

The Cut Ramp Potential

A simple model with water-like behavior

E. Lascaris, G. Malescio, S.V. Buldyrev, and H.E. Stanley, "Cluster formation, water-like anomalies, and re-entrant melting for a new family of bounded repulsive interaction potentials", Phys. Rev. E **81**, 031201 (2010)

Outline

- Water and its anomalies
- What is the cause of these anomalies? (conclusion: more research needed)
- The Cut Ramp Potential
- Conclusions

Outline

• Water and its anomalies

- What is the cause of these anomalies? (conclusion: more research needed)
- The Cut Ramp Potential
- Conclusions

Water is very anomalous...

A simple molecule...

...but compared to most other liquids, water has many strange properties...

and is therefore very interesting!

Melting temperature

Hydride = element + H atoms

Ice floats on water

Usually, the density of the solid is higher than of the liquid

Density of ice is lower than density of water

At 1 atm *Temperature of Maximum Density* (TMD) is 4 °C

Melting line with negative slope

Diffusion anomaly

Usually, self-diffusion goes down as P increases...

In water, self-diffusion **increases** as density and pressure increase (at low T)

Water group anomaly

Gene Stanley's water group at BU has an anomalously large size

Water attracts unusual large amount of grad students (at low pressure)

And many, many more anomalies

Water has

- unusually high specific heat capacity
- unusually high viscosity
- unusually high surface tension
- unusually low compressibility
- wide variety of crystal structures (15 known)

All 67 (as of Aug 2010) anomalies are listed on http://www1.lsbu.ac.uk/water/anmlies.html

Why study these anomalies?

- Because we are scientists and we like to study stuff!
- To improve our understanding of water (and other liquids)

Example: knowing "what matters" allows for faster simulations (e.g. when to use QM and when not to use it)

 Understanding these anomalies allows us to engineer liquids with certain properties

Example: a polymer with an unusually high viscosity

Outline

- Water and its anomalies
- What is the cause of these anomalies? (conclusion: more research needed)
- The Cut Ramp Potential
- Conclusions

Cause of anomalies in water

What feature makes water so unique?

Hydrogen bonds!

A simple explanation for high melting temperature

Tetrahedral bonds

H-bonds are long compared to size of molecule

Explains

- why ice floats on water
- why applying pressure can melt ice
- why C, Si, Ge also shown certain anomalies

Key question!

But are directional bonds really necessary? Can we have anomalies without these?

Yes!

Simulations with certain spherically symmetric interactions display anomalies

An example... \square

Hard Core + Linear Ramp model

A spherically symmetric pair interaction in 3D

Hard Core + Linear Ramp model

A spherically symmetric pair interaction in 3D

Hard Core + Linear Ramp model

A spherically symmetric pair interaction in 3D

Anomalies explained!

Potential has two length scales that compete

- At low P (and low T), σ_1 is more important
- At high P (and high T), σ_0 is more important

For water: H-bond vs. no H-bond

Surprise!

Outline

- Water and its anomalies
- What is the cause of these anomalies? (conclusion: more research needed)
- The Cut Ramp Potential
- Conclusions

Two similar potentials

Gaussian Core Model

Several water-like anomalies

A *new* idea!

Introducing: the Cut Ramp Potential

- For λ=0 equivalent to "Linear Ramp Model" (has water-like anomalies)
- Similar to "Gaussian Core Model" (has water-like anomalies)
- For λ→1 equivalent to "Penetrable Sphere Model" (no water-like anomalies)

Phase diagram of Cut Ramp Potential

Several anomalies:

- Density anomaly
- Melting line with negative slope
- Diffusion anomaly

All within same pressure range!

melting line

diffusion extrema

Particle overlap ("clustering")

- No hard core means particles can (fully) overlap.
- How do we "count" the number of particles overlapping?

Answer: use the Radial Distribution Function, g(r)

Can be measured via e.g. X-ray diffraction

Definition of "amount of overlap"

Overlap anomaly

Also anomaly in overlap:

- (overlap in crystal) > (overlap in liquid)
- *Except* within the anomalous region!

Hypothesis:

All anomalies are related to the "overlap anomaly".

Imagine a little experiment...

- Let's take a look at liquid & crystal
- Starting at low pressure
- Slowly increasing pressure

- No overlap
- System behaves like normal liquid / crystal

Pressure within anomalous region (1) Liquid Solid 1.0 Overlap 0.8 0.6 0.4 ⊶–ი crystal (λ=0) eeliquid (λ=0) 0.2 0.0 1.2 0.6 0.8 1.0 1.4 Pressure

Partial overlap in liquid, but almost no overlap in solid!

Why?

Pressure within anomalous region (2)

Partial overlap in liquid, but almost no clustering in solid

Because:

Partial overlap would break crystal structure

If a particle would overlap with another...

(1) A hole appears, and the particle hops back

(2) A hole appears, and the crystal collapses into a liquid
 Melting temperature is lowered!
 (i.e. melting line has negative slope)

Pressure within anomalous region (3)

Partial overlap also leads to:

- Higher diffusion

 (i.e. diffusion anomaly)
 because particles can
 temporary "climb" up
 potential ramp
- More space available, so smaller volume needed, thus higher density than usual (i.e. density anomaly)

Conclusion:

Partial overlap causes anomalies!

High pressure regime

High pressure regime

- At high P, particles can reach top of potential
- Full overlap
- Same situation as at low P, but with clusters replacing (some of) the particles!
- No anomalies at low P, so none at high P

Conclusion:

Full overlap kills anomalies!

(similar to Penetrable Sphere Model)

Outline

- Water and its anomalies
- What is the cause of these anomalies? (conclusion: more research needed)
- The Cut Ramp Potential
- Conclusions

Conclusions – cut ramp potential

- Cut ramp potential displays water-like anomalies, depending on cut height $\boldsymbol{\lambda}$
- Cut height λ and pressure determine amount of overlap ("clustering")
- Partial overlap causes anomalies
 - Density anomaly
 - Negative slope melting line
 - Diffusion anomaly
- Full overlap restores liquid to "normal" structure, preventing anomalies

Conclusions – anomalies

TAKE HOME MESSAGE:

- General cause for anomalies is: "existence of two competing length scales"
- It's not always clear what those scales are
 - For Linear Ramp Model those scales are the ramp size σ_1 and zero (i.e. full overlap)
- Sometimes there is no competition
 - For Penetrable Sphere Model full overlap too easy

Application to Macromolecules

