually referred to as the “breakdown” of the SE relation.

The situation for the SED relation is more complex. Some experimental studies found

agreement with the predicted values of the SED relation even for deeply supercooled liq-

uids [32, 45, 46], while others claim also a breakdown of the SED relation to the same extent

as for the SE relation [72, 95–98]. The failure of these relations provides a clear indication of

a fundamental change in the dynamics and relaxation of the system. Indeed, the changing

dynamics of the liquid as it approaches the glass transition is well documented, but not yet

fully understood [7, 99–101].

There is a growing body of evidence [47, 102–106] that, upon cooling, a liquid does not

become a glass in a spatially homogeneous fashion. Instead the system is characterized by

the appearance of dynamical heterogeneities [45–47, 50, 51, 54, 102–114]. This phenomenon

is often called “spatially heterogeneous dynamics”, since there are spatial regions in which

the structural relaxation time can differ by orders of magnitude from the average over the

entire system 1. In the “dynamical heterogeneities” (DH) view, the motion of atoms or

molecules is highly spatially correlated. The presence of these DH has been argued to give

rise to the breakdown of the SE relation [76, 81]. Since the derivation of the Einstein relation

assumes uncorrelated motion of particles, it is reasonable that the emergence of correlations

could result in a failure of the SE relation. The aim of the present work is to assess the

validity of the SE and SED relations in the SPC/E model of water, and consider to what

extent the DH contribute to the SE and SED breakdown.

Computer simulations have been particularly useful for studying DH (e.g., see Refs. [33,

34, 36, 39, 58, 115–118]) since simulations have direct access to the details of the molecular

motion. For water, the existence of regions of enhanced or reduced mobility has also been

identified [58, 119]. In particular, Ref. [58] identifies the clusters of molecules with greater

translational (or center of mass) mobility with the hypothesized “cooperatively rearranging

regions” of the Adam-Gibbs approach [19, 120]. For water, those DH are also accompanied

by spatial heterogeneities [121, 122]

1First suggested by G. Tammann, Der Glasszustand (Leopold Voss, Leipzig, 1933).
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Most computer simulation studies on DH describe these heterogeneities based on the par-

ticle or molecule translational degrees of freedom. We will refer to these DH as translational

heterogeneities (TH). For water, it is also necessary to consider the rotational degrees of

freedom of the molecule. Recently, some computer simulation studies on molecular systems

described the DH based on the molecular rotational degrees of freedom [59, 61, 71, 84, 123–

125]. We will refer to these DH as rotational heterogeneities (RH). For the case of a

molecular model of water, RH were studied [125] and it was found that RH and TH are

spatially correlated. This work extends those results. We find support for the idea that TH

are connected to the failure of the SE relation, and further that RH have a similar effect on

SED relation. Additionally, we find that the breakdown of these relations is accompanied

by the decoupling of the translational and rotational motion.

This work is organized as follows. In the next section we describe the water model and

simulation details. In Sec. 3.2 and Sec. 3.3 we test the validity of the SE and SED rela-

tions and their connection with the presence of DH, respectively. The decoupling between

rotational and translation motion is studied in Sec. 3.6. In Sec. 3.7 we explore the role

of time scale in the breakdown of the SE and SED relations and decoupling of rotational

and translational motion. We summarize our results in Sec. 3.10. We have placed some

technical aspects of the work in appendices to facilitate the flow of our results.

3.1 Model and Simulation Method

We perform molecular dynamics (MD) simulations of the SPC/E model of water [48]. This

model assumes a rigid geometry for the water molecule, with three interaction sites corre-

sponding to the centers of the hydrogen (H) and oxygen (O) atoms. Each hydrogen has a

charge qH = 0.4238 e, and the oxygen charge is qO = −2.0 qH , where e is the magnitude of

the electron charge. The OH distance is 1.0 Å and the HOH angle is 109.47◦, corresponding

to the tetrahedral angle. In addition to the Coulombic interactions, a Lennard-Jones interac-

tion is present between oxygen atoms of two different molecules; the Lennard-Jones parame-

ters are σ = 3.166 Å and ǫ = 0.6502 kJ/mol. We use a cutoff distance of 2.5σ = 7.915 Å for
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the pair interactions and the reaction field technique [126] is used to treat the long range

Coulombic interactions.

We perform simulations in the constant particle number,N , volume, V , and temperature

NV T ensemble with N = 1728 water molecules and fixed density ρ = 1.0 g/cm3. The values

of the simulated temperature are T = 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310,

330 and 350 K. We use the Berendsen method [127] to keep the temperature constant 2.

We use periodic boundary conditions and a simulation time step of 1 fs. To ensure that

simulations attain a steady-state equilibrium, we perform equilibration simulations for at

least the duration specified by Ref. [23]. After these equilibration runs we continue with

production runs of equal duration during which we store the coordinates of all atoms for

data analysis. To improve the statistics of our results, we have performed 5 independent

simulations for each T . Ref. [23] provides further details of the simulation protocol.

3.2 Breakdown of the Stokes-Einstein and Stokes-Einstein-

Debye relations

To assess the validity of the SE and SED relations we consider a simple rearrangement of

Eqs. (3.1) and (3.2), i.e. we define the SE ratio

RSE ≡
Dtη

T
(3.3)

and the SED ratio

RSED ≡
Drη

T
. (3.4)

Both RSE and RSED will be temperature-independent if the SE and SED relations are valid.

To evaluate RSE and RSED, we must first calculate the appropriate diffusion constants.

Following normal procedure, we define

Dt ≡ lim
∆t→∞

1

6∆t
〈r2(∆t)〉. (3.5)

2Although it is desirable to simulate in the microcanonical ensemble (NVE), for long simulations a small

energy drift is unavoidable. To correct this situation, the Berendsen thermostat was employed with a

very long time constant τ = 200 ps. For an interesting discussion on the relation between the Berendsen

thermostat and canonical and microcanonical ensembles, see T. Morishita, J. Chem. Phys. 113, 2976 (2000).
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where 〈r2(∆t)〉 is the translational mean square displacement (MSD) of the oxygen atoms

〈r2(∆t)〉 ≡
1

N

N
∑

i=0

|~ri(t
′) − ~ri(t)|

2. (3.6)

Here, ~ri(t) and ~ri(t
′) are the positions of the oxygen atom of molecule i at time t and t′

respectively, and ∆t = t′ − t. Analogously, we define the rotational diffusion coefficient

Dr ≡ lim
∆t→∞

1

4∆t
〈ϕ2(∆t)〉, (3.7)

where 〈ϕ2(∆t)〉 is the rotational mean square displacement (RMSD) for the vector rota-

tional displacement ~ϕi(∆t). Special care must be taken to calculate 〈ϕ2(∆t)〉 so that it is

unbounded. A detailed discussion of this procedure is provided in Appendix 3.11.1.

We also need the viscosity η to evaluate RSE and RSED. Unfortunately, accurate calcula-

tion of η is computationally challenging. A frequently employed approximation exploits the

fact that η is proportional to the shear stress relaxation time, τs, via the infinite frequency

shear modulus, G∞, which is nearly T -independent [49]. Additionally, we expect that τs

(a “collective property”) should be nearly proportional to other collective relaxation times,

such as the relaxation time τ defined from the coherent intermediate scattering function,

F (q,∆t), where q is the wave vector. Therefore, we substitute η by τ , which should only

affect the value and units of the constants in the RSE and RSED. For the purposes of our

calculations, we define τ by fitting F (q,∆t) at long times with a “stretched” exponential

F (q,∆t) ∼ exp [−(∆t/τ)β ], (3.8)

where 0 < β < 1, and we focus on the q value corresponding to the first peak in the static

structure factor S(q).

Now that we have the necessary quantities, we show RSE and RSED in Fig. 3.1(a) and

Fig. 3.1(b) with the curves labelled with “all”. Both quantities deviate at low T from the

corresponding constant values reached at high temperature indicating a breakdown of both

the SE and SED relations.

Whether there is a breakdown of the SED relation in experiments is not clear. While

some experiments measuring dipole relaxation times show that the SED relation holds down
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Figure 3.1: (a) Stokes–Einstein ratio, Dtτ/T , for the 7% most translationally mobile

molecules (“fastest”), for the 7% least translationally mobile molecules (“slowest”), and

for the entire system (all). There is a breakdown of the Stokes-Einstein relation (con-

stant Stokes-Einstein ratio) at low temperatures in both the fastest and slowest subsets,

as well as for the entire system. (b) Stokes-Einstein-Debye ratio, Drτ/T , for the 7% most

rotationally mobile molecules, for the 7% least rotationally mobile molecules, and for the

entire system (all). Similar to (a), there is a breakdown of the Stokes-Einstein-Debye re-

lation (constant Stokes-Einstein-Debye ratio). (c) and (d) Normalization of the curves in

(a) and (b), respectively, by the corresponding quantities at T = 350 K. The collapse of

these curves demonstrates that the relative deviations from the Stokes-Einstein and Stokes-

Einstein-Debye relations are approximately the same for the corresponding mobility subsets.
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to the glass transition [45, 46], other experiments [128] show that the SED relation fails for

low T . Our simulations are in agreement with the breakdown of the SED ratio observed in,

e.g., Ref. [87]. Figures 3.1(a) and 3.1(b) also show RSE and RSED for different subsets of

molecules to examine the role played by DH. This is discussed in the following Section.

3.3 Identifying mobility subsets

Many theoretical approaches (e.g. [76, 81, 129]) attempt to explain the breakdown of SE

and/or SED in terms of DH. To this end, we must first describe the procedure used to

select molecules whose motion (or lack thereof) is spatially correlated. A variety of ap-

proaches have been used to probe the phenomenon of DH. Here we use one of the most

common techniques: partitioning a system into mobility groups based on their rotational

or translational maximum displacement.

For the TH, we define the translational mobility, µi, of a molecule i at a given time

t0 and for an observation time ∆t, as the maximum displacement over the time interval

[t0, t0 + ∆t] of its oxygen atom [40]

µi(t0,∆t) ≡ max{|~ri(t+ t0) − ~ri(t0)| , t0 ≤ t ≤ t0 + ∆t}. (3.9)

For the RH, following [125], we define a rotational mobility that is analogous to the trans-

lational case. In analogy with Eq. (3.9), we define the rotational mobility at time t0 with

an observation time ∆t as

ψi(t0,∆t) ≡ max{|~ϕi(t+ t0) − ~ϕi(t0)| , t0 ≤ t ≤ t0 + ∆t} . (3.10)

We identify the subsets of rotationally and translationally “fastest” molecules as the 7% of

the molecules with largest ψi and µi, respectively. Analogously, we identify the subsets of

rotationally and translationally “slowest” molecules as the 7% of the molecules with smallest

ψi and µi, respectively. The choice of 7% is made to have a direct comparison with the

analysis of Ref. [58, 125], but the qualitative details of our work are unaffected by modest

changes in this percentage. In the following, we will refer to these subsets of molecules as
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TH and RH, fastest and slowest, depending on whether we consider the top or the bottom

of the distribution of mobilities. We will see that comparing the fastest and the slowest

molecules will reveal new features of DH.

3.4 Stokes-Einstein and Stokes-Einstein-Debye relations for

fastest and slowest molecules

Having identified subsets of highly mobile or immobile molecules, we can calculate the

ratios RSE and RSED by limiting the evaluation of Dt, Dr and τ to these subsets. This

is relatively straightforward for the diffusion constants, since they depend only on single

molecule averages. For τ , the situation is more complex since F (q,∆t) includes cross-

correlations between molecules. Hence we specialize the definition of F (q,∆t) for the TH

and RH subsets by introducing a definition that captures the cross-correlation within subsets

and between a subset and rest of the system. We call this function Fsubset(q,∆t), which we

discuss in detail in Appendix 3.11.2.

We show the value of RSE and RSED in Fig. 3.1(a) and 3.1(b) for the cases when only the

fastest and slowest subsets of molecules are considered. Like the total system average, both

the SE and SED ratios for the subsets deviate at low T from the corresponding constant

value reached at high temperature. Therefore, we observe that the breakdowns of both the

SE and SED relations occur not only in the subset of the fastest molecules, but also in the

slowest. We have also confirmed a breakdown in intermediate subsets.

The most mobile subset of molecules has a consistently greater value of Dtτ/T and

Drτ/T than the rest of the system, while the ratios for the least mobile subsets are always

smaller. This is a result of the fact that the means by which we select the different subsets

most strongly affects the diffusion constant (see Appendix 3.11.2), and hence the differences

in the SE and SED ratios between the full system and the subsets are dominated by the

diffusion constant, rather than by the relaxation time.

In order to compare the relative deviations of these curves from the SE and SED predic-
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tions, we normalize RSE and RSED by their respective high temperature values [Fig. 3.1(c)

and 3.1(d)]. We observe that there is a collapse of all the curves; thus, we conclude that

both the most and least mobile molecules contribute in the same fashion to the breakdown

of SE and SED. Moreover, this result supports the scenario that the deviation from the

SE and SED relations cannot be attributed to only one particular subset of fastest/slowest

molecules, but to all scales of translational and rotational mobility. We have confirmed

this by looking at subsets of intermediate mobility (not shown). Therefore, we interpret

our results as a sign of a “generalized breakdown” in the system under study, in contrast

to a picture where only the most mobile molecules are the origin of the breakdown of SE

and SED, embedded in an inactive background where the SE and SED equations hold (see

e.g. [32]). These results are consistent with the results of Ref. [87], who arrived at the same

conclusion via a different analysis.

3.5 Fractional Stokes-Einstein and Stokes-Einstein-Debye re-

lations

When the SE and SED relations fail, it is frequently observed that they can be replaced by

fractional functional forms [71, 73, 95, 130–135]

Dt ∼
( τ

T

)−ξt

, Dr ∼
( τ

T

)−ξr

(3.11)

with ξt < 1 and ξr < 1. Hence we test to what degree Eqs. (3.11) hold for our system. In

Fig. 3.2 we show a parametric plot of diffusivity versus τ/T for the entire system, and for the

fastest and slowest molecules composing the TH and RH. The results at low temperature

are well fit with the fractional form of SE and SED relations. From Fig. 3.2, ξt for TH is

0.83, 0.84, 0.84 for fastest, slowest, and all, respectively, so all TH have approximately the

same exponent. Similarly, for RH we find that ξr is 0.75, 0.76, 0.75 for fastest, slowest, and

all, respectively.

Reference [87] found a stronger form of this fractional relation. Specifically, Ref. [87]

examined an “ensemble” of systems of the ST2 water model at the same T , which by
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Figure 3.2: (a) Power law fits of translational diffusivity Dt as functions of τ/T , Dt ∼

(τ/T )−ξt , for the eight values of temperature T = 210 . . . 280 K (but not for the remaining

values T = 290 . . . 350 K), for fastest translational heterogeneities (TH), slowest TH, and

all molecules. We estimate ξt ≈ 0.84. The dot-dashed line represents the normal Stokes–

Einstein behavior (ξt = 1). Consistently with the results of Fig. 3.1, the deviation of these

three curves from the Stokes–Einstein behavior is almost identical as reflected in the values

of these fractional exponents. (b) Power law fits of rotational diffusivity, Dr, as functions

of τ/T , Dr ∼ (τ/T )−ξr , of simulations in the same temperature range of (a) for fastest

rotational heterogeneities (RH), slowest RH, and all molecules. We estimate ξr ≈ 0.75. The

dot-dashed line represents the normal Stokes–Einstein–Debye behavior (ξr = 1). Also for

RH, a fractional law is found with the same exponents for the three families considered,

and, noticeably, the deviation from the normal case (ξr = 1), is stronger for Dr than for

Dt, since ξr < ξt.
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statistical variation have fluctuations in the SE and SED ratios. Nonetheless, all systems

collapsed to the same master curve when plotted in the parametric form shown in Fig. 3.2,

meaning that the systems dominated by mobile or immobile molecules collapse to the same

curve. While Ref. [87] employed a very different method (small systems followed for shorter

times), the conclusion of our Fig. 3.2 is the same: a generalized deviation from SE and

SED. However, Fig. 3.2 clearly shows that we do not find a general collapse in our present

calculation. To understand why, we return to the fact that the method by which we define

mobility affects much more strongly the diffusion constants than the coherent relaxation

time, τ . As a result, it is impossible to have the results for the mobile and immobile

subsets to collapse to a single master curve. To observe the same collapse, presumably

one needs a more “neutral” method for selecting the mobile particles—that is one that

does not explicitly bias toward a specific property. Unfortunately, such an approach is not

obvious. However, we reproduced the ensemble approach of Ref. [87], by splitting each of

our 5 simulations into 3 trajectories. We obtain reasonable fluctuations that allow us to test

and confirm (not shown) the observation of collapse of Ref. [87]. Hence, the phenomenon

of homogeneous breakdown of SE and SED appears to be robust for the different water

models.

3.6 Decoupling of translational and rotational motions

The SE and SED relations also imply a coupling between rotational and translational mo-

tion. Specifically, Eqs. (3.1) and (3.2) imply that the ratio

Dr

Dt
=

3

4R2
(3.12)

should remain constant as a function of temperature. Since we have already seen that the

SE and SED ratios are not obeyed, it is likely that the ratio Dr/Dt is also violated [136].

However, it is also possible that Dr/Dt remains constant if both Dr and Dt deviate from

their expected behavior in the same way.

Figure 3.3(a) showsDr/Dt as a function of temperature. As T decreases, we observe that



45

0.3

0.4

0.5

0.6

0.7

D
r / 

D
t  [

10
16

ra
d2 /c

m
2 ]

(a)

200 250 300 350
T [K]

0.1

0.2

0.3

0.4

0.5

0.6

1/
τ lD

t  [
10

17
 s

/c
m

2 ]

τ1
τ2

(b)

Figure 3.3: (a) The ratio of rotational and translational diffusivities Dr/Dt as a function of

temperature. As temperature decreases, this ratio increases indicating a decoupling between

rotation and translational motion. The deviation of Dr is stronger than that of Dt. The line

is a guide for the eye. (b) Same as (a) where the rotational diffusivity, Dr, is replaced by the

inverse of the rotational relaxation time, τℓ with ℓ = 1, 2, as usually done in experiments.

An opposite decoupling is observed in (a) and (b). The lines are guides for the eye.
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Dr/Dt increases, which implies that the breakdown of the SED relation is more pronounced

than that of the SE relation.

Experiments generally do not examine the behavior of Dr/Dt since Dr is not accessible.

Instead, Dr is usually replaced by (τℓ)
−1 with ℓ = 2 [85]. Here, τℓ is the relaxation time of

the rotational correlation function

Cℓ(∆t) ≡ 〈Pℓ(cos[p̂(t) · p̂(t+ ∆t)])〉, (3.13)

where Pℓ(x) is the Legendre polynomial of order ℓ, and p̂(t) is defined in Appendix 3.11.1.

Figure 3.3(b) shows (τℓ)
−1/Dt for ℓ = 1, 2. We observe that (τℓ)

−1/Dt also shows a decou-

pling between rotational and translational motion. However, while Dr/Dt increases upon

cooling, (τℓ)
−1/Dt decreases upon cooling. MD simulations using an ortho-terphenyl (OTP)

model [137] and the ST2 water model [87] also find a qualitatively similar temperature de-

pendence of decoupling of the SE and SED relations depending on whether Dr or τ2 is used.

In the simulations of OTP, it was shown that the inverse relation between Dr and τ2 fails

due to the caging of the rotational motion; this caging results in intermittent large rotations

that are not accounted for by the Debye approximation.

Similar to the analysis of the breakdown of the SE and SED ratios, we can test whether

DH play a strong role in the decoupling by examining the ratio Dr/Dt for the different

mobility subsets. This is slightly complicated by the fact that we can choose mixed mobility

subsets when calculating the ratio. Figure 3.4 shows that the ratio Dr/Dt for all choices of

mobility subsets approximately coincide when scaled by the high temperature behavior of

Dr/Dt. This indicates that (like the breakdown of the SE and SED relations) the decoupling

is uniform across the subsets of mobility.

3.7 Time scales: time dependent Stokes-Einstein and Stokes-

Einstein-Debye relations

The SE and SED relations depend on D and η, which are defined only in the asymptotic

limit of infinite time. In contrast, the time scale on which DH exist is finite, and generally
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Figure 3.4: The ratio of rotational and translational diffusivities, Dr and Dt respectively, for

the following choices of subsets: Dr for fastest translational heterogeneities (TH) divided

by Dt for fastest TH (♦), Dr for slowest TH divided by Dt for slowest TH (△), Dr for

fastest rotational heterogeneities (RH) divided by Dt for fastest RH (©), Dr for slowest

RH divided by Dt for slowest RH (�). The values were normalized by the T = 350 K values

for every curve. The fact that for these four cases Dr/Dt deviates from unity (dashed line)

to approximately the same degree indicates that the decoupling occurs across all four cases.
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shorter that the time scale on which the system becomes diffusive. As a result, making

the connection between DH and the breakdown of SE and SED expressions is difficult. To

address this complication, we incorporate a time dependence in the SE and SED relations,

so that we can evaluate these relations at the time scale of the DH. This point has been

neglected so far in the literature. To define time-dependent versions of the SE and SED

ratios, we first define time-dependent diffusivities

Dt(∆t) ≡
〈r2(∆t)〉

6∆t
, Dr(∆t) ≡

〈ϕ2(∆t)〉

4∆t
, (3.14)

and we also define time-dependent relaxation times

τ(∆t) ≡

∫ t+∆t

t
F (q, t′)dt′ . (3.15)

Note that Dt(∆t) → Dt and Dr(∆t) → Dr in the limit ∆t → ∞. The definition of

τ(∆t) requires some explanation: τ(∆t) is the time integral of the intermediate scattering

function, and τ(∆t) will be proportional to the standard relaxation time τ [Eq. (3.8)] in

the limit ∆t → ∞. There is a constant of proportionality resulting from the stretched

exponential form 3. When, instead, a DH is considered, Fsubset(q,∆t) [see Eq. (3.23)] is

used in the computation of τ(∆t). We choose these definitions since, in the limit ∆t→ ∞,

they converge or are proportional to the corresponding time-independent definitions. We

will use these time-dependent quantities to examine time-dependent generalizations of RSE

[Eq. (3.3)] and RSED [Eq. (3.4)].

3.8 Breakdown time scale

Analyzing the time-dependent ratio D(∆t)τ(∆t)/T (for either rotational or translational

motion) allows one to verify quantitatively the role of the time scale in the SE/SED ratios.

To contrast the behavior of D(∆t)τ(∆t)/T with the average over the entire system, we

define the time dependent “breakdown” ratios as follows:

bTH(∆t) ≡
(D(∆t)τ(∆t)/T )TH

(D(∆t)τ(∆t)/T )all
(3.16)

3Assuming a Kohlrausch form for the intermediate scattering function, exp(−t/τ )β, the integral will yield

τ (∞) = τΓ(β−1)/β, where Γ(x) is the Euler Gamma function.
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Figure 3.5: (a) Time-dependent extension, bTH(∆t), of the Stokes–Einstein relation for the

fastest translational heterogeneities (TH) at different T . For the sake of clarity the curve

corresponding to T = 290 K was removed. (b) Time-dependent extension, bRH(∆t), of the

Stokes–Einstein–Debye relation for the fastest rotational heterogeneities (RH) at different

T . For the sake of clarity the curve corresponding to T = 290 K was removed. In both (a)

and (b), the maxima occur at the time scales corresponding to the end of the cage regime,

when DH are more pronounced. These maxima increase upon cooling, as the DH become

more pronounced.
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and similarly

bRH(∆t) ≡
(D(∆t)τ(∆t)/T )RH

(D(∆t)τ(∆t)/T )all
(3.17)

If the DH are related to the breakdown of the SE and SED relations, then one would

expect that: (i) the bTH and bRH ratios will show the largest deviations from the system

average behavior at the time scale when DH are most pronounced, i.e. approximately at

a time which we denote as t∗, at which the non-Gaussian parameter is a maximum (see

Appendix 3.11.3). (ii) The lower the T , the larger the peak of bDH is (in agreement with

the fact that the DH are more pronounced as T decreases). Figure 3.5(a) for TH and

Fig. 3.5(b) for RH, show the behavior of bDH(∆t) for the fastest subset of molecules, for

different temperatures. Both expectations (i) and (ii) agree with Fig. 3.5.

From Fig. 3.5 we can extract the time tb when bDH(∆t) is a maximum. Figure 3.6(a)

shows tb for each of the four subsets: TH fastest/slowest and RH fastest/slowest. If DH

play a significant role in the breakdown of the SE and SED relations, we would expect

that the maximum contribution to the deviation from the SE and SED relations, occurring

at tb, coincides roughly with the “classical” measure of the characteristic time of DH, t∗.

Comparison of Fig. 3.6(a) and Fig. 3.6(b) for T < 280 K shows that t∗ is slightly larger

than tb for the slowest DH, while is shorter than tb for fastest DH. Nonetheless, tb and t∗

are approximately the same, and so the largest contribution to the SE/SED ratio is on the

time scale when DH are most pronounced. This provides direct evidence for the idea that

the appearance of DH is accompanied by the failure of the SE and SED ratios.

3.9 Decoupling time scales

We next directly probe the relation between DH and the decoupling of Dr and Dt. As

discussed above, the time scale at which the DH are observable is much smaller than the

time scale at which the system is considered diffusive. Therefore, in analogy to the pre-

vious section, we incorporate a time scale in the Dr/Dt ratio so that we can compare the

decoupling between rotation and translation at the time scale of the DH. To this end we
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Figure 3.6: Temperature dependence of (a) tb, the time at which the time-dependent exten-

sions of the Stokes–Einstein and Stokes–Einstein–Debye relations, bTH and bRH respectively,

have maxima, and (b) t∗, the time at which the non–Gaussian parameter, α2(∆t), reaches a

maximum. t∗ indicates the time scale corresponding to the end of the cage regime. We show

the results when considering molecules belonging to translational heterogeneities, rotational

heterogeneities, and also for the entire system.
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and translational diffusivity for fastest translational heterogeneities (TH), normalized by

the average over the entire system. We show all the simulated temperatures. (b) Temporal

behavior of the ratio of the time-dependent rotational diffusivity and translational diffusivity

for fastest rotational heterogeneities (RH), normalized by the average over the entire system.

We show all the simulated temperatures. The figure shows that the decoupling of rotation

from translation is increasingly more pronounced as T decreases and is a maximum (a) or

minimum (b) on the time scale of the DH.
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introduce the ratios

dTH(∆t) ≡
(Dr(∆t)/Dt(∆t))TH

(Dr(∆t)/Dt(∆t))all
, (3.18)

and similarly

dRH(∆t) ≡
(Dr(∆t)/Dt(∆t))RH

(Dr(∆t)/Dt(∆t))all
. (3.19)

Figure 3.7(a) shows the results for dTH(∆t) for the fastest subsets of molecules. For short

times, dTH(∆t) does not depend on time and temperature, since in this initial temporal

regime the dynamics at all temperatures is ballistic, i.e., both 〈ϕ2(∆t)〉 and 〈r2(∆t)〉 are

approximately linear with (∆t)2. At intermediate times dTH(∆t) develops a distinct maxi-

mum which increases in magnitude and shifts to larger observation times as T is reduced.

The maximum occurs at the time scale where the fastest molecules of the TH and RH “break

their cages” and enter the corresponding diffusive regimes, see Fig. 3.6(b). Therefore, the

results of Fig. 3.7(a) also suggest that the decoupling between rotational and translational

motion is largest at approximately the same time scale at which the DH are most pro-

nounced. We note from Fig. 3.7(a) that dTH(∆t) < 1, indicating that the decoupling of

rotational and translational motion observed in the fastest subsets of TH is smaller than

that from the average over the entire system. As we focus in slower subsets of TH for the

same T , we observe that the maximum in dTH(∆t) decreases at any given T .

Figure 3.7(b) shows dRH(∆t) for the fastest subsets of molecules. Similar to the be-

havior of dTH(∆t), at short times dRH(∆t) does not depend on time nor temperature;

molecules move ballistically in this regime. The maxima in dRH(∆t) at ∆t ≈ 0.1 ps for

all temperatures are a consequence of the librational molecular motion, enhanced in this

case because we are selecting the fastest subset of RH. At intermediate times, we observe a

broad minimum in dRH(∆t) centered at ∆t ≈ t∗; this minimum becomes deeper and shifts

to later times upon cooling, suggesting that the decoupling in the fastest subset of RH is

largest at approximately the same time scale at which the DH are more pronounced. The

fact that dTH(∆t) shows a maximum at approximately t∗, while dRH(∆t) shows a minimum

at t∗ is because fastest subsets of RH tend to enhance the rotational motion with respect to

the translational motion, while the opposite situation occurs for the fastest subsets of TH.
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We note from Fig. 3.7(b) that dRH(∆t) > 1, indicating that the decoupling of rotational

and translational motion observed in the fastest subsets of RH is larger than that found in

the average over the entire system.

In short, the behavior of dTH(∆t) and dRH(∆t) indicates that the emergence of DH is

correlated to the rotation/translation decoupling, just as it does for the breakdown of the

SE and SED relations.

3.10 Summary

In this work, we tested in the SPC/E model for water (i) the validity of the SE and SED

equations, (ii) the decoupling of rotational and translational motion, and (iii) the relation

of (i) and (ii) to DH. We found that at low temperatures there is a breakdown of both

the SE and SED relations and that these relations can be replaced by fractional functional

forms. The SE breakdown is observed in every scale of translational mobility. Similarly,

the SED breakdown is observed in every scale of rotational mobility. The view commonly

accepted is that the origin of the breakdown of the SE and SED relations is to be attributed

to the most mobile molecules embedded in an inactive background where these relations

hold. Instead our results support the view of a “generalized breakdown”.

We also found that, upon cooling, there is a decoupling of translational and rotational

motion. This decoupling is also observed in all scales of rotational and translational mobil-

ities. In agreement with MD simulations of an OTP model [137], we find that an opposite

decoupling is observed depending on whether one uses the rotational diffusivity, Dr, or the

rotational relaxation time, τ2. In the first case, rotational motion is enhanced upon cooling

with respect to the translational motion, while the opposite situation holds when choosing

τ2. This is particularly relevant for experiments, where typically only τ2 is accessible.

We also found that as the decoupling of Dr/Dt increases, the number of molecules

belonging simultaneously to both RH and TH also increases. This is counter-intuitive since

a stronger decoupling would suggest less overlapping of TH and RH. Therefore we conclude

that the decoupling of Dr/Dt is significant even at the single molecule level.
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We also explored the role of time scales in the breakdown of the SE and SED relations

and decoupling. To do this we introduced time dependent versions of the SE and SED

expressions. Our results suggest that both the decoupling and SE and SED breakdowns

are originated at the time scale corresponding to the end of the cage regime, when diffusion

starts. This is also the time scale at which the DH are more relevant.

Our work also demonstrates that selecting DH on the basis of translational or rotational

displacement more strongly biases the calculation of diffusion constants than the other

dynamical properties. If appropriate care is taken, this should not be problematic, but it

does make apparent that an alternative approach to identify DH would be valuable. This

is especially true when contrasting behavior of diffusion constants and relaxation times, as

is the case for the SE and SED relations.

3.11 Methods

3.11.1 Evaluation of the rotational mean square displacement

To calculate Dr [Eq. (3.7)] we consider the behavior of the normalized polarization vector

p̂i(t) for molecule i (defined as the normalized vector from the center of mass of the water

molecule to the midpoint of the line joining the two hydrogens). The molecular rotation will

cause a rotation of p̂i(t). A naive definition of angular displacement as p̂i(t)− p̂i(0) would be

insensitive to full molecular rotations, since it would result in a bounded quantity. Following

Ref. [123], we avoid this complication by defining the vector rotational displacement in the

time interval [t, t+ ∆t] as

~ϕi(∆t) ≡

∫ t+∆t

t
∆~ϕi(t

′)dt′, (3.20)

where ∆~ϕi(t
′) is a vector with direction given by p̂i(t

′) × p̂i(t
′ + dt′) and with magnitude

given by |∆~ϕi(t
′)| ≡ cos−1 ( p̂i(t

′) · p̂i(t
′ + dt′)), i.e., the angle spanned by p̂i in the time

interval [t′, t′ + dt′]. Thus, the vector ~ϕi(∆t) allows us to define a trajectory in a 3D space

representing the rotational motion of molecule i, analogous to the trajectory defined by

~ri(∆t) for the translational case. We define, in analogy to MSD, a rotational mean square
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displacement (RMSD) [84, 123, 125]

〈ϕ2(∆t)〉 ≡
1

N

N
∑

i=0

|~ϕi(t+ ∆t) − ~ϕi(t)|
2. (3.21)

Using this form, we define Dr as given by Eq. (3.7), analogous to the definition of Dt.

We have verified that there is no qualitative difference, in the results of the present work,

when the polarization vector is replaced by the other two principal directions of the water

molecule.

3.11.2 Correlation functions for dynamical heterogeneities

We introduce a MSD, 〈r2(∆t)〉, for the fastest and slowest subsets of molecules by limiting

the sum in the Eq. (3.6) to the molecules in the corresponding subset. The different MSDs

at T = 210 K are shown in Fig. 3.8(a). We note that since the most and least mobile 7%

of the molecules will generally vary as a function of time, the molecules used to calculate

〈r2(∆t)〉 will change with time; in other words, when a molecule ceases being part of a DH,

it is no longer considered in the computation of the MSD and the focus is shifted to the

new subset of molecules belonging to the DH considered. Analyzing the 〈r2(∆t)〉 for the

collection of subsets from most mobile to least mobile has the advantage that the mean of

〈r2(∆t)〉 over the subsets converges to the MSD for the full system. In a similar fashion the

RMSD, 〈ϕ2(∆t)〉, is calculated also for the fastest and slowest rotationally mobile molecules

[Fig. 3.8(b)].

To complement the single particle dynamics determined by 〈r2(∆t)〉 and 〈ϕ2(∆t)〉, we

also evaluate the coherent intermediate scattering function

F (q,∆t) ≡
1

N S(q)

N
∑

j=1

e−iqrj(t+∆t)
N

∑

k=1

eiqrk(t), (3.22)

where S(q) is the structure factor. F (q,∆t) reflects two-particle temporal correlations

instead of single-particle correlations (as in the case of the MSD). The normalization factors

ensure that F (q, 0) = 1. In analogy to our analysis of 〈r2(∆t)〉, we would like to evaluate

the contribution to F (q,∆t) made by subsets of molecules. Naively, one might think this
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Figure 3.8: Example of time correlation functions limited to subsets of DH. (a) Mean square

displacement (MSD) and (b) rotational mean square displacement (RMSD) at T = 210 K

for the fastest and slowest translational heterogeneities (TH) and rotational heterogeneities

(RH) respectively, as well as for the entire system. Intermediate scattering function,

F (q,∆t), at T = 210 K for (c) the fastest and slowest TH, and entire system and (d)

the fastest and slowest RH and the entire system.
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can be simply done by limiting the sums in Eq. (3.22) to solely those molecules within the

subset. However, taking the mean over the subsets of such a quantity will not recover the

complete F (q,∆t), since there will be no information on the cross-correlations between the

subsets. In order to include these correlations and define a function that, when averaged

over subsets, will return F (q,∆t) (as is the case for MSD and RMSD), we simply limit

one of the two sums to the subset, while the other sum still extends over all molecules.

Mathematically, we define

Fsubset(q,∆t) ≡
1

Nsubset S(q)

N
∑

j=1

e−iqrj(t+∆t)
∑

k∈subset

eiqrk(t). (3.23)

Note that one must make the choice whether to limit the sum to the subset at time t or

t + ∆t; we have found that in practice there is little, if any, qualitative difference in this

choice. Thus we measure the correlations between the subset of molecules at time t with

all molecules at time t + ∆t. Additionally, Fsubset(q, 0) is not necessarily 1; forcing this

normalization would not satisfy the desired condition that the mean over subsets returns

the average over all molecules. In all cases, we evaluate Fsubset(q,∆t) at q = 18 nm−1, the

value of the transferred momentum at the first maximum of the structure factor where the

relaxation is slowest (except for the q → 0 limit). Figure 3.8(c) and 3.8(d) show F (q,∆t)

for all molecules, and for the fastest and the slowest TH and RH.

At this point, it is important to compare the behavior of 〈r2(∆t)〉 and 〈ϕ2(∆t)〉 with that

of F (q,∆t) for the TH and RH subsets. Since we define mobility on the basis of displace-

ment, the behavior of 〈r2(∆t)〉 and 〈ϕ2(∆t)〉 for the subsets are much more strongly affected

than Fsubset(q,∆t) for the subsets. Additionally, Fsubset(q,∆t) includes cross-correlations

both within and between subsets that a single particle definition of mobility does not in-

clude. More specifically, the results in Fig. 3.8 at T = 210 K show that there is roughly two

orders of magnitude difference between 〈r2(∆t)〉 for the most and least mobile molecules

(and similar difference for 〈ϕ2(∆t)〉). We also find that there is roughly also two orders

of magnitude difference between the most and least mobile molecules for Dt and Dr. For

higher T , the difference is less pronounced. When we examine the relaxation of F (q,∆t)
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for the most and least mobile subsets, we find only a difference of a factor of ≈ 2 between

the time scales for relaxation. Therefore — not surprisingly — selecting mobility based on

single particle displacement results in a much stronger effect on diffusion than it does for

collective relaxation phenomena. This fact is important for the comparison between this

work and a previous work [87].

3.11.3 Characteristic time of dynamical heterogeneities

Since we analyze the DH both in the context of translational and rotational motions, it is

natural to ask at what time scale the TH and RH are more pronounced and to what degree

the TH and RH subsets overlap each other. References [58] and [125] show that the fastest

subsets of TH and RH form clusters, and that these clusters are larger at approximately

the time t∗ corresponding to the onset of the diffusive regime, as indicated by 〈r2(∆t)〉 and

〈ϕ2(∆t)〉 respectively. Normally t∗ for the translational case is defined as the maximum in

the non-Gaussian parameter [65]

α2(∆t) ≡
3 < r4(∆t) >

5 < r2(∆t) >
− 1 , (3.24)

where 〈r4(∆t)〉 and 〈r2(∆t)〉 are the fourth and second moment of the displacement distri-

bution, respectively (the last is also the MSD). α2(∆t) is known to be identically zero for

a Gaussian distribution, and thus it signals when the dynamics does not generate such a

Gaussian distribution of displacements. In the present study, we use either translational,

~ri(∆t), or rotational, ~ϕi(∆t), displacement for TH and RH, respectively, when computing

α2(∆t). Figure 3.6(b) shows t∗ as a function of T defined for the fastest and slowest subsets

of both the TH and RH. We also include the corresponding values of t∗ for the entire system.

Figure 3.6(b) shows that there is no qualitative difference in shape of the curve of t∗(T ) for

the different subsets considered and the entire system.

Since the values of t∗ for TH and RH are similar, we expect that there is some coupling

between TH and RH. Previously, Chen et al. [138] found that at large momentum transfer

q, there is coupling between translational and rotational motion. The maximum correlation
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occurs at the cage relaxation time, t∗, for large values of q. Ref. [125] found a spatial

correlation between RH and TH. Along similar lines, we examine the overlap between these

subsets. Figure 3.9 shows the overlap between the fastest subset of molecules belonging

to TH and RH, as a function of ∆t and T . Specifically, we count the number of fastest

molecules belonging simultaneously to TH and RH as a function of observation time ∆t.

Similar to Fig. 9 in Ref. [138], the strength of this coupling reaches its maximum at the cage

relaxation times, but these times are consistently shorter than those reported in [138]; this

is likely to be due to the fact that we consider fastest TH and fastest RH in this calculation,

while Ref. [138] considers all the molecules of the system. Figure 3.9 indicates that, at the

lowest temperature simulated, about 45% of the molecules comprising the fastest subset of

TH coincide with the ones in the fastest subset of RH.



Chapter 4

Water and the glass transition of

biomolecules

Both experiments and computer simulation studies have shown that hydrated proteins un-

dergo a “glass–like” transition near 200 K [139–143], above which proteins exhibit diffusive

motion, and below which the proteins are trapped in harmonic modes. An important is-

sue is to determine the effects of hydration water on this dynamical transition [144–148].

Experiments and computer simulations suggested that when a protein is solvated, the pro-

tein glass transition is strongly coupled to the solvent, leading to the question of whether

the protein glass transition is directly related to a dynamic transition in the surrounding

solvent [149].

Here we explore the hypothesis that the observed glass transition in biomolecules is

related to the liquid-liquid phase transition [14, 150] and test this hypothesis by computer

simulations. Specifically, using molecular dynamics (MD) simulations, we study the dy-

namic and thermodynamic behavior of lysozyme and DNA in hydration TIP5P [151–153]

water, by means of the software package GROMACS [154] for (i) an orthorhombic form of

hen egg-white lysozyme [155] and (ii) a Dickerson dodecamer DNA [156] at constant pres-

sure P = 1 atm, several constant temperatures T , and constant number of water molecules

N (NPT ensemble) in a simulation box with periodic boundary conditions. We first al-

low the system to equilibrate at constant temperature and pressure using the Berendsen
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method. This initial equilibration is followed by a long production run during which we

calculate the dynamic and static properties. Equilibration times vary for different temper-

atures from a few ns for high temperatures to as much as 40 ns for low temperatures. The

MD for DNA was performed using the Amber force field [157]. For lysozyme simulations,

the system consists of a single protein in the native conformation solvated in N = 1242

TIP5P water molecules [151–153]. These simulation conditions correspond to a ratio of

water mass to protein mass of 1.56). The DNA system consists of a single DNA helix

with 24 nucleotides solvated in N = 1488 TIP5P water molecules, which corresponds to an

experimental hydration level of 3.68.

The simulation results for protein and protein hydration water are shown in Fig. 4.1(a).

We calculate the root mean square (RMS) fluctuations
〈

x2
〉1/2

of protein from the equili-

brated configurations, first for each atom over 1 ns, and then averaged over the total number

of atoms in the protein. We find that the protein fluctuations [Fig. 4.1(a)] change functional

form below Tp ≈ 254±5 K. At low temperatures the residues perform harmonic vibrational

motion near the local potential energy minima thus one expects that tha evarage square

fluctuations grow lineary with temperature. Moreover, upon cooling, the diffusivity of hy-

dration water exhibits a dynamic crossover from non–Arrhenius1 to Arrhenius behavior at

the same crossover temperature T× ≈ 254±5 K [Fig. 4.2(a)]. The actual dynamic transition

temperature across the Widom line (254 K) is higher than TMCT ≈ 230 K. A similar tem-

perature dependence of diffusivity of bulk TIP5P water was observed [159]. The coincidence

of T× with Tp indicates that the protein is strongly coupled with the surrounding solvent,

in agreement with recent experiments [160]. Note that T× is much higher than the glass

transition temperature estimated for TIP5P as Tg = 215K [153]. Thus this crossover is not

likely to be related to the glass transition in water. Here we will explore the possibility that

instead it is related to a change in the properties of protein hydration water.

Experimental studies of supercritical water [161] indeed show that various response

1As a comparison, we used a prediction of the “mode coupling theory” (MCT) [158] to fit the data with

parameters TMCT ≈ 227 and γ ≈ 2.72.
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Figure 4.1: RMS fluctuation of (a) lysozyme, and (b) DNA showing that there is a transition

around Tp ≈ 254 ± 5 K. The simulations for DNA for T < 220 K are not equilibrated, but

we did not observe any significant change in the RMS fluctuations within the equilibration

time. (c) The specific heat of the combined system, lysozyme and water, and (d) DNA

display maxima at TW ≈ 255 K.
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Figure 4.2: Diffusion constant of hydration water surrounding (a) lysozyme, and (b) DNA

shows a dynamic transition from a power law behavior to an Arrhenius behavior at T× ≈

250 ± 5 K.

functions have sharp maxima in the analogous region of the phase diagram above the liquid-

vapor critical point C1, but no direct experimental indication of a liquid-liquid critical

point C2 had been available due to unavoidable crystallization of bulk water2. Previously

it was found that water remains unfrozen in hydrophilic nanopores for T > 200 K [163,

164]. Moreover when cooled at constant pressure for P < PC2 the dynamics changes from

non–Arrhenius to Arrhenius at T = T×(P ). The line T×(P ) is located in the range of

temperatures between 200 − 230 K and has a negative slope in the P-T phase diagram.

Upon crossing the first order phase transition line above the critical pressure, the ther-

modynamic state functions change discontinuously. Below the critical pressure they rapidly

but continuously change upon cooling, see path α in Fig.1(c) of [159]. Indeed computer sim-

ulations of TIP5P[151, 153] and ST2 [150, 159, 162] water models show that many response

functions such as isobaric specific heat and isothermal compressibility have sharp maxima

as functions of temperature if the system is cooled isobarically at P < PC2. The loci of

these maxima asymptotically approach one another as the critical point is approached, be-

cause all of them become expressible in terms of the correlation length which is diverging

at the critical point. This asymptotic line is called the Widom line. Computer simulations

2The situation is rather complex. Many different scenarios have been proposed in the literature, including

a scenario with multiple liquid-liquid critical points [153, 162].
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suggest that this line may be associated with TW (P ), the Widom line, near which the local

dynamic characteristics must rapidly change from those resembling the properties of HDL

at high temperature to those of LDL at low temperature [159].

We also study the static properties — thermodynamics and structural properties. We

first calculate the constant pressure specific heat CP by numerical differentiation of the

total enthalpy of the system (protein and water) as a function of temperature. This is

done by fitting the enthalpy data by a fourth order polynomial and then by taking the

derivative with respect to temperature. Figure 4.1(c) displays a maximum of CP (T ) at

TW ≈ 255 ± 5 K. The fact that Tp ≈ T× ≈ TW is evidence of the strong correlation of

the changes in protein fluctuations [Fig. 4.1 (a)] with the hydration water thermodynamics

[Fig. 4.1 (c)]. Thus our results are consistent with the possibility that the protein glass

transition is related to the Widom line (and hence to the hypothesized liquid-liquid critical

point). Crossing the Widom line corresponds to a continuous but rapid transition of the

structural and thermodynamical properties of water from those resembling the properties

of a local HDL structure for T > TW(P ) to those resembling the properties of a local LDL

structure for T < TW(P ) [159, 164]. A consequence is the expectation that the fluctuations

of the protein residues in low density water (more ordered and more rigid) just below the

Widom line should be smaller than the fluctuations in high density water (less ordered and

less rigid) just above the Widom line.

To test this interpretation, we analyze the structure of hydration water on the two sides

of the Widom line. Fig. 4.3(a) shows the oxygen-oxygen radial distribution function g(r) on

two sides of the Widom line for lysozyme hydration water. The first peak of g(r) on the low

temperature (T=230 K) side is sharper and the first minimum is shallower compared to the

g(r) on the high temperature (T=270 K, 300 K) side of the Widom line, suggesting that

water is more structured on the low temperature side. Further, we calculate the structure

factor S(q) of lysozyme hydration water [Fig. 4.3(c)]. The first peak of the structure factor

associated with the hydrogen bond is very sharp and pronounced, for T < TW(P ), it is

diminished and moves to larger wave vectors for T > TW(P ), consistent with a LDL-like
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Figure 4.3: Oxygen–Oxygen pair correlation function g(r) for (a) lysozyme hydration water,

and (b) DNA hydration water, on crossing the Widom line from the HDL side (T = 270 K,

300 K) to the LDL side (T = 230 K). Structure factor of hydration water surrounding (c)

lysozyme, and (d) DNA on two sides of the the Widom line. Upon crossing the Widom line,

the local structure of water changes from more HDL-like to more LDL-like, reflected in the

sharper and more prominent first peak. The first peak associated with the hydrogen bond

distance also moves to small wave vectors, suggesting a change from the HDL to the LDL-

like local structure of water at low temperatures. Derivative with respect to temperature

of the orientational order parameter Q for (e) lysozyme and (f) DNA.
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local structure for T < TW(P ) and a HDL-like local structure for T > TW(P ). Indeed we

see the orientational order parameter, defined in [165], of water molecules increase upon

cooling and the rate of increase is maximum at the Widom line temperature [Fig 4.3(e)-(f)

shows the rate of change of Q with temperature].

Previous simulations [148] and experiments [147] suggest a “glass–like” transition of

DNA around temperature 230 K. Hence to test if the dynamic crossover depends on the

solute, we performed a parallel study of the DNA Dickerson dodecamer [156]. We find

that fluctuations3 of the DNA molecule [Fig. 4.1(b)] change their behavior approximately

at the same temperature as lysozyme, with T ≈ 254 ± 5 K. The dynamic crossover in the

hydration water upon cooling from non–Arrhenius to Arrhenius behavior takes place at

T× ≈ 255 ± 5 K [Fig. 4.2(b)]. The specific heat maximum is located at TW ≈ 255 ± 5 K

[Fig. 4.1(d)]. For DNA hydration water CP has a maximum at T ≈ 254 K, similarly

to the protein case of Fig. 4.1(c)4. Fig. 4.3(b) and Fig. 4.3(d) show g(r) and S(q) for the

DNA hydration water5. The quantitative agreement of these results with the corresponding

results for lysozyme suggests that it is indeed the changes in the properties of hydration

water that are responsible for the changes in dynamics of the protein and DNA biomolecules.

Our results are in qualitative agreement with recent experiments on hydrated protein and

DNA [166] which found the crossover in side-chain fluctuations at Tp ≈ 225 K .

3The RMS fluctuation for DNA was calculated in the same fashion as for lysozyme.
4The values of CP are different in each case with Cbulk

P (TW ) > CDNA
P (TW ) > Cprotein

P (TW ), probably

because DNA hydration level (368%) is larger than lysozyme hydration level (156%) and the fact that the

specific heat of water is larger than protein and DNA.
5The difference in the height of the first peak of g(r) for lysozyme and DNA hydration water is due to

the different hydration levels of the two systems.



Chapter 5

Cell model for water

Water is possibly the most important liquid for life [167] and, at the same time, is a

very peculiar liquid [3]. In the stable liquid regime its thermodynamic response functions

behave qualitatively differently than a typical liquid. The isothermal compressibility KT ,

for example, has a minimum as a function of temperature at T = 46 ◦C, while for a typical

liquid KT monotonically decreases upon cooling. Water’s anomalies become even more

pronounced as the system is cooled below the melting point and enters the metastable

supercooled regime [168].

Different hypothesis have been proposed to rationalize the anomalies of water [169]. All

these interpretations, but one, predict the existence of a liquid–liquid phase transition in the

supercooled state, consistent with the experiments to date [169] and supported by different

models [3].

To discriminate among the different interpretations, many experiments have been per-

formed [99]. However, the freezing in the temperature-range of interest can be avoided only

for water in confined geometries or on the surface of macromolecules [169, 170]. Since exper-

iments in the supercooled region are difficult to perform, numerical simulations have played

an important role in recent years to help interpret the data. However, also the simulations

at very low temperature T are hampered by the glassy dynamics of the empirical models

of water [171, 172]. For these reasons is important to implement more efficient numerical

simulations for simple models, able to capture the fundamental physics of water but also
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less computationally expensive. Here we introduce the implementation of a Wolff cluster

algorithm [173] for the Monte Carlo (MC) simulations of a cell model for water [174, 175].

The model is able to reproduce all the different scenarios proposed to interpret the be-

havior of water [176] and has been analyzed (i) with mean field (MF) [174, 175, 177, 178],

(ii) with Metropolis MC simulations [172, 179] and (iii) with Wang-Landau MC density of

state algorithm [180]. Recent Metropolis MC simulations [172] have shown that very large

times are needed to equilibrate the system as T → 0, as a consequence of the onset of

the glassy dynamics. The implementation of Wolff clusters MC dynamics, presented here,

allows us to (i) drastically reduce the equilibration times of the model at very low T and (ii)

give a geometrical characterization of the regions of correlated water molecules (clusters) at

low T and show that the liquid–liquid phase transition can be interpreted as a percolation

transition of the tetrahedrally ordered clusters.

5.1 The model

The system consists of N particles distributed within a volume V in d dimensions. The

volume is divided into N cells of volume vi with i ∈ [1, N ]. For sake of simplicity, these

cells are chosen of the same size, vi = V/N , but the generalization to the case in which

the volume can change without changes in the topology of the nearest–neighbor (n.n.) is

straightforward. By definition, vi ≥ v0, where v0 is the molecule hard-core volume. Each

cell has a variable ni = 0 for a gas-like or ni = 1 for a liquid-like cell. We partition the total

volume in a way such that each cell has at least four n.n. cells, e.g. as in a cubic lattice

in 3d or a square lattice in 2d. Periodic boundary conditions are used to limit finite–size

effects.

The system is described by the Hamiltonian [174, 175]

H = −ǫ
∑

〈i,j〉

ninj − J
∑

〈i,j〉

ninjδσij ,σji
− Jσ

∑

i

ni

∑

(k,l)i

δσik ,σil
, (5.1)

where ǫ > 0 is the strength of the van der Waals attraction, J > 0 accounts for the hydrogen

bond energy, with four (Potts) variables σij = 1, . . . , q representing bond indices of molecule
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Figure 5.1: A pictorial representation of five water molecules in 3d. Two hydrogen bonds

(grey links) connect the hydrogens (in blue) of the central molecule with the lone electrons

(small gray lines) of two nearest neighbor (n.n.) molecules. A bond index (arm) with q = 6

possible values is associated to each hydrogen and lone electron, giving rise to q4 possible

orientational states for each molecule. A hydrogen bond can be formed only if the two facing

arms of the n.n. molecules are in the same state. Arms on the same molecule interact among

themselves to mimic the O-O-O interaction that drives the molecules toward a tetrahedral

local structure.
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i with respect to the four n.n. molecules j, δa,b = 1 if a = b and δa,b = 0 otherwise, and

〈i, j〉 denotes that i and j are n.n. The model does not assume a privileged state for bond

formation. Any time two facing bond indices (arms) are in the same (Potts) state, a bond

is formed. The third term represents an intramolecular (IM) interaction accounting for the

O–O–O correlation [181], locally driving the molecules toward a tetrahedral configuration.

When the bond indices of a molecule are in the same state, the energy is decreased by

an amount Jσ > 0 and we associate this local ordered configuration to a local tetrahedral

arrangement. The notation (k, l)i indicates one of the six different pairs of the four bond

indices of molecule i (Fig.5.1). The model does not differentiate “donor” molecule and

“acceptor” molecule in the hydrogen bond definition. This simplification increases the

number of possible bonded configurations, hence increases the entropy associated to the

local tetrahedral configurations. A simple modification of the model could explicitly take

into account this feature, however the comparison of the results from the present version

of the model with experiments and simulations from more detailed models shows good

qualitative agreement.

Experiments show that the formation of a hydrogen bond leads to a local volume ex-

pansion [3]. Thus in our system the total volume is

V = Nv0 +NHBvHB , (5.2)

where

NHB ≡
∑

<i,j>

ninjδσij ,σji
(5.3)

is the total number of hydrogen bonds, and vHB is the constant specific volume increase

due to the hydrogen bond formation.

5.2 Mean–field analysis

In the mean–field (MF) analysis the macrostate of the system in equilibrium at constant

pressure P and temperature T (NPT ensemble) may be determined by a minimization of
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the Gibbs free energy per molecule, g ≡ (〈H 〉 + PV − TS)/Nw, where

Nw =
∑

i

ni (5.4)

is the total number of liquid-like cells, and S = Sn + Sσ is the sum of the entropy Sn over

the variables ni and the entropy Sσ over the variables σij .

A MF approach consists of writing g explicitly using the approximations

∑

<i,j>

ninj −→ 2Nn2 (5.5)

∑

<i,j>

ninjδσij ,σji
−→ 2Nn2pσ (5.6)

∑

i

ni

∑

(k,l)i

δσik ,σil
−→ 6Nnpσ (5.7)

where n = Nw/N is the average of ni, and pσ is the probability that two adjacent bond

indices σij are in the appropriate state to form a hydrogen bond.

Therefore, in this approximation we can write

V = Nv0 + 2Nn2pσvHB , (5.8)

〈H 〉 = −2 [ǫn+ (Jn+ 3Jσ) pσ]nN. (5.9)

The probability pσ, properly defined as the thermodynamic average over the whole

system, is approximated as the average over two neighboring molecules, under the effect of

the mean-field h of the surrounding molecules

pσ =
〈

δσij ,σji

〉

h
. (5.10)

The ground state of the system consists of all N variables ni = 1, and all σij in the

same state. At low temperatures, the symmetry will remain broken, with the majority of

the σij in the preferred state. We associate this preferred state to the tetrahedral order of

the molecules and define mσ as the density of the bond indices in the tetrahedral state, with

0 ≤ mσ ≤ 1. Therefore, the number density nσ of bond indices σij is in the tetrahedral

state is

nσ =
1 + (q − 1)mσ

q
. (5.11)
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Since an appropriate form for h is [174, 175]

h = 3Jσnσ, (5.12)

we obtain that 3Jσ

q ≤ h ≤ 3Jσ .

The MF expressions for the entropies Sn of the N variables ni, and Sσ of the 4Nn

variables σij , are then [177]

Sn = −kBN(n log(n) + (1 − n) log(1 − n)) (5.13)

Sσ = −kB4Nn[nσ log(nσ)+

(1 − nσ) log(1 − nσ) + log(q − 1)], (5.14)

where kB is the Boltzmann constant.

Equating

pσ ≡ n2
σ +

(1 − nσ)2

q − 1
, (5.15)

with the approximate expression in Eq. (5.10), allows for solution of nσ, and hence g, in

terms of the order parameter mσ and n.

By minimizing numerically the MF expression of g with respect to n and mσ, we find the

equilibrium values n(eq) and m
(eq)
σ and, with Eqs. (5.4) and (5.2), we calculate the density ρ

at any (T, P ) and the full equation of state. An example of minimization of g is presented in

Fig. 5.2 where, for the model’s parameters J/ǫ = 0.5, Jσ/ǫ = 0.05, vHB/v0 = 0.5, q = 6, a

discontinuity in m
(eq)
σ is observed for Pv0/ǫ > 0.8. As discussed in Ref.s [174, 175, 179] this

discontinuity corresponds to a first order phase transition between two liquid phases with

different degree of tetrahedral order and, as a consequence, different density. The higher P

at which the change in m
(eq)
σ is continuous, corresponds to the pressure of a liquid–liquid

critical point (LLCP). The occurrence of the LLCP is consistent with one of the possible

interpretations of the anomalies of water, as discussed in Ref. [177]. However, for different

choices of parameters, the model reproduces also the other proposed scenarios [176].
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Figure 5.2: Numerical minimization of the molar Gibbs free energy g in the MF approach.

The model’s parameters are J/ǫ = 0.5, Jσ/ǫ = 0.05, vHB/v0 = 0.5 and q = 6. In each

panel we present g (dashed lines) calculated at constant P and different values of T . The

thick line crossing the dashed lines connects the minima m
(eq)
σ of g at different T . Upper

panel: Pv0/ǫ = 0.7, for T going from kBT/ǫ = 0.06 (top) to 0.08 (bottom). Middle

panel: Pv0/ǫ = 0.8, for T going from kBT/ǫ = 0.05 (top) to 0.07 (bottom). Lower panel:

Pv0/ǫ = 0.9, for T going from kBT/ǫ = 0.04 (top) to 0.06 (bottom). In each panel dashed

lines are separated by kBδT/ǫ = 0.001. In all the panels m
(eq)
σ increases when T decreases,

being 0 (marking the absence of tetrahedral order) at the higher temperatures and ≃ 0.9

(high tetrahedral order) at the lowest temperature. By changing T , m
(eq)
σ changes in a

continuous way for Pv0/ǫ = 0.7 and 0.8, but discontinuous for Pv0/ǫ = 0.9 and higher P .
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5.3 The simulation with the Wolff clusters Monte Carlo al-

gorithm

To perform MC simulations in the NPT ensemble, we consider a modified version of the

model in which we allow for continuous volume fluctuations. To this goal, (i) we assume

that the system is homogeneous with all the variables ni set to 1 and all the cells with

volume v = V/N ; (ii) we consider that V ≡ VMC + NHBvHB, where VMC > Nv0 is a

dynamical variable allowed to fluctuate in the simulations; (iii) we replace the first (van der

Waals) term of the Hamiltonian in Eq. (5.1) with a Lennard-Jones potential with attractive

energy ǫ > J and truncated at the hard-core distance

UW (r) ≡











∞ if r 6 r0,

ǫ
[

(

r0

r

)12
−

(

r0

r

)6
]

if r > r0.
(5.16)

where r0 ≡ (v0)
1/d; the distance between two n.n. molecules is (V/N)1/d, and the distance

r between two generic molecules is the Cartesian distance between the center of the cells in

which they are included.

The simplification (i) could be removed, by allowing the cells to assume different vol-

umes vi and keeping fixed the number of possible n.n. cells. However, the results of the

model under the simplification (i) compares well with experiments [177]. Furthermore, the

simplification (i) allows to drastically reduce the computational cost of the evaluation of the

UW (r) term from N(N − 1) to N − 1 operations. The changes (i)–(iii) modify the model

used for the mean field analysis and allow off-lattice MC simulations for a cell model in

which the topology of the molecules (i.e. the number of n.n.) is preserved. The comparison

of the mean field results with the MC simulations show that these changes do not modify

the physics of the system.

We perform MC simulations with N = 2500 and N = 10000 molecules, each with

four n.n. molecules, at constant P and T , in 2d, and with the same parameters used

for the mean field analysis. To each molecules we associate a cell on a square lattice.

The Wolff algorithm is based on the definition of a cluster of variables chosen in such a
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way to be thermodynamically correlated [182, 183]. To define the Wolff cluster, a bond

index (arm) of a molecule is randomly selected; this is the initial element of a stack. The

cluster is grown by first checking the remaining arms of the same initial molecule: if they

are in the same Potts state, then they are added to the stack with probability psame ≡

1 − exp(−βJσ) [173], where β ≡ (kBT )−1. This choice for the probability psame depends

on the interaction Jσ between two arms on the same molecule and guarantees that the

connected arms are thermodynamically correlated [183]. Next, the arm of a new molecule,

facing the initially chosen arm, is considered. To guarantee that connected facing arms

correspond to thermodynamically correlated variables, is necessary [182] to link them with

the probability pfacing ≡ 1− exp(−βJ ′) where J ′ ≡ J − PvHB is the P–dependent effective

coupling between two facing arms as results from the enthalpy H + PV of the system. It

is important to note that J ′ can be positive or negative depending on P . If J ′ > 0 and

the two facing arms are in the same state, then the new arm is added to the stack with

probability pfacing; if J ′ < 0 and the two facing arms are in different states, then the new

arm is added with probability pfacing
1. Only after every possible direction of growth for the

cluster has been considered the values of the arms are changed in a stochastic way; again

we need to consider two cases: (i) if J ′ > 0, all arms are set to the same new value

σnew =
(

σold + φ
)

mod q (5.17)

where φ is a random integer between 1 and q; (ii) if J ′ < 0, the state of every single arm is

changed (rotated) by the same random constant φ ∈ [1, . . . q]

σnew
i =

(

σold
i + φ

)

mod q. (5.18)

In order to implement a constant P ensemble we let the volume fluctuate. A small

increment ∆r/r0 = 0.01 is chosen with uniform random probability and added to the

current radius of a cell. The change in volume ∆V ≡ V new−V old and van der Waals energy

1The results of [182, 183] guarantee that the cluster algorithm described here satisfies the detailed balance

and is ergodic. Therefore, it is a valid Monte Carlo dynamics.
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∆EW is computed and the move is accepted with probability

pvol = min (1, exp [−β (∆EW + P∆V − T∆S)]) , (5.19)

where ∆S ≡ −NkB ln(V new/V old) is the entropic contribution.

5.4 Monte Carlo correlation times

The cluster MC algorithm described in the previous section turns out to be very efficient

at low T , allowing to study the thermodynamics of deeply supercooled water with quite

intriguing results [184]. To estimate the efficiency of the cluster MC dynamics with respect

to the standard Metropolis MC dynamics, we evaluate in both dynamics, and compare, the

autocorrelation function of the average magnetization per site Mi ≡ 1
4

∑

j σij , where the

sum is over the four bonding arms of molecule i.

CM (t) ≡
1

N

∑

i

〈Mi(t0 + t)Mi(t0)〉 − 〈Mi〉
2

〈M2
i 〉 − 〈Mi〉2

. (5.20)

For sake of simplicity, we define the MC dynamics autocorrelation time τ as the time,

measured in MC steps, when CM (τ) = 1/e. Here we define a MC step as 4N updates of

the bond indices followed by a volume update, i.e. as 4N + 1 steps of the algorithm.

In Fig. 5.3 we show a comparison of CM (t) for the Metropolis and Wolff algorithm

implementations of this model for a system with N = 50 × 50, at three temperatures

along an isobar below the LLCP, and approaching the line of the maximum, but finite,

correlation length, also known as Widom line TW (P ) [177]. In the top panel, at T ≫ TW (P )

(kBT/ǫ = 0.11, Pv0/ǫ = 0.6), we find a correlation time for the Wolff cluster MC dynamics

τW ≈ 3×103, and for the Metropolis dynamics τM ≈ 106. In the middle panel, at T > TW (P )

(kBT/ǫ = 0.09, Pv0/ǫ = 0.6) the difference between the two correlation times is larger:

τW ≈ 2.5 × 103, τM ≈ 3 × 106. The bottom panel, at T ≃ TW (P ) (kBT/ǫ = 0.06, Pv0/ǫ =

0.6) shows τW ≈ 3.7 × 102, while τM is beyond the accessible time window (τM > 107).

Since as T → 0 the system enters a glassy state [172], the efficiency τM/τW grows at lower

T allowing the evaluation of thermodynamics averages even at T ≪ TC [184]. In particular,
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Figure 5.3: Comparison of the autocorrelation function CM(t) for the Metropolis (circles)

and Wolff (squares) implementation of the present model. We show the temperatures

kBT/ǫ = 0.11 (top panel), kBT/ǫ = 0.09 (middle panel), kBT/ǫ = 0.06 (bottom panel),

along the isobar Pv0/ǫ = 0.6 close to the LLCP for N = 50 × 50.
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the cluster MC algorithm turns out to be very efficient when approaching the Widom line

in the vicinity of the LLCP, with an efficiency of the order of 104. We plan to analyze in

a systematic way how the efficiency τM/τW grows on approaching the LLCP. This result is

well known for the standard liquid-gas critical point [173] and, on the basis of our results,

could be extended also to the LLCP. However, this analysis is very expensive in terms of

CPU time and goes beyond the goal of the present work. Nevertheless, the percolation

analysis, presented in the next section, helps in understanding the physical reason for this

large efficiency.

The efficiency is a consequence of the fact that the average size of Wolff clusters changes

with T and P in the same way as the average size of the regions of correlated molecules

[183], i.e. a Wolff cluster statistically represents a region of correlated molecules. Moreover,

the mean cluster size diverges at the critical point with the same exponent of the Potts

magnetic susceptibility [183], and the clusters percolate at the critical point, as we will

discuss in the next section.

5.5 Percolating clusters of correlated molecules

The efficiency of Wolff cluster algorithm is a consequence of the exact relation between the

average size of the finite clusters and the average size of the regions of thermodynamically

correlated molecules. The proof of this relation at any T derives straightforward from the

proof for the case of Potts variables [183]. This relation allows to identify the clusters built

during the MC dynamics with the correlated regions and emphasizes (i) the appearance of

heterogeneities in the structural correlations [125, 185, 186], and (ii) the onset of percolation

of the clusters of tetrahedrally ordered molecules at the LLCP [187], as shown in Fig. 5.4.

A systematic percolation analysis [182] is beyond the goal of this report, however config-

urations such as those in Fig. 5.4 allow the following qualitative considerations. At T > TC

the average cluster size is much smaller than the system size. Hence, the structural cor-

relations among the molecules extends only to short distances. This suggests that the

correlation time of a local dynamics, such as Metropolis MC or molecular dynamics, would



81

Figure 5.4: Three snapshots of the system with N = 100 × 100, showing Wolff clusters of

correlated water molecules. For each molecule we show the states of the four arms and

associate different colors to different arm’s states. The state points are at pressure close to

the critical value PC (Pv0/ǫ = 0.72 ≃ PCv0/ǫ) and T > TC (top panel, kBT/ǫ = 0.0530),

T ≃ TC (middle panel, kBT/ǫ = 0.0528), T < TC (bottom panel, kBT/ǫ = 0.0520), showing

the onset of the percolation at T ≃ TC .
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be short on average at this temperature and pressure. Nevertheless, the system appears

strongly heterogeneous with the coexistence of large and small clusters, suggesting that the

distribution of correlation times evaluated among molecules at a given distance could be

strongly heterogeneous. The clusters appear mostly compact but with a fractal surface,

suggesting that borders between clusters can rapidly change.

At T ≃ TC there is one large cluster, in red on the right of the middle panel of Fig. 5.4,

with a linear size comparable to the system linear extension and spanning in the vertical di-

rection. The appearance of spanning clusters shows the onset of the percolation geometrical

transition. At this state point the correlation time of local, such as Metropolis MC dynam-

ics or molecular dynamics would be very slow as a consequence of the large extension of the

structurally correlated region. On the other hand, the correlation time of the Wolff cluster

dynamics is short because it changes in one single MC step the state of all the molecules in

clusters, some of them with very large size. Once the spanning cluster is formed, it breaks

the symmetry of the system and a strong effective field acts on the molecules near its border

to induce their reorientation toward a tetrahedral configuration with respect the molecules

in the spanning cluster.

As shown in Fig.3, the spanning cluster appears as a fractal object, with holes of any

size. The same large distribution of sizes characterizes also the finite clusters in the system.

The absence of a characteristic size for the clusters (or the holes of the spanning cluster) is

the consequence of the fluctuations at any length-scale, typical of a critical point.

At T < TC the majority of the molecules belongs to a single percolating cluster that

represents the network of tetrahedrally ordered molecules. All the other clusters are small,

with a finite size that corresponds to the regions of correlated molecules. The presence of

many small clusters gives a qualitative idea of the heterogeneity of the dynamics at these

temperatures.
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5.6 Summary and conclusions

We describe the numerical solution of mean field equations and the implementation of Wolff

cluster MC algorithm for a cell model for liquid water. The mean field approach allows us

to estimate in an approximate way the phase diagram of the model at any state point

predicting intriguing new results at very low T [184].

To explore the state points of interest for these predictions the use of standard simula-

tions, such as molecular dynamics or Metropolis MC, is not effective due to the onset of the

glassy dynamics [172]. To overcome this problem and access the deeply supercooled region

of liquid water, we adopt the Wolff cluster MC algorithm. This method, indeed, allows

to greatly accelerate the autocorrelation time of the system. Direct comparison of Wolff

dynamics with Metropolis dynamics in the vicinity of the liquid-liquid critical point shows

a reduction of the autocorrelation time of a factor at least 104.

Furthermore, the analysis of the clusters generated during the Wolff MC dynamics allows

to emphasize how the regions of tetrahedrally ordered molecules build up on approaching

the liquid–liquid critical point, giving rise to the backbone of the tetrahedral hydrogen bond

network at the phase transition [187]. The coexistence of clusters of correlated molecules

with sizes that change with the state point gives a rationale for the heterogeneous dynamics

observed in supercooled water [125, 185, 186].



Chapter 6

Cooperativity of hydrogen bonds and

scenarios for water

Water’s phase diagram is rich and complex: more than sixteen crystalline phases [2] , and

two or more glasses [3]. The liquid state also displays interesting behavior, such as the well

known density maximum for 1 atm at 4◦C. Thermodynamic response functions, such as

the isothermal compressibility KT and the isobaric specific heat CP , show anomalous in-

creases upon decreasing temperature T [188]. This behavior is called anomalous because KT

and CP are proportional to volume fluctuations
〈

(δV )2
〉

and entropy fluctuations
〈

(δS)2
〉

,

respectively, which are expected to decrease with temperature T [5] for a simple fluid. Fur-

ther, these quantities display an apparent divergence for 1 atm at −45◦C [188], hinting at

interesting phase behavior.

A precise understanding of the physico–chemical properties of liquid water is impor-

tant to provide accurate predictions of the behavior of biological molecules [189], such

as the folding-unfolding transitions seen in proteins [190], and the dynamical behavior of

DNA [166]. A full understanding of the hydrophobic effect, important in both biology and

chemistry, also hinges on a more precise description of liquid water’s behavior (add refer-

ence). Further lines of research in which water plays an important role include the study of

atmospheric processes and the formation of geophysical structures, among others [161].

Microscopically, water’s anomalous liquid behavior is understood as resulting from the

84
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tendency of neighboring molecules to form hydrogen (H) bonds upon cooling, with a decrease

of local potential energy, decrease of local entropy, and increase of local volume. However,

the low–temperature phase behavior resulting from these microscopic interactions remains

unknown because below the homogenous nucleation temperature TH (−38◦C at 1 atm)

crystallization of bulk water is unavoidable, hence the relevant region of the liquid state

cannot be probed experimentally.

However, since confinement suppresses crystallization, there has been a series of recent

experiments on nanoconfined water exploiting this feature [191–194] that revived the debate

on the nature of the phase diagram of water.

In the void of definitive experimental evidence, theoretical and numerical analyses have

thrived. Four separate scenarios for the pressure–temperature (P − T ) phase diagram have

been debated:

(i) The stability limit (SL) scenario [13, 195] hypothesizes that the superheated liquid-

gas spinodal at negative pressure re-enters the positive P region below TH(P ) leading to

a divergence of the response functions. It has been noted that thermodynamic consistency

requires that any retracing spinodal in the case of water cannot be a liquid-gas spinodal [3].

(ii) The singularity–free (SF) scenario [16] hypothesizes that the low-T anticorrelation

between volume and entropy, specifically, through the presence of a temperature of maxi-

mum density (TMD) locus with a negative slope in the (P −T ) plane, is sufficient to cause

the response functions to increase upon cooling and display maxima at non–zero T , but

with no singular behavior.

(iii) The liquid–liquid critical point (LLCP) scenario [14, 159] hypothesizes a first–order

phase transition line with negative slope in the P − T plane — separating a low density

liquid (LDL) from a high density liquid (HDL) — which terminates at a critical point C ′.

Below the critical pressure PC′ , therefore in the one–phase region, the response functions

increase on approaching the Widom line, defined as the locus of correlation length maxima

emanating from C ′ into the one–phase region, and for P > PC′ by approaching the spinodal

line. been proposed. Evidence suggests [14, 179, 196] that PC′ > 0, but the possibility
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PC′ < 0 has been proposed [197].

(iv) The critical–point free (CPF) scenario [99] hypothesizes a first–order phase transi-

tion line separating two liquid phases and extending to P < 0 down to the (superheated)

limit of stability of liquid water. No critical point is present.

These four scenarios predict fundamentally different behavior, though they have their

bases in the same microscopic interaction: the H bond interaction. A question that naturally

arises is whether the macroscopic thermodynamic descriptions are in fact connected in some

way. Here we offer a relation linking these four scenarios showing that (i) all can be included

in one general scheme and (ii) the balance between the energies of two components of the

H bond interaction determines which scenario is valid.

We analyze a microscopic model [174] of water in which the fluid is divided into N cells

which communicate through nearest neighbor (n.n.) interactions. The division is such that

each cell is in contact with four n.n., mimicking the first shell of liquid water.

The goal of the model is to accurately represent, microscopically, the essential features

of the interaction among water molecules, while being able to quantitatively understand the

importance of each of these features. To this aim the interaction among cells is separated

into four distinct components.

The first component of the interaction is due to the short–range repulsion of the electron

clouds. This is incorporated into the model through a maximum density per cell, hence each

cell is assigned a volume v0, and contains a maximum of one molecule.

The second component is due to the long–range attraction of the electron clouds [198],

referred to as the van der Waals interaction. In the MF treatment, this leads to an energetic

preference for occupied n.n. cells, realized by the Hamiltonian

HvdW = −ǫ
∑

〈i,j〉

ninj , (6.1)

where ǫ is the characteristic energy of the attraction, ni = 0 for an unoccupied cell and

ni = 1 for an occupied cell, and the sum is over all n.n. pairs 〈i, j〉.

Water is distinguished from other molecular liquids by its ability to form highly di-
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rectional H bonds between neighboring molecules. Accordingly, the third component in-

corporated here is this orientationally–dependent interaction, associated with the covalent

nature of the bond [199]. To account for the orientational degrees of freedom of each water

molecule, each cell i is assigned a bond variable σij = 1, ..., q for each n.n. cell j, represent-

ing the orientation of cell i with respect to cell j. We choose q = 6, giving rise to 64 = 1296

possible orientational states per cell. We say that a bond is formed between cells i and j if

σij = σji.

Experiments show that formation of a H bond leads to a local volume expansion [3], so

the total volume is given as

V = Nv0 +NHBvHB , (6.2)

where

NHB ≡
∑

〈i,j〉

ninjδσij ,σji
(6.3)

is the total number of H bonds, and vHB is the specific volume increase due to H bond

formation [16]. Bond formation also leads to a decrease in the local potential energy, hence

the Hamiltonian in 6.1 is emended by the term

HHB = −JNHB, (6.4)

where J is the characteristic energy of the H bond. Because condensation is a result of van

der Waals attraction, J < ǫ.

A very desirable feature of a model for a liquid is transferability. The parameters and

effective interactions of a model are optimized to precisely reproduce static and dynamic

properties of the liquid at one particular thermodynamic state point. The quality of the

model is measured by the range of validity of its predictions in other state points. Un-

fortunately, there is no water model that is truly transferable, nor can reproduce all the

properties of water [200]. Many routes have been explored to solve this issue. Molecular

polarizability [201, 202] is one way to introduce effects not considered by standard pairwise

additive potentials. However, polarizable models are computationally very expensive and

provide only a partial solution [203]. An alternative way is to include many–body effects
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into the potential. For water, four–body and higher order interactions seem to be negligible

with respect to the three–body term [204, 205].

A key experimental fact is that at low T the O–O–O angle distribution in water becomes

sharper around the tetrahedral value [181], suggesting an interaction that induces a coop-

erative behavior among bonds. Hence, the fourth component to the interaction potential

is the many–body effect due to H bonds [206–208], which minimizes the energy when the

H bonds of nearby molecules assume a tetrahedral orientation. This is accomplished by

further emending the Hamiltonian in 6.1 and 6.4 with the term

Hcoop = −Jσ

∑

i

ni

∑

(k,ℓ)i

δσik ,σiℓ
, (6.5)

where (k, ℓ)i indicates one of the six different pairs of the four bond variables of molecule i.

This interaction introduces a cooperative behavior among bonds, which may be fine tuned

by changing Jσ. Choosing Jσ = 0 leads to H bonds which form independent of neighboring

bonds, while Jσ → ∞ leads to fully dependent bonds.

The total Hamiltonian is then given by

H = HvdW + HHB + Hcoop. (6.6)

The model is studied using both mean–field (MF) analysis and Monte Carlo (MC) simula-

tions [172, 177, 179]. Details of the MF and MC techniques are available elsewhere [209].

6.1 Mean-field results

Three qualitatively different phase diagrams are found, depending on the strengths of the

H bond energy parameters, J and Jσ. i) Singularity-free scenario for Jσ = 0 (Fig. 6.1a). At

high T , liquid (L) and gas (G) phases are separated by a first order transition line (thick

line) ending at a critical point C, from which a L–G Widom line emanates. In the liquid

phase, the αP maxima and the KT maxima increase along lines that converge to a locus

(dot–dashed line). The locus of the maxima is related to the L-L Widom line for TC′ → 0.

ii) Liquid–liquid critical point with a positive critical pressure scenario, for Jσ/ǫ = 0.05
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(Fig. 6.1b). At low T and high P , a high density liquid (HDL) and a low density liquid

(LDL) are separated by a first order transition line (thick line) ending in a critical point

C ′, from which the L-L Widom line emanates. We also find a LLCP with a negative

critical pressure, for Jσ/ǫ = 0.3 (Fig. 6.1c). iii) Critical–point free scenario for Jσ/ǫ = 0.5

(Fig. 6.1d). The HDL–LDL coexistence line extends to the superheated liquid region at

P < 0, merging with the liquid spinodal (dotted line) that bends toward negative P . The

stability limit (SL) of water at ambient conditions (HDL) is delimited by the superheated

liquid–to–gas spinodal and the supercooled HDL–to–LDL spinodal (long–dashed thick line),

giving a re-entrant behavior as hypothesized in the SL scenario.

When Jσ = 0 the model coincides with that proposed in [16], which gives rise to the SF

scenario (Fig. 6.1a). For 0 < Jσ < a+ bJ , where a and b are fitting parameters 1, the model

displays a liquid–liquid transition ending in a LLCP (Fig. 6.1b) [179], which may be tuned

such that PC′ > 0 or PC′ < 0. For Jσ > a + bJ , a liquid-liquid transition with no critical

point is found, consistent with the CPF scenario (Fig. 6.1c). In Fig. 6.3 we summarize these

results in the J/ǫ vs. Jσ/ǫ parameter space.

It is illuminating to look at the limiting behavior between each of the three cases. For

Jσ → 0, keeping J and other parameters constant, we find that TC′ → 0, and the power–law

behavior of KT and the isobaric thermal expansion coefficient αP is preserved. Further, we

find for the entropy S that, for any value of Jσ, (∂S/∂T )P ∝ |T − TC′ |−1. This critical

behavior of the derivative of S implies that CP ≡ T (∂S/∂T )P diverges when TC′ is non–zero

(Jσ > 0), but CP is constant for the case TC′ = 0 (Jσ = 0), as found in the SF scenario

[16]. Therefore, the SF scenario coincides with the LLCP scenario in the limiting case of

TC′ → 0 for Jσ → 0.

For increasing Jσ, again keeping J constant, we observe that C ′ moves to larger T and

lower P , with PC′ < 0 for Jσ & J/2. For further increase of Jσ , we observe C ′ approaching,

and eventually intersecting, the liquid–gas spinodal. For larger values of Jσ only the liquid–

1We fit the boundary of the CPF scenario with the functional form Jσ = a+ bJ , with a = 0.30± 001 and

b = 0.36 ± 0.01.
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Figure 6.1: Phase diagram predicted from our calculations for the cell model with fixed H

bond strength (J/ǫ = 0.5), fixed H bond volume increase (vHB/v0 = 0.5), and different

values of the H bond cooperativity strength Jσ. (a) Singularity-free scenario (Jσ = 0) from

MF calculations. (b) Liquid–liquid critical point with a positive critical pressure scenario

(for Jσ/ǫ = 0.05) from MF calculations. At low T and high P , a high density liquid

(HDL) and a low density liquid (LDL) are separated by a first order transition line (thick

line) ending in a critical point C ′, from which the L-L Widom line emanates. (c) Same

as in (b) but with a negative critical pressure (for Jσ/ǫ = 0.3). (d) Critical–point free

scenario (Jσ/ǫ = 0.5) from MF calculations. The HDL–LDL coexistence line extends to

the superheated liquid region at P < 0, merging with the liquid spinodal (dotted line) that

bends toward negative P . Other symbols are as in the previous panels. Errors are of the

order of the symbol sizes. Lines are guides for the eyes.
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liquid transition remains, which is precisely the CPF scenario [99]. Hence the CPF scenario

differs from the LLCP scenario only in that C ′ is now inaccessible, lying beyond the region

of liquid states.

In the case of the CPF scenario, we find that the superheated liquid-gas spinodal merges

with the supercooled liquid-liquid spinodal, as in Ref. [196]. This gives rise to a liquid

spinodal which retraces in the P–T plane, as in the SL scenario. Hence, the CPF scenario

and the SL scenario (i) coincide and (ii) correspond to the case in which the cooperative

behavior is very strong.

The overall picture that emerges is one in which the amount of cooperativity among H

bonds, relative to the H bond strength, governs the location of a liquid-liquid critical point,

and hence which scenario is realized. For zero cooperativity, TC′ is at zero temperature, and

no liquid-liquid transition exists in the positive-T phase space. For moderate cooperativity,

a line of liquid-liquid transitions is present, the length of which is proportional to the

strength of the cooperativity. For very large cooperativity, C ′ lies outside the region of

stable liquid states, and only the liquid-liquid transition is realized.

6.2 Monte Carlo results

To test our MF calculations, we perform MC simulations in the NPT ensemble, considering

a modified version of the model in which we allow for continuous volume fluctuations [179].

To this goal,

(i) we consider that the total volume is V ≡ VMC + NHBvHB, where VMC > Nv0 is a

dynamical variable allowed to fluctuate in the simulations;

(ii) we assume that the system is homogeneous with all the variables ni set to 1;

(iii) we replace the first (van der Waals) term of the Hamiltonian in Eq. (6.6) with a

Lennard–Jones potential with attractive energy ǫ > 0 and truncated at a hard–core distance

UW (r) ≡











∞ if r 6 r0,

ǫ
[

(

r0

r

)12
−

(

r0

r

)6
]

if r > r0

(6.7)
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Figure 6.2: Phase diagrams from MC simulations. (a) We find forJσ/ǫ = 0.05, a liquid–

liquid phase transition (thick line with symbols) ending in the LLCP at positive pressure.

The Widom line (crosses) emanates from the LLCP. (b) We find forJσ/ǫ = 0.3, a liquid–

liquid phase transition (thick line with symbols) ending in the LLCP at negative pres-

sure [197]. The Widom line (crosses) emanates from the LLCP. (c) We find for Jσ/ǫ = 0.5,

the CPF scenario. Other model parameters are as for MF calculations (see text).
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where r0 ≡ (v0)
1/2 2; the distance between two n.n. molecules is (V/N)1/d, and the distance

r between two generic molecules is the Cartesian distance between the center of the cells

in which they are included. We simulate this system for N = 104 molecules arranged on a

square lattice, adopting Wolff’s algorithm to equilibrate at low T [209], for different values

of Jσ, keeping J , ǫ and vHB/v0 constant (Fig. 6.1d).

For large values of Jσ (Jσ = J = 0.5ǫ), we find a HDL–LDL first–order phase transition

that merges with the superheated liquid spinodal as in the CPF scenario. At lower Jσ

(Jσ = 0.6J = 0.3ǫ), a HDL–LDL critical point appears at P < 0, from which emanates the

liquid–liquid Widom line, approximated here as the locus of CP maxima, which intersects

the superheated liquid spinodal. By further decreasing Jσ (Jσ = J/10 = ǫ/20), the HDL–

LDL critical point occurs at P > 0, with the liquid–liquid Widom line intersecting the

P = 0 axis. By approaching Jσ = 0 (Jσ = J/25 = ǫ/50), we find that the temperature of

the HDL–LDL critical point approaches zero and the critical pressure increases toward the

value P = ǫ/v0 independent of Jσ. The liquid–liquid Widom line approaches the T = 0 axis

for Jσ → 0. These results confirm those found with the MF calculations.

We compare our results with those from a thermodynamic model, introduced by Poole

et al. [196], in which a van der Waals free energy is augmented to include the effect of H

bond formation. There, the H bond interaction is characterized by two free parameters: the

strength of the H bond, and a geometrical constraint on H bond formation. The fraction

of molecules which form H bonds with decreased energy and entropy is determined by a

distribution over molar volumes, the width of which is σPoole. They show that, by keeping

σPoole fixed, their model displays a SL scenario for weak H bond energy, and a LLCP at

positive pressure for strong H bond energy.

We first verify that specific choices of J and Jσ in our cell model produce phase diagrams

corresponding to those found by Poole et al. for either weak or strong H bond energy. We

find it is by increasing the H bond coupling J in the cell model, while keeping Jσ fixed,

2To reduce the computational cost, we add a hard–core repulsion at r0. The presence of this hard–core

repulsion does not change the phase diagram of the system.



94

that switches from the phase diagram corresponding to Poole’s SL scenario to the phase

diagram corresponding to Poole’s LLCP scenario. Hence the measure of H bond strength

in the cell model directly compares to the measure of H bond strength in the Poole model.

Next we study the effect of varying the other H bond parameter in Poole’s model, the

width σPoole. Keeping the H bond energy fixed, we are able to produce the LLCP phase

behavior at large σPoole and the SL phase behavior at small σPoole. Hence a decrease of

σPoole has the same effect on the phase diagram as an increase in the H bond cooperativity

in our model. This makes sense physically, as a more all-or-nothing distribution of H bonds

implies a more cooperative process of formation. It also implies that the Poole model gives

rise to the SF scenario only in the limiting case of infinite σPoole.

We conclude that both models give a consistent physical picture. This observation

is an important step towards showing that our result, summarized in Fig. 6.3, is model–

independent.

We argue that each of the four scenarios proposed for the phase diagram of liquid water

may be viewed as a special case of a more general scheme. We propose that a possible way

to understand which case best describes water is to probe the energy of the covalent part

of the H bond interaction [199] and the energy of the cooperative component of the H bond

interaction [206–208], the two physical parameters which give rise to this scheme.
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Figure 6.3: Possible scenarios for water for different values of J , the H bond strength, and Jσ ,

the strength of the cooperative interaction, both in units of the van der Waals energy ǫ. The

ratio vHB/v0 is kept constant. (i) If Jσ = 0 (red line), water would display the singularity

free (SF) scenario, independent of J . (ii) For large enough Jσ, water would possess a first–

order liquid–liquid phase transition line terminating at the liquid–gas spinodal—the critical

point free (CPF) scenario; the liquid spinodal would retrace at negative pressure, as in the

stability limit (SL) scenario (yellow region). (iii) For other combinations of J and Jσ, water

would be described by the liquid–liquid critical point (LLCP) scenario. For large Jσ , the

LLCP is at negative pressure (ochre region). For small Jσ, the LLCP is at positive pressure

(orange region). Dashed lines separating the three different regions correspond to mean

field results of the microscopic cell model. The P − T phase diagram evolves continuously

as J and Jσ change.
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Appendix A

Molecular dynamics simulations

The liquid state of matter lies between two other states, the solid and gaseous phase,

for which we have simple and powerful models, the harmonic crystal and the ideal gas,

respectively. These two models exploit the presence of perfect order or complete absence of

it. Since a liquid is an intermediate state of matter, a simple general model is lacking. For

these reasons, the study of the liquid state has posed many experimental and theoretical

challenges.

A new route of exploration was opened with the invention of computers. in the middle

of the XX century, which allowed to perform “numerical experiments” In a computer ex-

periment very complex and more realistic models can be tested to be compared with real

experiments. Also, conceptual experiments can be performed with the aim to give insight

into natural phenomena.

The first computer simulation of a liquid was performed at the Los Alamos National

Laboratories (USA) in 1953 [210]. This seminal work established the method of modern

Monte Carlo (MC) simulations, which, though, can provide information only on thermody-

namic quantities.

To access information on the dynamics of a many–body system we need a different

technique: molecular dynamics (MD). The temporal evolution of a system of interacting

atoms is determined, in MD, by solving the equations of motion. We will consider only
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systems obeying classical mechanics, thus we will need to solve Newton equations

Fi = miai (A.1)

for every atom i of the system, where mi is the mass, ai ≡ d2ri/dt
2 the acceleration, and Fi

the force on atom i. The MD is a deterministic method: given the initial set of positions and

velocities of the atoms, the subsequent evolution, the trajectory, is, in principle, completely

determined1.

Given a system of N particles, the computer calculates a trajectory in a phase space

with 6N dimensions, 3N for the positions and 3N for the momenta. MD is an analysis

method of statistical mechanics, that provides a set of configurations distributed according

to statistical distribution function, or statistical ensemble, such as the microcanonical or

canonical ensemble. In a simulation, the calculation of a given physical observable is simply

done as an arithmetic average of the instantaneous values of that observable during the

simulation. In the limit of very long simulations times, the simulated system will explore

all the phase space available. In practice, computer simulations are always of finite length

and special precautions must be taken.

A.1 Equations of motion

In this section we will describe the techniques used to solve the classical equation of mo-

tionfor a system of N particles interacting through a potential V . The most fundamental

equations of motion probably are the Euler–Lagrange equations

d

dt

(

∂L

∂q̇k

)

−

(

∂L

∂qk

)

= 0 (A.2)

where the Lagrangian L (q, q̇) is defined, for the class of systems under consideration here,

as a sum of kinetic and potential energy

L = K − V . (A.3)

1In practice, because of the finite integration step and the inevitable approximations employed, the

calculated trajectory will deviate from the real one.
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If we consider a system of atoms with Cartesian coordinates ri, then Eq. A.2 becomes

mir̈i = Fi (A.4)

which are Newton equations for the system under consideration, where mi is tha mas of

atom i and

Fi = −∇ri
V (A.5)

is the force exterted on atom i.

A standard method of solving ordinary differential equations as Eq. A.4 is the finite

difference method. The general idea is the following: given the positions, velocities and

other dynamic variables at time t for the atoms, the same quantities are calculated at time

t+ δt with sufficient accuracy. The equation of motion are solved, integrated, step by step

in the discretized temporal variable t; the choice of the time step δt depends on the specific

method of integration adopted, but δt must be larger than the time employed by a molecule

to travel a molecular diameter.

Now, we will describe a very common integration scheme, the leap–frog algorithm. For

small time intervals we can cansider a Taylor expansion of the atomic coordinates

r(t+ δt) = r(t) + v(t)δt +
1

2
a(t)δt2 +

1

6

d3r(t)

dt3
δt3 + . . . (A.6)

and similarly for the velocities. Now, we consider the two following Taylor expansions for

the velocities

v(t+
1

2
δt) = v(t) + a(t)

1

2
δt+O(δt2) (A.7)

v(t−
1

2
δt) = v(t) − a(t)

1

2
δt+O(δt2) (A.8)

by subtracting the second from the the first we obtain

v(t+
1

2
δt) = v(t−

1

2
δt) + a(t)δt +O(δt3). (A.9)

Next, we expand in Taylor series the coordinates about t+ 1
2δt with increment ±1

2δt

r(t+
1

2
δt +

1

2
δt) = r(t+ δt) = r(t+

1

2
δt) + v(t+

1

2
δt)

1

2
δt +O(δt2) (A.10)

r(t+
1

2
δt −

1

2
δt) = r(t) = r(t+

1

2
δt) − v(t+

1

2
δt)

1

2
δt +O(δt2), (A.11)
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again, by subtracting the second from the the first, we finally find

r(t+ δt) = r(t) + v(t+
1

2
δt)δt. (A.12)

We collect here the final results

r(t+ δt) = r(t) + v(t+
1

2
δt)δt (A.13)

v(t+
1

2
δt) = v(t−

1

2
δt) + a(t)δt. (A.14)

The leap–frog algorithm consists of Eq. A.13 and A.14. The velocity equation is imple-

mented first, because of which the velocites leap over the coordinates (from this feature the

algorithm derives its name); then the coordinate equation is implemented. The velocities

at time t, useful, e.g., to calculate the instantaneous value of the energy, are obtained from

v(t) =
1

2

(

v(t+
1

2
δt) + v(t−

1

2
δt)

)

. (A.15)

Finally, we note that the error intrinsic in the leap–frog algorithm is of order δt3 in the

individual time step. However, this error accumulates over the total length of the simulation

ttot; the total error is of order δt3 times the number of intervals ttot/δt, hence, the total

error is of order δt2.

A.2 The SPC/E model of water

We describe here a molecular model of water, widely used in MD simulations. The SPC/E

[48] model describes water as a planar molecules with three point–like interaction sites

corresponding to the centers of the hydrogen (H) and oxygen (O) atoms. The SPC/E model

assumes a rigid geometry, which means that the OH distance is held fixed at 1.0 Å and the

HOH angle has also a fixed value of θ = 109.47◦, corresponding to the tetrahedral angle.

Every water molecule interacts with the others through a Lennard–Jones potential

VLJ(r) ≡ 4ǫ

[

(σ

r

)12
−

(σ

r

)6
]

(A.16)

where r is the distance between the oxygens of two molecules, and the Lennard–Jones

parameters for the SPC/E model are σ = 3.166 Å and ǫ = 0.6502 kJ mol−1. The length σ
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θ

Figure A.1: Schematic of the SPC/E water molecule showing the oxygen and hydrogen

atoms; marked on the figure is the HOH angle θ = 109.47◦.

corresponds to an effective molecular radius. The electrostatic interaction is also explicitly

considered. Each hydrogen has a charge qH = 0.4238 e, and the oxygen charge is qO =

−2.0 qH , where e is the magnitude of the electron charge.

Finally, we note that the SPC/E model does not take into account electric polarizability

or the flexibility of the molecular geometry. For a review of different classes of models see

Ref. [211].
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Monte Carlo simulations

The Monte Carlo (MC) technique plays a fundamental role in the numerical resolution of

problems in statistical physics, condensed matter physics, and lattice gauge theories [212,

213]. It was developed at the Los Alamos National Laboratory, and the expression “Monte

Carlo” appeared for the first time in a paper in 1949 by Metropolis and Ulam [214]. The

Metropolis method — the most widespread MC method — was explained for the first time

by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953 [210]. Since then, myriad

of different techniques and algorithms have been developed to tackle problems by randomly

sampling the available phase space.

The fundamental idea of MC algorithms is to simulate random thermal fluctuations in

the system, by moving through a set of states that are generated according to the appro-

priate probability distribution function, typically the Boltzmann distribution. This scheme

is useful to compute quantities such as

〈A〉 =

∫

drNA(rN ) exp[−βU(rN )]
∫

drN exp[−βU(rN )]
, (B.1)

which is a ratio of two integrals. It is important to note that, in general, in computer

simulations or experiments, we can not calculate or measure directly quantities such as the

Helmoltz free energy,

F = −kBT lnQ(N,V, T ) ≡ −kBT ln

(

dpNdrN exp[−βH (pN , rN )]

Λ3NN !

)

(B.2)
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or entropy, because they are not averages of a function of positions and momenta, but rather

they depend on the total volume in phase space available to the system [215].

Below, we will briefly describe two of the most commonly used algorithms to sample the

phase space: the Metropolis algorithm and the Wolff algorithm.

B.1 Metropolis algorithm

In a MC simulation we want to create an algorithm that generates randomly a new state ν

from an initial state µ. We indicate with P (µ → ν) the transition probability of changing

microscopic state from µ to ν. P (µ → ν) should i) not depend on time, and ii) depend only

on state µ and not on the previous history of the system1.

As the system changes state according to the rule P (µ → ν), it should reach an equi-

librium in which different states are sampled according to the Boltzmann distribution. The

condition of detailed balance guarantees that the system will reach this desired equilibrium

if the transition probabilities satisfy

P (µ → ν)

P (ν → µ)
= e−β(Eν−Eµ) (B.3)

where Eµ and Eν are the energy of the system in state µ and ν respectively.

It turns out that it is useful to break the transition probability into two steps

P (µ→ ν) = s(µ→ ν)A(µ → ν) (B.4)

where s(µ → ν) is the selection probability, the probability for the algorithm to generate a

candidate new state ν, and A(µ → ν) is the acceptance ratio, the numeber of times that

the new ν state is accepted and the system moves to this new state. Now, there is a lot of

freedom to choose s(µ→ ν) and A(µ → ν), since Eq. B.3 fixes only the ratio

P (µ→ ν)

P (ν → µ)
=
s(µ→ ν)A(µ → ν)

s(ν → µ)A(ν → µ)
. (B.5)

To be more clear, we now consider a specific system to study using the Metropolis

scheme. We consider the Ising model for a set of N spins, described by the following

1This is the definition of a Markov process.
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Hamiltonian

H = −J
∑

〈ij〉

sisj −B
∑

i

si (B.6)

where si = ±1 is the value of spin i, J > 0 is the ferromagnetic coupling constant, B an

external magnetic field, and 〈ij〉 denotes nearest–neighbors.

The Metropolis algorithm generates a single spin–flip dynamics, because a new state is

selected by choosing only one spin to flip at a time. Thus, since there are N spin that can

be randomly chosen, the selection probability is

s(µ→ ν) =
1

N
(B.7)

which is constant, therefore, it drops out of Eq. B.3. It turns out that a very efficient choice

for the acceptance ratio is

A(µ → ν) =











e−β(Eν−Eµ) if Eν − Eµ > 0

1 otherwise.
(B.8)

The Metropolis algorithm is completely determined by Eq. B.7 and Eq. B.8.

B.2 Wolff algorithm

The Metropolis algorithm is very efficient at relatively high temperatures. However, it

becomes increasingly inefficient upon approacing the critical temperature Tc. The reason

for this is the presence of large domains of spins all pointing in the same direction. Therefore,

it is very hard to change the state of the system by flipping one spin per move. since its

neighbors will be pointing in the original direction, the candidate move will be almost

certainly rejected. The correlation length τ grows with the correlation length ξ as

τ ∼ ξz (B.9)

where z is the dynamic critical exponent. This growth of the relaxation time near Tc is

known as the critical slowing down. For finite systems, as any real simulation, of linear

lenght L in d–dimensions, the computer time τCPU grows as

τCPU ∼ Ld+z (B.10)
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which makes simulations of larger systems near the critical point impracticable.

In 1989, Wolff [173] devised an algorithm to reduce drastically the critical slowing down.

Building on the results by Swendsen and Wang [216], which in turn used the theory of

Fortuin, Kasteleyn, Coniglio and Klein [217, 218], Wolff proposed to construct clusters of

physically correlated spins, and then to flip them all at once. This idea exploits the fact that

these clusters are the thermodynamically relevant objects in the dynamics near a critical

point. These are the steps of the Wolff algorithm for an Ising system:

1. Select randomly a seed spin from which the cluster will grow.

2. Check the neighboring spins and, if they have the same value as the initial spin, add

them to the cluster with probability Padd ≡ 1 − e−2βJ

3. For any newly added spin, check also its neighbors if they can be included into the

cluster. The probability of adding them is the same Padd.

4. Once all the possibilities are exhausted, flip all the spins in the cluster.

This algorithm satisfies detailed balance and generates states distributed according to

the Boltzmann distribution. The dynamic exponent for the Wollf algorithm is z = 0.25 ±

0.01 [213], which is much lower than z = 2.17 for the Metropolis case.



Appendix C

Landau–Placzek ratio

The hydrodynamic regime of a fluid is described by the Navier–Stokes equation, which

require the specification of three transport coefficient for the system: the thermal conduc-

tivity Λ, the shear viscosity η, and the bulk viscosity ζ. In this appendix we consider how

scattering experiments can provide information on transport coefficients and the specific

heat of the fluid.

We start by defining the building blocks that are necessary to define the time–dependent

correlation function measured in an experiment. First, we consider the time–dependent

number density

ρ(r, t) =

N
∑

i=1

δ [r− ri(t)] , (C.1)

which is related to the time–dependent van Hove correlation function

G(r, t) ≡

〈

1

N

N
∑

i=1

N
∑

j=1

∫

δ[r − rj(t) + ri(0)]dr

〉

, (C.2)

and this last one can be written as

G(r, t) =

〈

1

N

∫ N
∑

i=1

N
∑

j=1

δ[r′ + r− rj(t)] δ[r
′ − ri(0)]drdr′

〉

=

〈

1

N

∫

ρ(r′ + r, t) ρ(r′, 0)dr′
〉

=
1

ρ
〈ρ(r, t) ρ(0, 0)〉 . (C.3)

Thus, the van Hove correlation function corresponds, physically, to the density–density

time–correlation function. A correlation function can also be studied in momentum space.
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The Fourier transform of the van Hove function

F (k, t) =

∫

G(r, t) exp(−ik · r)dr (C.4)

is called the intermediate scattering function, a very useful quantity to calculate in numerical

simulations.

The temporal Fourier transform of F (k, t)

S(k, ω) =
1

2π

∫ ∞

−∞
F (k, t) exp(iωt)dt (C.5)

is known as the dynamic structure factor. S(k, ω) is physically relevant because it can be

directly measured through, e.g., inelastic neutron scattering, in which case ~k and ~ω are

respectively the momentum and energy transferred by the scattering neutron to the target.

It is possible to show [15, 49] that in the hydrodynamic regime, where the wavelength

λ = 2π/|k| is considerably larger than the correlation length ξ, S(k, ω) can be written as

S(k, ω)

S(k)
=

(

1 −
CV

CP

)

2DT q
2

ω2 + (DT q2)2
+
CV

CP

{

1/2Dsq
2

(w − csq)2 + (1/2Dsq2)2

+
1/2Dsq

2

(w + csq)2 + (1/2Dsq2)2

}

(C.6)

where

DT ≡
Λ

ρCP
(C.7)

is the thermal diffusivity, and

Ds ≡ DT

(

CP

CV
− 1

)

+
1

ρ

(

4

3
η + ζ

)

(C.8)

is the sound attenuation coefficient. The power spectrum of the density fluctuations,

S(k, ω), is composed of three Lorentzian lineshapes: i) the Rayleigh line, centered at ω = 0

with half–width ΓR = DT q
2, and ii) the Brillouin doublet, centered at ω = ±csq with

half–width ΓB = 1
2Dsq

2.

It is possible to show [219] that the Rayleigh line corresponds to non–propagating fluc-

tuations in entropy at constant pressure, while the Brillouin doublet corresponds to prop-

agating pressure fluctuations at constant entropy, i.e., sound waves. In Fig. C.1 we show
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Figure C.1: Dynamic structure factor for a fluid in the hydrodynamic regime as a function

of ω for a fixed value of T and wavevector k.

a schematic plot of S(k, ω)/S(k) for a fluid as a function of ω for a fixed value of T and

wavevector k.

From Eq. C.6 we see that he total integrated area of the Rayleigh linewidth is

IR ≡ 1 −
CV

CP
(C.9)

and the integrated area of both Brillouin linewidths is

2IB ≡
CV

CP
. (C.10)

Equation C.9 and C.10 imply that

IR
2IB

=
CP

CV
− 1 (C.11)

which is known as the Landau–Placzek ratio. Incidentally, because of the normalization of

Eq. C.6, the following identity is valid

IR + 2IB = 1. (C.12)

The intensity of the scattered radiation is proportional to the mean–square fluctuations

of the dielectric constant,
〈

(∆ǫ)2
〉

[219]. Futhermore, the fluctuation–dissipation theorem
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applied to the absorption coefficient α(ω) gives [220]

α(ω) =
2πω2β

3nc

∫ ∞

−∞
dte−iωt 〈M(0)M(t)〉 (C.13)

This last relation, along with a macroscopic theory of the dielectric properties of a fluid

can provide a link to the Landau–Placzek ratio, and therefore to the ratio of isobaric and

isochoric specific heats.
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[42] R. Böhmer, G. Hinze, G. Diezemann, B. Geil, and H. Sillescuet, Europhysics Letters

36, 55 (1996).
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[111] N. L. cević, F. W. Starr, T. B. S. der, V. N. Novikov, and S. Glotzer, Physical Review E

66, 030101(R) (2002).

[112] Y. Gebremichael, M. Vogel, M. N. J. Bergroth, F. W. Starr, and S. Glotzer, Journal

of Physical Chemistry B 109, 15068 (2005).

[113] M. Vogel and S. Glotzer, Physical Review Letters 92, 255901 (2004).



118

[114] Y. Gebremichael, M. Vogel, and S. Glotzer, Journal of Chemical Physics 120, 4415

(2004).

[115] D. N. Perera and P. Harrowell, Journal of Chemical Physics 111, 5441 (1999).

[116] A. Widmer-Cooper, P. Harrowell, and H. Fynewever, Physical Review Letters 93,

135701 (2004).

[117] A. Pan, J. Garrahan, and D. Chandler, Physical Review E 72, 041106 (2005).

[118] M. Shell, P. Debenedetti, and F. Stillinger, Journal of Physics: Condensed Matter

17, S4035 (2005).

[119] G. S. Matharoo, M. S. G. Razul, and P. H. Poole, Physical Review E 74, 050502(R)

(2006).

[120] J. D. Stevenson, J. Schmalian, and P. G. Wolynes, Nature Physics 2, 268 (2006).

[121] J. Errington, P. Debenedetti, and S. Torquato, Physical Review Letters 89, 215503

(2002).

[122] A. Geiger and H. Stanley, Physical Review Letters 49, 1749 (1982).

[123] W. K. S. Kammerer and R. Schilling, Physical Review E 56, 5450 (1997).

[124] J. Kim, W.-X. Li, and T. Keyes, Physical Review E 67, 021506 (2003).

[125] M. G. Mazza, N. Giovambattista, F. W. Starr, and H. E. Stanley, Physical Re-

view Letters 96, 057803 (2006).

[126] O. Steinhauser, Molecular Physics 45, 335 (1982).

[127] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R.

Haak, Journal of Chemical Physics 81, 3684 (1984).
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