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ABSTRACT

The spatial location of cells in neural tissue can be easily extracted from many imaging
modalities, but the information contained in spatial relationships between cells is
seldom utilized. This is because of a lack of recognition of the importance of spatial
relationships to some aspects of brain function, and the reflection in spatial statistics of
other types of information. The mathematical tools necessary to describe spatial

relationships are also unknown to many neuroscientists, and biologists in general.

We analyze two cases, and show that spatial relationships can be used to understand the

role of a particular type of cell, the astrocyte, in Alzheimer’s disease, and that the



geometry of axons in the brain’s white matter sheds light on the process of establishing

connectivity between areas of the brain.

Astrocytes provide nutrients for neuronal metabolism, and regulate the chemical
environment of the brain, activities that require manipulation of spatial distributions (of
neurotransmitters, for example). We first show, through the use of a correlation
function, that inter-astrocyte forces determine the size of independent regulatory
domains in the cortex. By examining the spatial distribution of astrocytes in a mouse
model of Alzheimer’s Disease, we determine that astrocytes are not actively transported

to fight the disease, as was previously thought.

The paths axons take through the white matter determine which parts of the brain are
connected, and how quickly signals are transmitted. The rules that determine these
paths (i.e. shortest distance) are currently unknown. By measurement of axon
orientation distributions using three-point correlation functions and the statistics of axon
turning and branching, we reveal that axons are restricted to growth in three directions,
like a taxicab traversing city blocks, albeit in three-dimensions. We show how geometric
restrictions at the small scale are related to large-scale trajectories. Finally we discuss the

implications of this finding for experimental and theoretical connectomics.
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1. Introduction

The obvious question to ask in response to the title of this dissertation is why we bother
measuring spatial relationships between cells in the brain? After all, anyone with a basic
knowledge of neuroscience knows that neurons communicate with each other through
long, thin axons and dendrites — the cellular equivalent of wires. These cellular wires
evolved to enable a pair of neurons to communicate regardless of the distance between
them, unshackling cellular signaling from the spatially dependent chains of diffusion.
Should we not then focus on the connectivity and diversity of components in the brain,

which surely are the features that define its functions and dysfunctions?

It is probably true that, ideally, the function of the brain would be independent
of how its components are embedded in space. However, the brain is embedded in
space, and ignoring the spatial relationships between its components risks overlooking a
source of important information. There is an old trope that you can learn a lot about a
person if you understand the challenges they have overcome. By examining the brain’s
attempts to free itself from structural constraints, we can learn about the processes that

are important to brain function.

Two examples of this type of analysis are performed here. The first analysis
concerns a set of cells known as astrocytes. These cells are caretakers of the neurons,
overseeing needs such as the provision of nutrients, the regulation of chemical signals,
and the maintenance and construction of synapses. These tasks all involve the
manipulation of the spatial distribution of some necessary ingredient for neural
function, so it is expected that the spatial distribution of astrocytes is important. The

distribution of astrocytes may be regulated, for example, to prevent density fluctuations



of too high a magnitude. Low densities of astrocytes may be overwhelmed by their
regulatory responsibilities. High densities, conversely, would represent a misallocation
of resources such as cortical space and energy, and might lead to astrocytes interfering

with one another.

The spatial distribution of astrocytes is hypothesized to be altered by injury to
the brain. Astrocytes and some other cells are thought to migrate to the site of injury,
such as that caused by a stroke or puncture wound, both for the purpose of repair, and
also to seal of the injured part of the brain, preventing the spread of toxic materials. We
will examine here a particular case: the response of astrocytes to Alzheimer’s disease.
One harmful agent in Alzheimer’s is a toxic protein known as amyloid-beta, which
forms locally toxic deposits known as plaques. It has been previously recognized that
“activated” astrocytes are found around the plaque. These differ from normal astrocytes
through modifications to the proteins that make up their cytoskeleton. This led to the
idea that astrocytes respond to plaques the same way they do to gross injury, by
migrating to plaques. It is also hypothesized that astrocytes fight Alzheimer’s by
absorbing amyloid-beta, reducing plaque size, and sealing off plaques to prevent injury

to surrounding neurons.

Disease can be studied in a controlled manner through the use of animal models.
We study the effect of amyloid-beta plaques on the distribution of astrocytes through the
use of a transgenic mouse, whose genome has been modified to produce of amyloid-beta
plaques. Astrocytes, amyloid-beta plaques and other cortical residents can be imaged in
these mice while they are still living by installing transparent windows in their skulls,
and using three-dimensional two-photon fluorescence microscopy to peer down below

the surface of the brain.



Tracking the locations of individual cells as amyloid-beta builds up in the brain
is possible, but very difficult experimentally. Imaging must be done regularly enough
that cells change position by small amounts, so that they are not confused with one
another. Every imaging experiment requires anesthetizing the animal, which carries
significant risks. Losing a mouse in this manner is costly in terms of both time and
money, and may even risk biasing the experiment if mortality is related to the course of
pathology. Mice can re-grow material under a cranial window, which requires surgery
to correct. This surgery is risky, and causes inflammation, so cells cannot be tracked
from before surgery. Other experimental difficulties can arise from equipment
malfunction; if a microscope goes down for a significant amount of time, the experiment

must be ended.

By inferring the possible migratory action of astrocytes from their spatial
distribution, we avoid these experimental difficulties. This requires only a single
imaging session from each mouse. We compare the spatial distribution of astrocytes in
transgenic mice to healthy wild-type mice, and attribute differences to the action of
amyloid-beta plaques. We show that contrary to popular belief, astrocytes do not
migrate to plaques. Instead, we detect a small distance dependent shift away from
plaques. The closest astrocytes move by a few microns, about the diameter of the cell
body. During the course of the study, we also detect evidence of a heretofore

unrecognized interaction between astrocytes.

The second study concerns axons, the cellular wires linking neurons together. As
we have noted, an axonal link allows one neuron to communicate with another, rapidly,
with good fidelity and without disturbing their neighbors, regardless of their spatial

location. However, to establish this link, an axon must first navigate the space between
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neurons. Understanding the principles of this navigation will ultimately provide insight
into the signals and rules used for navigation, how it is determined who with connect
with whom, and how disorders resulting from aberrant connectivity arise from the

construction of axonal pathways.

The trajectories of axons in primates have been studied with two experimental
techniques, molecular tracers, and degeneration studies. Degeneration studies are the
older of the two. The first step is to remove a small chunk of the cortex. The axons of
these cells will soon degrade, and which makes them visible in the dissected brain.
Newer experiments use molecular tracers, a dye which is transported along an axon,

which can again be identified in dissections.

Experimentalists interested in the connections made by neurons in an area would
use either degeneration or tracer dyes to mark the axons of a small group of neurons.
They would then take several thin slices of brain, separated by some distance, and
identify the locations of the marked axons in these slices. Typically, they would see
groups of axons in each two-dimensional slice. The three-dimensional trajectories were

estimated by essentially connecting the dots, filling in the distance between the slices.

When connecting the dots, researchers made some reasonable seeming
assumptions, namely of smooth axon trajectories, minimizing bending. Mathematically,
an interpolation minimizing bending is equivalent to cubic spline interpolation. Cubic
splines are exact for an elastic rod forced to intersect a set of points, a natural

interpolation from human experience.

Results from imaging of the diffusion propagator using MRI have recently cast

doubt on the validity of the smoothness assumption. These results show that the



diffusion propagator of water, which is restricted to the insides of axons in white matter,
has between one and three approximately orthogonal peaks in any small volume of the
brain. The peaks of adjacent voxels line up, forming sheets of parallel tubes. These sheets
are also spatially ordered: though they are warped, they never intersect one another.
This interesting structure was dubbed the “grid” by its discoverer, Van Wedeen. The
grid is incongruent with the traditional notion of smooth paths between points — how
can axons form smooth paths, when they are constrained to choosing from such a

restricted set of orientations?

The smallest voxels used in dMRI are about (0.5mm)’, and average over several
thousand axons. Perhaps the smoothness assumption is not so inaccurate if this is only a
collective behavior, and large deviations from the average in opposite directions cancel

one another out.

We carried out experiments to quantify the geometric properties of axons in
large images of axons taken with high-resolution microscopy. Although we are
restricted to two dimensions, which, if the observations using MRI hold, will limit us to
observation of two peaks in the orientation of axons, we are able to unambiguously
resolve single axonal fibers. This enables us to determine the scale of this regulation of
axon orientation. We discover that the majority of axons are restricted to a narrow range
of orientations around two peaks. Furthermore, we find that axons conform to the grid
at lengths scales of tens of microns. We find evidence that instead of smoothly curved

trajectories, axons branch, or make sharp turns between allowed orientations.

This has implications for the organizational principles of the brain’s white
matter, the mechanisms axons use to navigate, and the technologies used to measure

connectivity. The statistics of turns and branches must produce the bundles of axons
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observed in older studies. This collective behavior is very different from the smooth
paths imagined in the past. Although diffusion MRI produced the initial observations
that led to this discovery, these crucial turns and branches are below its resolution. This
should inspire researchers to develop techniques to estimate the interaction between

orientations in a given voxel.

Before engaging in these analyses, we will first give a brief overview of the field
of neuroscience, focusing in particular on the biology of systems involved in our
analyses. We will then discuss methods for describing the spatial distribution of points,
including both the general theory behind point processes and the mechanics of
calculating various descriptors. We will then proceed to analysis, filling in specific
experimental methodological details when necessary. We will conclude with an
overview of the impact of this work on the understanding of the brain and what can be

learned from point processes, and future directions this work may take.



2. Review of Anatomical and Functional Neuroscience

This section contains a historical overview of neuroscience from prehistory to its modern
underpinnings. A review of the anatomical description of the brain is then given, with
special focus given to topics important to the investigations in this thesis. Techniques of

experimental neuroscience important to anatomical observation are reviewed.

2.1 A Historical Introduction to Neuroscience

Humans have probably been aware of the brain’s importance for mental function since
the dawn of prehistory — one only has to experience the headache and mental effects of a
bump in the head to realize that the skull’s contents are critical for thinking. Evidence
for this exists in the archeological record in the form of fatally damaged skulls dating
back millions of years to our early hominid ancestors, with the damage presumably

caused by other ill-intentioned hominids.

In the classical era, many Greek scholars understood that the brain was involved
in mental function. Hippocrates, the father of modern medicine, was a chief proponent
of this view, stating that the brain was “the primary seat of sense and of the spirits,” and
responsible for understanding reality [Hippocrates]. This view was not universally
accepted (Aristotle was a notable detractor), but became the mainstream view of
physicians during the Roman Empire. The Roman physician Galen was one of the first
to subdivide the brain into distinct areas. He noticed structural differences between
parts of the brain now known as the cerebrum and the cerebellum, and made the
impressively accurate suggestion that sensation were perceived and memories stored in

the cerebrum, while the cerebellum would be responsible for motor control. Galen was
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also the instigator of a theory of brain function that persisted until the eighteenth
century. This was that the brain essentially functioned hydraulically, by pumping fluids
known as the “humors” from the brain through the nerves, which were thought to be
pipes similar to the blood vessels. The ventricles are a system of large cavities in the
brain that contain cerebrospinal fluid, and due to this hydraulic view, were thought to

be the key component of the brain.

Figure 2.1. Photographs of the preserved brains of Broca’s aphasic patient. Panels
A and C show the damage in the context of the entire brain, while B and D are close up

demonstrating the extent of the damage. Taken from Dronkers, et al 2007.

Neuroscience rushed into its modern era in the late eighteenth and nineteenth
centuries. Luigi Galvani’s famous experiments demonstrating movement in the leg of a
frog showing that electricity, not fluid humors, was being conducted in nerves.

Concurrently, a new experimental technique was elevating the importance of the solid



matter of the brain in mental function, at the expense of the ventricles. This was the
observation of behavioral change, or motor and sensory deficits after the destruction of a
small chunk of neural tissue, either through surgical ablation or through natural causes.
The most famous of these experiments was the physician Paul Broca’s observations of
two patients suffering from expressive aphasia, a disorder in which one can understand
the speech of others, but has great difficulty in speaking themselves (one of Broca’s
patients could only utter a single syllable, “tan,” for example). Broca observed damage
to a small part of the left frontal lobe in both patients, and correctly deduced that this
region was responsible for the generation of speech. This solidified the notion of
functional localization, in which, at a given time, each chunk of neural tissue has a

defined processing task.

The last vital step that took neuroscience into its modern era was the
introduction of microscopy capable of resolving cells at the modern level. Two giants of
modern neuroscience, Camillo Golgi and Santiago Ramon y Cajal, pioneered the
combination of high resolution microscopy with chemical contrast agents (see Figure
2.1) that targeted specific cells and subcellular components, creating the field of
neurohistology and discovering that the brain was composed of neurons and other

discrete cells.

Neuroscience today continues along the same basic lines of research:
investigating the patterns of neuronal excitation through their electrical activity (and
other, newer techniques), observing neural form and structural arrangement, and
mapping the functional layout of the brain. The ever-expanding body of experimental
knowledge has given neuroscience a window into the basic workings of the brain: how

it develops, processes information, and what can go wrong.
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Figure 2.2. Dendritic Arbors. A) A drawing of a Golgi stained cerebellar Purkinje cell by
Ramon y Cajal. From Gray’s Anatomy. B) A photomicrograph of a cerebellar Purkinje

cell, stained by the Golgi method. From the Neuron Gallery Collection [Mervis].

2. 2 Basic Anatomy of the Brain

Cell Types: Form and Function

The two primary classes of cells in the brain are neurons and glia. Neurons are a set of

excitable cells, whose connections form the electrochemical network that processes
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information in the brain. Glia, which means “glue” in Latin, encompass a variety of cell
types which perform support functions for the neurons, although some studies suggest
that a subset of glial cells can participate in signaling and electrically excite neurons [e.g.

Nedergaard].

Neuronal components

Neurons are an impressive cell based on the complexity of their external form alone.
Thin tendrils called processes extend from a compact body known as the soma. These
processes, on the order of a micron in diameter, can form dense arbors a few millimeters
in width. Single processes can extend extreme disctances. The longest neuronal
processes in the human CNS are several centimeters long, making neurons the largest
cells in the body (peripheral nervous system neurons can have processes over a meter
long). Processes are subdivided into two classes: dendrites, which receive signals and
transport them to the soma where they are integrated, and axons, which transmit signals
from the soma to other neurons. Axons transmit signals to dendrites at synapses, close
contacts with a gap, or synaptic cleft, across which small neurotransmitter molecules are

released from the axon and activate receptors in the dendrite.
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Figure 2.3: The internal structure of a typical neuron, illustrating the internal structure
of the soma and dendritic and axonal processes extending to contact other neurons.

Reproduced from [Bear, et. al., Figure 2.7]
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The Soma

The soma contains the cell nucleus, and other cellular machinery typical to maintaining
a cell. The distinguishing feature of a neuron, of course, is its ability to receive and
transmit electrochemical excitations. The neuron achieves this by maintaining a potential
difference of -65 mV with respect to the extracellular medium. Voltage sensitive ion
pumps and channels in the membrane of the soma maintain this voltage difference. The
intra- and extra-cellular fluids in the brain contain both negatively and positively
charged ions, primarily potassium, sodium and calcium. In a neurons resting state, it
achieves this -65 mV polarization by employing potassium-selective channels. Osmotic
forces drive potassium from the intra-cellular fluid, with a high potassium salt
concentration, leaving their anions behind, until the osmotic and electrical forces are in

equilibrium. However, the soma membrane also contains sodium-selective channels.
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Figure 2.4. Action Potentials. A) The simplified membrane circuit proposed by the
Hodgkin-Huxley model, which incorporated the effects of sodium (Na+) and potassium

(K+) channels, leakage current (L) and membrane capacitance (Cm) in the generation of
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membrane potential Vm. B) Membrane voltage as a function of time after the initiation of
the action-potential-generating process, with labeled epochs. An initial depolarization
spike is followed by a hyperpolarized refractory period, during which the neuron cannot
fire. Note that the y-axis voltages refer to experiments on the giant squid axon, which
Hodgkin and Huxley used because its large size facilitated experimental measurements,
while the text refers to typical CNS neurons. Figures reproduced from [Hodgkin and

Huxley].

The interior of the neuron contains a low concentration of sodium compared to
the extra cellular fluid. Under normal polarized conditions, these sodium channels are
impermeable. However, electrical input from other neurons can depolarize the soma.
When these inputs depolarize the membrane potential to approximately -40mV, the
sodium channels become conductive, and the electrochemical gradient rapidly drives in
Na“, depolarizing the cell. This process actually overshoots electrical neutrality and
produces a positive polarization of +40mV. The depolarization propagates down a
special neuronal process called the axon, and is known as an “action potential” for its
effect on downstream neurons. Sodium channels close after approximately 1

millisecond, initiating the re-polarization process. [Hodgkin and Huxley]

Processes — The Axon

Axons conduct the electrical action potential away from the soma. Axons differ in their
myelination state, diameter, length, and degree of arborization. Myelin is a fatty
membrane produced by a glial cell, the oligodendrocyte, that serves to insulate the axon
from the ionic extracellular fluid. Conduction in an unmyelinated axon proceeds as a
depolarization wave through the same voltage gated ion channel mechanism that

generates the action potential in the soma: the leading edge of the depolarization wave
14



triggers an influx of sodium through voltage gated Na" channels, which close after a

millisecond, allowing a K" efflux to repolarize the axon at the trailing edge of the wave.

Figure 2.5. Action Potential Conduction. Saltatory action potentials jump from Node of
Ranvier to Node of Ranvier. The myelin sheath produced by the oligodendrocyte

prevents the electrical potential from leaking from the axon to the extracellular fluid.
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Myelin allows a different type of action potential transmission, known as
saltatory conduction. These axons have long sections of myelin, which increases
resistance and decreases capacitance, interspersed with unmyelinated sections known as
the Nodes of Ranvier. Depolarization jumps along the axon from node to node, greatly

increasing speed and decreasing energy consumption.

Axon diameter is the other factor besides myelination that determines
conduction velocity. A wide range of diameters and conduction velocities can be found
in the CNS. In monkeys, axons range from small, unmyelinated axons approximately 0.1
microns in diameter, that conduct signals at about 0.3 m/s, to myelinated axons 20
microns in diameter that conduct at 120 m/s. Axons thus vary by up to a factor of 40,000

in volume and 400 in velocity [Swadlow and Waxman].

Axonal length and arborization are of great interest to this dissertation.
Variations in these parameters control how signals are distributed between regions of
the brain. Axonal length depends on the type of circuitry a neuron belongs to. Short
axons are found in neurons that participate in local information processing, for example
the circuits in the visual cortex that transform the representation of visual information
from a spatial basis to a frequency (or more precisely, Gabor wavelet) basis. [Lee] These
neurons may have excitatory or inhibitory effects on the neurons they synapse with.
Longer axons transmit the results from this local processing through the white matter,
which in humans occupies about forty percent of the volume of the cortex [Zhang and

Sejnowski], and gets its name from the opaque fatty myelin sheaths.
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Figure 2.6 Axonal Arbors Axonal arbors (branched structure above soma) of spiny
cells (left) and basket cells (right) show differing degrees of branching (measured by
depth of bifurcations for example) and directional anisotropy. Adapted from Budd and

Kisvarday.

Arborization refers to the tree like branching of the axon. The arborization
patterns of short-range axons are well understood. They can range from simple, compact
arbors with only a few branches near their terminus, or complex, bushy arbors with
several levels of branching. Due to the difficulty of following long-range axons over
several centimeters through the brain, their branching structure is much less
understood. Prevailing opinion is that branches in the white matter are extremely rare,
however our research indicates that they are much more common than previously

thought, and may form the basis of inter-area connectivity.

Processes — Dendrites

As opposed to axons, which transmit the action potential, dendrites receive input from

other neurons. Action potentials are not received directly, though electrical coupling
17



between neurons has been observed [e.g. Gibson et. Al], it is relatively rare in
comparison to chemical synapses. The average dendritic arbor in the human brain

makes about 7,000 synapses [Pakkenberg].

The Greek root of “dendrite” is “dendro,” meaning tree, and it is so named for its
branched spatial structure. Dendritic structure varies between different classes of
neurons, but in general they are more densely branched than axons. The arbor of a
common neocortical neurons, the pyramidal cell, has a diameter on the order of a few
hundred microns in the plane normal to the direction of the axon. Complicated
branching patterns are demonstrated in Figures 2.2, in a Purkinje cell, and in spiny and

basket cells in Figure 2.6, where the can be compared to the more diffuse axonal arbors.

Glial Cells — Astrocytes

Glia were originally thought to serve simply as structural support for the neurons (their
name is literally Latin for “glue”), and the neuroscience community has only recently
come to appreciate their importance in brain function. Astrocytes in particular have a
variety of important roles in the normal functioning of the brain. Their name is derived
from the star-like shape of their cytoskeleton. They are slightly smaller than the typical

neuron in the cortex, about five microns in diameter.

Astrocytes regulate the chemical environment of the brain, by uptaking or
releasing extracellular neurotransmitters and molecules like potassium, which affects the
production of action potentials. They also participate directly in synaptic
communication, forming “tripartite” synapses with neurons, removing
neurotransmitters from the synaptic cleft and preventing their release into extra-
synaptic space (an action analogous to the activity of “reuptake inhibitor” class

antidepressant drugs) [Perea et al.]. Astrocytes are also involved in the formation of new
18



synapses [Allen and Barres]. The formation and regulation of synapses gives the brain

the ability to learn.

Astrocytes participate in the synaptic interface between neurons; they also form
part of the interface between neurons and the vascular system that supplies the brain
with nutrients. Similarly to neurons, astrocytes have long processes extending from their
cell bodies. Many of these contact synapses as discussed above, but others contact the
epithelial cells that wrap around blood vessels, forming the blood brain barrier.
Astrocytes control the vascular response to neuronal activity, up-regulating it when they

sense increased metabolism [Takano, et. al.].

Astrocytes also play a role in injury response in the brain, forming a glial scar
through a process known as astrogliosis, although the benefits of astrogliosis have been
questioned [Fawcett and Asher]. This response is well known in cases of gross injury,
such as that caused by stroke or puncture wounds. Astrocytes are also thought to be
involved to acute localized injuries, such as the toxic zone around the amyloid-beta
plaques of Alzheimer’s Disease. Elucidation of the nature of their response to amyloid-
beta plaques through observation of their spatial structure will be discussed at length in

this thesis.

Glia - Oligodendrocytes

Unlike the multi-functional astrocytes, the oligodendrocytes are specialists. They create
the fatty myelin sheath that wraps many axons in the CNS, insulating them from the
extracellular environment. The cell body of the oligodendrocyte is small, about two to
four microns in diameter. A single oligodendrocyte may provide sections of myelin for

several axons, but most axons require many sections of myelin over their length. The
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Figure 2.7. Types of glial cells. (a) Microglia stained for coronin 1a (green), among

neuronal processes stained for alpha-internexin (red). Small round microglia area
inactive, large amoebic microglia are “activated,” in their phage state [Shaw a]. (b) A

cultured astrocyte stained with GFAP (yellow), with blue staining the nuclei of the
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astrocyte and surrounding cells [Shaw b]. (c) False colored electron micrograph of an
oligodendrocyte in layer 4 of the cortex. Oligodendrocytes- red; neuronal cell bodies and
dendrites- blue; dendritic spines- grey; axon terminals- green; astrocytes- yellow.

[Reproduced from Peters]

Glia - Microglia

The final common type of glial cell in the CNS is the macrophage microglia. These are
small cells with bodies about two to four microns in diameter. They extend thin
processes through the cortex to detect potentially harmful elements, such as dead or
dying neurons and glia, cellular waste or infectious agents. They remove these through
the process of phagocytosis, in which the microglia envelops these elements and

degrades them.

Organization of the Brain

We organize the brain through hierarchical subdivisions; similarly to how a person can
be a member of a family, town, county, state, country, and continent, a neuron may be a
member of a minicolumn, layer, area, hemisphere, and structure or system. Such
designations may reflect structural differences between regions of the brain, or

functionally defined regions.

Coordinate Systems

In order to discuss how two parts of the brain are related to one another spatially, it is
important to define a reference coordinate system. The most commonly used system is
that used for the rest of the body, the rostral-caudal, dorsal-ventral, medial-lateral set of
axes. This can cause some confusion in bipedal primates, since the brain is tilted from its

normal orientation (a person on hands and knees with their neck in a neutral position
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will be looking at the ground, this is because their brain is rotated forward 90° compared
to that of, say, a mouse). We will use the mouse as the typical quadruped, and the

human as a typical biped, to describe these axes.

The rostral-caudal axis is directed from the nose to the tail of the rat. In a human
this axis is curved from the nose to the base of the neck. The dorsal-ventral axis
translates to English as the back-to-belly axis. In the human brain this axis remains
perpendicular to the rostral-caudal axis, starting pointing from the top of the head to the
chin in the foremost portion of the brain, and ending pointing from the back to the chest
at the base of the neck. Lastly we have the medial-lateral axis, starting at the midline of
the body and extending out to the extremities. This has some advantages over a simple
left-right axis in its reflection of the bilateral symmetry of the body, for example the
elbow is always medial to the hand, regardless of which side of the body you are on. The

same relationship between brain structures is observed.

Lastly, the planes of the brain have also been named. This is convenient for
neuroanatomy, which until very recently was limited to looking at thin two-dimensional
slices of tissue or surfaces. Since sections are not curved, the names of the planes cannot
be described in terms of the axes. The planes are instead are oriented with respect to the
brains normal position in the animal’s body. The sagittal plane is parallel to the midline,
the horizontal plane is parallel to the ground, and the coronal plane is perpendicular to

both of these.
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Figure 2.8 Coordinate systems in the brain.

Divisions of the Central Nervous System — Fore, Mid and Hindbrain

The central nervous system can be divided into three structures, which develop from
three separate vesicles in the neural tube. These three structures are known as the
forebrain, midbrain, and hindbrain, which roughly describe both their relative positions,

and the level of the processing tasks they are responsible for.
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The forebrain contains the structures responsible for perception, awareness,
cognition and voluntary action. It is the largest structure in the mammalian brain, and

contains the cerebrum, hypothalamus, thalamus, olfactory bulb, and optic stalks.

The midbrain is a smaller, less structurally differentiated structure. The midbrain
contains the superior and inferior colliculus, which receive sensory information from the
eyes and ears, as well as axons from the forebrain. It serves as a conduit for information
between the forebrain and the rest of the body. The midbrain projects axons to
widespread areas of the CNS, and is involved in basic elements of cognition such as

mood, pleasure and pain.

Like the midbrain, the hindbrain also serves as a conduit, but also contains
distinct important processing regions: the cerebellum, the pons, and the medulla
oblongata. The pons and cerebellum are very important for motor control, while the
medulla relays auditory, touch, and taste sensory information. Damage to any part of

the hindbrain can be crippling.

Structure of the Cerebrum

The structures mentioned in the previous section are all critical to function. A small
amount of damage to an area such as the pons can lead to a greater degree of disability
than similar damage in many areas of the cerebrum. However, the cerebrum is the home
of the most complex neural tissue, and many of the cognitive capabilities that we think
of when we think of our own “selves.” Besides this aesthetic appeal, many brain
dysfunctions important to humans, such as age-related cognitive decline, Alzheimer’s
Disease, Parkinson’s, and many others, are diseases of the cerebrum. Study of the
cerebrum can help understanding these diseases in their proper context, and how the

workings of the incredibly complex cerebrum make it susceptible to insult.
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The cerebrum can be separated into two sections — the gray matter cortex,
containing neurons, and white matter, which contains long-range axonal pathways. The
cortex can be divided broadly into lobes — the Frontal, Parietal, Temporal, and Occipital
lobes, or more finely into the structurally defined Brodmann areas [See Figure 2.9].
Lobes contain areas that generally perform the same class of tasks; the frontal lobe, for
example, is responsible for planning, anticipation, and executive decision-making.
Though structurally defined, Brodmann areas are fairly close to functional areas

identified by EEG and fMRI experiments that measure neuron excitation.

Fig. 85 and 86. The cortical areas of the lateral and medial surfaces of the human cere-

Fig. 83 and 84. The cytoarchitectonic regions of man. The olfactory region is not indi- N . L —
'8 an : B! y reg bral hemispheres. (Sixth communication, 1907.)

cated.

Figure 2.9 Subdivisions of the cortex. Left: The cortex dived into lobes. Adapted from
[Brodmann, Figure 83-84]. Right: Cytoarchitectonically distinct areas defined by

Brodmann. Adapted from [Brodmann, Fig 85 and 86].
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Figure 2.10 Cortical Layers. Left: Layers I-IV in early human development, adapted

from Brodmann Fig 1. Right: Layers near a sulcus, adapted from Brodmann Fig 2.

Brodmann defined distinct areas of the cortex based on differences in
cytoarchitecture. Primarily, these differences were in the thickness and number of layers
of neurons of different types and densities. This layering reflects the different circuitry
required by different processing tasks. The cortex has from two to six layers, although in
some regions these layers may be subdivided. Layers are functionally specialized, for
example sending information to a downstream area, or receiving feedback input

[Rockland et al.]. Besides this laminar arrangement, neurons are observed to line up into
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columns [Buldyrev et al.]. Neurons in these anatomical columns have a high degree of
interconnectivity [Mountcastle], and may form a basic processing unit. Buldyrev showed
that a decrease in the structural prominence of columns was correlated with mental

dysfunction [Buldyrev, et al.], using methods from statistical physics.
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Figure 2.11 Axonal Fibers. Left: Example of axonal fibers from the fornix bundle,
showing considerable variation in size [from Comin, et al.]. Right: Distribution of axon

areas (not including myelin sheath) in fornix. [J. Santos, private communication]

In contrast to neuroscience’s successful parcelization and organization of gray
matter, the white matter remains largely mysterious. White matter occupies about forty
percent of the human brain, and is composed of axons, both myelinated and
unmyelinated, and oligodendrocytes. Axons vary in size and myelination, but do not
display the variety of morphologies that distinguish cell bodies in the cortex.
Furthermore, all sizes and myelination states appear to be mixed together [e.g. Comin et

al]. Because of this, white matter looks largely homogenous. Progress has been made
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recently in identifying different fiber populations based on the proteins they express, or
the proteins expressed in their insulating myelin sheathes [e.g. Campbell and Morrison],
but this still has not led to recognition of any features that would allow an anatomical

organization similar to that of the cortex.

Fibers are instead labeled by the regions of the cortex they connect, i.e. a fiber
connecting the visual areas to the motor areas is said to be part of the visuo-motor
pathway. A volume of the white matter can then be labeled by the array of fibers it
contains. The organization of fiber pathways will be discussed in conjunction with our

study on fiber orientation in the white matter.
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3. Overview of Quantitative Tools

The description of spatial structure requires two ingredients: objects to analyze, and a
mathematical framework to analyze them with. The concept of the object includes both a
physical entity, composed of atoms, and its mathematical representation. For example,
we may wish to analyze a set of cells. These cells exist in between two glass slides, in a
drawer in the laboratory of our collaborators. In our analysis, they will be represented by

a set of points.

A set of points is a very powerful representation, and it comes with a
mathematical framework that has been developed by centuries worth of physicists. A
point can represent an individual object, such as a neuronal cell body. A set of points can
represent the result of a sampling process, such as the pixels of an image, which sample

a signal such as the light from a fluorescently labeled axon.

The following section will focus on the representation of objects through sets of
points, and the mathematical tools we use to quantify them. There will be other more
specialized mathematical tools used in individual analyses; these will be explained in

context.

3.1 Quantification of Collections Points

A point-like object is one whose only spatial property is location: it lacks any finite
spatial extent. Though cells in the brain are obviously finite size, this description is often
useful when defining the properties of, and comparing differences in cytoarchitecture.
The effects of finite cell bodies, such as steric interference, can be observed and naturally

added by considering interactions between the point-like approximations. The following
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sections will discuss representation of cells as points, overview the analysis of the spatial
structures of ensembles of points, and then discuss particular applications to the analysis

of neural tissue.

3.2 Representation of Cells as Point-like Objects

At this point, the question becomes how to define the location of the point
approximating the cell. The entire body of a neuron includes a dendritic arbor that
extends over a few millimeters, and possibly an axon extending up to several
centimeters. Even ignoring the difficulty in properly reconstructing entire neuronal
bodies under most experimental conditions, the physical interpretation of this location is
not readily apparent. A more useful choice of location is the center of mass of the soma,

or neuronal cell body.

The soma can be thought of as a “home base” or “center of operations” for the
neuron, both in a developmental and functional sense. During development, a compact
neuron without large dendritic and axonal processes is generated from a precursor cell
[Rakic], and migrates into its position in the cortical sheet, after which the soma
normally maintains its position [Tyler and Haydar]. Thus somal position reflects the
initial developmental “program.” Furthermore, dendritic and axonal processes are not
constant over the life of the neuron, and may be lost or gained in response to the
environment. Functionally, signals from the dendrites are integrated at the soma, and
action potentials are generated before being transmitted down the axon. The soma also
contains all of the necessary organelles necessary for maintaining the neuron [Bear et

al.].
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Sets of points can also be used as a representation of an extended object, for
example, a set of points on an objects boundary. The object can be reconstructed by
making some assumptions and interpolating between the points. A circle, for instance,
can be reconstructed from any three points on its edge. We take the approach of
describing the statistics of the samples as we would any other set of points, although as
we will see, knowledge of the underlying objects can lead to some interesting statistical
tools. This approach is generally more robust in the complex, heterogeneous

environment of the brain.

3.2 Stochastic Processes and Sets of Points

If a process is stochastic, then the current state of the system defines probabilities for the
state of the system at future time. This contrasts with a system that evolves
deterministically. In general, a stochastic process can be thought of as an indexed set of
random variables X;, with each random variable part of the state of the system at a
particular time indexed by i. A special case of this is the point process, which can be
thought of as a binary random value indicating whether or not an event occurred. If the
indexing space is multi-dimensional, this is typically referred to as a spatial point
process, one-dimensional point processes usually consider evolution of a system
through time. Stochastic processes can be described through the rules that govern the

relationships between the X;.

The Poisson Point Process

The simplest point process is the Poisson process, in which there is equal probability of a
point being located in every small volume. This generates what is typically called a

“spatially random” set of points. In this case the underlying process generating the
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points can be described by a single parameter, p. This parameter defines the expected

2
number of points and variance of that number in a volume V, (N)=0"=pV Any
deviation from this, for example increased variance, or a spatially dependent estimate of

p, is an indication of a more complex stochastic process.

Non-uniform Point Processes

A point process can in general be spatially dependent — i.e. the probability of observing
an event is not the same at every point. In a point process describing a stochastic
physical system, this is a way of understanding and measuring interactions in the
system. A simple modification to the one-dimensional discrete Poisson process
introduces a correlation based on the last event. Say instead of every site containing a

point with probability p, if site X; contains an event, then site X;,; contains a point with

probability p/2. This in turns increases the probability that site X;,, contains a point,
since X,; is more likely to be empty. This is a simple model for particles with short-

range repulsive potentials. The oscillating density is characteristic of liquids.

Spatially dependent processes can be split broadly into two classes: stationary
processes, which are translationally invariant, and those that are not. Non-stationary
processes indicate an outside influence creating a preferred coordinate system. An
example might be the distribution of people over the earth. Humans are not dispersed
evenly, but this is not only due to inter-human forces of attraction and repulsion. Some
of the observed high and low densities are due to variations in climate and resources not
determined by humans. An example in the brain would be the differential density of the

cortical lamina, or a localized reduction in cell density due to injury. These outside
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influences must be compensated for when estimating the relationship between points in

a system.

Stationarity in reality is always an approximation, for the simple reason that our
brain, and any region within it, is of finite size. However, the nontrivial properties of a
stationary point process encompass some very interesting behaviors. Because variations
in the probability of finding a cell in the vicinity of a point cannot be dependent on its
absolute location, they must instead depend on the location of the rest of the points in

the system,

(3.2.1) P(x)=P(X;X,,X,,....Xy)

where x; is the location of the ith cell. This forms the basis of measuring interaction
through the spatial structure of a system of particles (or cells in our case). Consider the
special case of a particle added to a system of particles held fixed in a volume.
Boltzmann showed that the probability of finding a system in a given state is a function

of the energy of that state, so

(3.2.2) (a) P(x)=%exp[—E/kT]=5exp[-U(x;:X,,X,,..Xy)/ kT']
N
b) P(x)=Lexp[- Y U(x;x,)/ kT']
i=1

where U(X;X;.X,,..Xy) gives the potential energy at x given a distribution of particles 1

through N, U(X.X,) is the energy due to particle I, and Z is the partition function.
Expression (b) applies to super-imposable potentials. This expression leads to the pair-

correlation function, which will be discussed in detail in the following section, along
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with “higher-order” correlation functions, which can describe a variety of interacting,

multi-particle systems.

3.3 Descriptions of Point Processes

A description of a point process using the location of every point, as in Equation (3.2.1)
would be very difficult to estimate, and very cumbersome for actual use. Fortunately,
this is not necessary for physical systems with finite-range interactions. In this case
Equation (3.2.1) serves as a basis for a series of enlightening approximations known as

correlation functions.

N-Point Correlation Functions

Correlation functions are a statement of the joint probability. Formally, we will consider
a random variable X representing the probability of observing a point in a small volume
around a randomly chosen location x, and a random variable Y representing the
probability of observing a point in a volume around x+x;. The joint probability is thus

parameterized by the vectors x and x;.

P(X.,Y)=P(x,X,)
(3.3.1) P(X,Y)=P(X)P(Y |X)=const*P(x,)

Stationarity, discussed above, plays a key part in the relationship between the
distributions. This often leads to the simplification on the second line in Eq, 3.3.1. Given
a stationary process, the probability of observing a point cannot be dependent on the
global coordinates, so the conditional probability cannot depend on x. This leads to the
definition of a correlation function:

(3.3.2) ¢y(X,.X,,....Xy) = E[P(X,X,)P(X,X,)...P(X,X, )]
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where E...] is the expectation value. This is the full correlation function, as in [Szalay]
Equation 11 (p. 166). The full N-point correlation function can be expressed in terms of
simpler irreducible correlation functions, which, as we will see, can have intuitive

physical meanings.

The expression for the full correlation function in Equation (3.3.1) expressed in
terms of expectation values can be related to the joint cumulants of the P(x,x,).
Cumulants are a way of describing a probability that are related to the more familiar
moments. The cumulants of a distribution, c,, are defined as the coefficients of the power
series of the cumulant generating function, which is the logarithm of the moment
generating function. In this context the joint cumulant of the P(x,x;) can also be referred
to as an Ursell function or connected correlation function. The joint cumulant is defined

by the generating function [Schlosman]:

(3.3.3)
Jd o 0 Y
XXy )= e —2 log E Px:X,
(a) CN(XI %2 XN) aZ] aZz aZN o8 [expga (X Xl)]z,=0
(b) ¢, =E[F]

(o) &,(%,)=E[RP]-E[P]ELP,]

(d) 6(X,.X3) = E[RP,P]- E[P 1E[P,P,]1- E[ P, |E[P,P | - E[P1E[P.P, 1+ 2E[ P |E[ P, | E[ P;]

where P; is defined as P; = P(x,x;), and P; = P(x). The first few joint cumulants are given
in (b)-(d). All cumulants are independent of the offset parameter x,, this emphasizes

that because of stationarity only the relative offset between sampling matters, so we are
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free to choose a coordinate system centered on the P; distribution. This is apparent in

(b), which is simply the density of the point process.

Examining the expressions in (b)-(d), a recursive pattern becomes apparent. The
nth cumulant is related to the full correlation function defined in Equation (3.3.2),
corrected by a combination of terms appearing in lower order correlations. If the
expression is rearranged to solve for the full correlation function, a physical meaning for
the cumulant can be understood. For example, consider the second order full correlation

function:

(3.3.4) E(PP)=E[P]E[P,]+c,(X,)

The expression E[F1E[P,]=E[P I is simply the expectation of observing events offset
by the vector x, by chance. The cumulant then reflects some “extra” probability
produced by correlations between pairs of points in the point process, which justifies its
common name, the pair correlation function. This function is widely used in fields
ranging from solid state and statistical physics [e.g. Le Ballac] to neuroscience [e.g.
Cruz]. The title irreducible two-point correlation function differentiates it from the full
two-point correlation. The impetus for the irreducible name is illustrated by the three-

point irreducible correlation. The probability of observing three points with offsets x;, x,

and x, - X, in a random point process would simply be E[P 1E[R]E[P]= E[PT.

However, unlike in the two-point case, the difference between this and the total

expectation E[FP,P;] is not simply due to interactions involving triplets of points. One

must also consider the impact of pair-wise interactions between points. These contribute

E[PIEIPP,]

terms of the form to the full correlation function:
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(3.35) E[PP,P]=cy(x,.X;)+ E[RIE[P,P,]+ E[P,]E[P, ]+ E[P,E[RP,]- 2E[PT

The c5(x,,x;) contributes extra probability from interactions that cannot be reduced to

combinations of two-point interactions, hence the term irreducible.

One question that naturally arises is how many orders of correlation functions
must be calculated to sufficiently to characterize a point process. In many cases this can
be deduced from the physics if the character of the interaction is known. If this is not the
case, the mathematics of cumulants provide their own limit. The cumulant of any set of

distributions containing two or more independent random variables is zero. Thus if a

cumulant ¢,(X;,..X,)=0 then ¢, (X,,..X,)=0,ke N

Tessellation Based Descriptions

While the correlation function approach can give a rigorous description of a point
process, they can pose problems in estimation and calculability, and do not always give
an intuitive reflection of the physical system. Tessellations provide a description by
subdividing the embedding space of the point process into polygonal domains
belonging to each point. The properties of the domains, for example the number of sides,
or volume, can be computed for a number of well-known point processes and compared
to the experimental distribution. For some systems, for example space-filling systems
such as the growth of crystalline domains around seed points described by Pineda, et al.,
tessellation models offer a natural mathematical underpinning for descriptions of the

system.

The Voronoi diagram subdivides a space containing a set of seeds {P,} into a set

of domains. The domain of seed p; embedded in the space X contains all points in X that

37



are closer to p; than to any other seed p,,;. In precise mathematical terms, the domain of

site i is defined as:

33.6 V. ={xeX:|x-p| SHX—P; . Vp; €{P}.j#i} [Calka]

Typically the Euclidean L, norm is used, however other measures can be substituted,
such as the Manhattan L, norm, or even a transformation on the space, such as the time-
based norm famously used by John Snow in his identification of the Broad Street pump

as the source of London’s 1854 cholera outbreak [Brody].

The Voronoi diagram can be thought of as defining density and other structural
properties typically associated with an ensemble of points at the level of a single cell and
its surrounding neighborhood. This gives quantitative meaning to several intuitive
descriptions of structure. For example, the variance of domain size gives a measured of
how ordered a system is. The variance of domain size is zero for a lattice, inversely
proportional to density for a random set of points, and larger still for systems exhibiting
inhomogeneities such as clustering. The Voronoi diagram defines adjacent neighbors to
each cell, the number of and angles between which can be used to measure “angular
regularity.” [da Fontura Costa] Measurements based on the distribution of Voronoi

domains will be precisely defined at the point they are used in analyses.

The properties of the Voronoi diagram of the Poisson point process have been
thoroughly elucidated. They are of great utility in the study of nucleation and growth
problems, such as those encountered in metallurgy, geology, biology, and ecology
[Pineda]. The domain size distribution can be accurately approximated by a gamma

distribution:
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3.3.7 P(V)=V""exp(-vpV)

where V is the length, area, or volume in one, two, or three dimensions, p is the density

of seed points, and v is a dimension dependent parameter that takes on values of 2,
3.575, and 5.586 in one, two and three dimensions [Pineda, et al.]. This can be used to
supplement tests of spatial randomness based on correlation functions, or in instances
where correlation functions are difficult to implement, as we will encounter in our
analysis of astrocytes. Similar formula have been developed for the number of sides of,
which although very complex, are related to the Poisson distribution A*/k!, with mean

close to six in two dimensions [Calka].

3.4 Computation of Descriptors

Two-Point Correlation Function: Radial and Vector Pair Correlation, and Estimators

The two-point correlation function comes in two flavors — the one dimensional
radial distribution function, typically denoted g(r), which measures the change in
probability as a function of distance from a reference particle, and the more general two-
point correlation function g(r), which measures the change in probability as a function of
the vector displacement from the reference point. We will use the notation ¢,(r) to refer
to the mathematically equivalent second joint cumulant, when the framework of
probability may increase understanding. The general correlation function has the same
dimension as the embedding space. The primary advantage of the radial distribution
function is that it increases the number of samples in a bin of a given size. To illustrate,
in d = 3, the data samples that would be counted in the bin between r and r+4 in an

estimate of the radial correlation function would be split between 41 bins of size 4’ in
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an estimate of the general correlation function. In the following discussions we will use

the notation g(r), all properties of the general correlation function hold for the radial

correlation function with the substitution of 7 =/l for r. A slight modification of
equation 3.3.4 is made to make the experimental sampling method apparent and

eliminate dependence on sample size:

(3.4.1) p[P(r)]=p’(1+g(r))AV?

Note that the meaning of P has changed - in this equation it represents a pair of points
separated by r. The random variables P, and P, in equation 3.3.4 are the probabilities of
two spatially separated volumes of size AV being occupied. The left side of 3.4.1 should
be read as the probability p a pair of randomly chosen volumes separated by r will be
simultaneously occupied, P(r). The term p°’AV? corresponds to the expected number of
random coincidences E[P,]E[P,], while g(r) introduces changes in the probability due to

interactions.

The two-point correlation function can be directly computed using two general
classes of methods: pair counting estimators and geometric estimators that employ a
sampling window. Indirect computation is common in solid-state physics, and takes
advantage of the fact that the correlation function is a Fourier pair with the structure
factor, which can be measured through scattering experiments. Both classes of methods
base their estimate of g(r) on counting the number of pairs of points separated by r. This
count can depend on the geometry of the sampling volume, including both the shape of
the boundary and existence of holes. Different estimators vary in the method used to

normalize the raw count to minimize the boundary effect. This problem was first
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studied in depth in the analysis of galactic surveys, notably by Peebles [e.g. Davis and

Peebles], whose work was refined by many others [e.g. Szalay].

Pair counting methods take advantage of the fact that c,(r) = 0 for unrelated
distributions. The points in a random gas are not interacting, thus spatially distinct
volumes will not be related. Thus, by considering a set of random points, R, with the

same density as a set of data points, D, g(r) can be calculated by taking a ratio:

pIP, ] 1+g(r) p?AV?
G42) pip1 1 pZAK

This is of use because biases in the pair count can be caused by the shape of the
sampling volume. Any biases in the data pair count introduced by the sampling region
should also be present in the random pair count, and are canceled out by taking the
ratio. The following discussion of pair counting methods is based on the analysis and
notation in Kerscher et al. Consider a set of some points of interest (denoted D for data)
in an experimental volume V. The number of pairs of points in D separated by r is
denoted by the pair counting function Ppp(r):

P,m=)Y Y ®.(xy)

xeD yeD ,y#x

1 —v—-r) <A.
(3.4.3) <I>r(x,y)={ (x=y-n), }

0 otherwise

Note that the subscript i denotes that the inequality must hold for each component. The
vector parameter A describes the binning of the count. This count is symmetric, Ppp(r) =
Ppp(-r), which implies double-counting in the case of the radial correlation. Now

consider a set of randomly generated points, R, of equal number to D, deposited in the
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same volume. The pair counting function Pgg is defined analogously to Ppp, with points
x and y drawn from R instead of D. Since both counts use the same A parameter and

have the same density, we can take a ratio to obtain g(r).

P,
g(l’) — DD _
3.4.4 P,

This is known as the natural estimator of the pair correlation function. It is not
necessarily the best estimator of g(r). Several others have been introduced, primarily by
the astrophysics community, with the intent of increasing the rate of convergence as a
function of sample size and eliminating bias, or dealing with certain types of boundary
conditions. The other estimators involve the Py, and Pg; pair counts introduced above,
and an additional mixed pair count Ppy:

3.4.5 P(r)= 2, 2 @, (x.y)

xeD yeR

Note that because x and y are taken from different sets, we no longer need to apply the
restriction x=y. This increases the number of DR pairs to N°, as compared to the N(N-1)
DD and RR pairs. When combining DR pairs with non-mixed pairs, it is necessary to
normalize the P counts by the total number of pairs. Five popular estimators are listed

by Kerscher, et al.:

_PDD_l _PDD_l _PDD_PDR _PDDPRR _PDD_2PDR+PRR
8 = 8pp = He = Ha = 2 815 =
3.4.6 P P, P.. P, P..

the names of which, other than the Natural estimator, reflect their authors, who are,
from left: Davis and Peebles, Hewett, Hamilton, and Landy and Szalay [Kerscher et al.].

The Pp count can be interpreted as being a relative of the cross-correlation between the
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random set of points and the data points, which could only be correlated through the
effect of the sampling volume. As such, Py should be highly sensitive to bias induced
by the sampling volume. Kerscher, et al. give an in-depth examination of the relative
performance of the various estimators in the context of galactic surveys, concluding that
boundary effects are relatively unimportant at small scales, and that at large scales the
natural estimator is the most sensitive to boundary effects, while the Hamilton and

Landy-Szalay estimators are the least.

However, the estimation of g(r) in the brain has a few important differences. The
effect of holes is very important, since neural tissue contains a large density of blood
vessels. Accurate understanding of short-range behavior is relatively more important,
and long-range less so, when considering the interactions of cells rather than galaxies. A
comparison of estimators will be conducted in the following pages, but first a discussion

of the generation of random points is necessary.

Geometric estimators have not been used in our analyses of the brain, but they
will be briefly described for the sake of completeness. These count the pairsin a
window, and weight the pair counts based on the intersection of the window and the
total sampling volume. The isotropy of the radial correlation simplifies the form of these

weights. The geometric estimator of the correlation function in three dimensions is:

,y)
g(r)+1= N(N 22 Sy O%Y)
347 . (X,y)= 4”r2
A7 OrRY)= area(aBr(x)ﬂW)

where | W1 is the volume of the sampling window, and w(x,y) is the weighting

function. As an example, the weighting function used by [Ripley] is the ratio of the
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surface area of a sphere of radius r to the fraction of the surface area of the sphere B, (x)
with radius | x-y | centered at x that is inside the window W [Kerscher et al.]. Kerscher et
al. state that the pair-counting estimators are Monte-Carlo counterparts of geometric

estimators with appropriate weighting functions.

Two-Point Correlation Function: Computation with Pair Counting Method

Computation of the P, pair counts, with A and B some combination of the random and
data point sets, is straightforward. A sample algorithm for the radial correlation

function:

P_AB = array_of zeros(size = Max radius/bin_ width)
for each x in A:
for each y in B:

P AB[ int(|x-y|/bin width)]+=1

The time for this counting is proportional to N,Np. Statistical fluctuations can be
introduced by the random points used to calculate Pgg and Ppg. To reduce the size of

these fluctuations, it is typical to generate several random sets of points, and find the

Ny
i 1 3 PRR:NLZ(PRR)' .
average pair count at each radius over the sets, 1.e. § o Y, which adds a

factor of N to the computation time: NsN,N,. Besides the form of the estimator, the

computation of g(r) is also sensitive to the method used to produce the random sets of

points.

The subtlety of defining the method of producing a suitable random distribution lies in

defining the probability of where a random point is placed. The most straightforward
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method is to generate random points such that each infinitesimal volume has equal
probability of containing a point. This generates a Poisson distribution of points. We will

define this type of distribution as pure spatial randomness.

An alternative to pure spatial randomness is processes that randomize a given
distribution of points. This can be done through the addition of noise, or the application
of some transformation, for example randomly shuffling a time series. This is useful
when large-scale externally imposed inhomogeneities produce correlations in a point
process. If applied correctly, randomization should destroy the interesting small-scale
structure, while preserving large inhomogeneity, allowing the correct normalization of
the Ppp count. In the language of Equation 3.4.1, the pair probability becomes spatially
dependent through its dependence on p. The irreducible part of the correlation can be
recovered as in Equation 3.4.2 if we can obtain a random distribution with the same
large scale spatially dependent density, but with g(r) = 0.

pLP,(0)] 1+ g(r) propx+r)AV?

348 plP,(®)] 1 pE)pE+IAV.

To make the effect of randomization mathematically precise, consider a one dimensional
point process with a spatially varying density p(x) and correlation function g(r). The

probability that a randomly selected point has a neighbor at r+AL can then be expressed

in terms of density and the pair correlation function:

549 PUEAD =% ALP(x; +r)(1+g(r)
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Random gas, with Edges High Inhomogeneity

Random gas, with Center High Inhomogeneity 25

20 Random gas, with Boundary Error 20 Random gas, with No Boundary Error
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Figure 3.1. A sample of the effect of inhomogeneity on the estimation of g(r). A 3D
diamond lattice with vectors (1,0,0), (0.5,1,0), (0.5,0,1) was prepared in a cube
1=X,Y,Z<20, and shuffled with 16 randomly directed steps of length 0.1. Inhomogeneous
density was introduced in the top row by randomly removing points with a location
dependent probability. Top left: Spherical density distribution decreasing toward edge of
volume, simulating unevenness due to illumination. Top right: “Hollowed out” distribution,
density decreases towards center of volume as p(1-exp[-(r-r;)*/2L?]). Bottom left: The
random points were allowed to occupy the volume— -0.5<X,Y,Z,<20, simulating incorrect
boundary placement, or uncertainty in the boundary. Note that in this case the Hewett

estimator is insensitive to the error. Bottom right: Original distribution. Each
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inhomogeneity produces large background fluctuations in g(r), which can cause

significant difficulties in parametrization and comparison.

Now consider the addition of noise 0; to each position. Two points with initial

separation r; will now be separated by r; + 0; + 0; . This causes a mixing of the neighbor

probability:

O,

P.(N= | pO)P(r—0)do

[of

3.4.10

min

and modify the right hand side of 3.4.9 to:

p(r)= ‘J‘XdO'p(G)ZALp(xl. +r—0)(1+g(r—o))

o

3.4.11

min

In most useful experiments, the environmental influence on density varies slowly
compared to the spacing of points. If the mean displacement due to noise is ~p™?,
density will be approximately constant over the integral p'/ p<s<1/(o -, ). This
leads to the approximation:

(g

max

| dopo)sr-0)

[og

1412 p(r)= ALZI‘ p(x. +r)(1+

min

In biological systems, it is very rare to observe interactions with much larger range than

a few times the typical intercellular spacing, §(r)— 0,r > p™"” . Conservation of
probability implies that the interaction range must include both repulsive (g<0) and

attractive (¢>0) regions, and that the average over the interaction range must be equal to

zero. This implies that for most biological point processes, the proper choice of o can
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2.0 Random gas, with No Boundary Error
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Figure 3.2 Estimation of pair correlation using shuffled normailization. A diamond
lattice with vectors (1,0,0), (0.5,1,0), (0.5,0,1) was prepared in a cube 1=X,Y,Z<20, and
shuffled with 16 randomly directed steps of length 0.1. The correlation function of the

lattice is shown in row 1. Inhomogenous density was induced by randomly selecting
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points to be removed with the probability: p(x,y.z)=1-09exp[—(r—r.)* /5], with
re=(10,10,10). Normalizing with a purely spatially random points produced a g(r) with a
large background oscillation, (middle left). A shuffled set of points was produced by
adding a vector with each component drawn from the uniform distribution on {-2.5,2.5}.
This range is equal to the standard deviation of the random point removal, but using it to
compute Prgr and Ppr appears to remove most of the inhomogeneous effect (middle
right). A smaller shuffling vector, with each component drawn from {-0.5,0.5} accurately
estimate the correlation to long range (lower left), despite a maximum shuffling step the
same size as the lattice spacing. Estimation is finally degraded with a shuffling vector
with components drawn from {-0.25,0.25} (lower right). This estimator shows decreased
peak magnitude, as the integral in the denominator of 3.4.12 no longer sums to zero.
Estimators other than the Natural, which does not employ Ppg, show a false peak at low

radius due to correlation between the shuffled and non-shuffled point sets.

cause the integral in 3.4.12 to evaluate to zero. The ratio of the noiseless points neighbor

probability (Equation 3.4.9) to equation 3.4.12 gives

o) ALY pla +r)145(r)

= =1+g(r)
P(r) & /
3.4.13 ALY p(x,+r)(1+ | dopexE(r-o))

The precise form of the noise used to displace points (e.g. Gaussian or uniform) does not

appear to cause any significant change in the estimation of g(r). Simulations show that a
known structure can be reliably recovered without sensitivity to the size of the noise

parameter for most estimators listed above. If the range of interaction in the system is

unknown, the magnitude of || is chosen to be as large as possible while maintaining
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p'lp<1/(0 =0 ,). Alternatively, the magnitude of 10| can be chosen to be

slightly greater than the interaction range. Choosing | &l to be too small will

underestimate g(r), and cause false correlations in estimators that employ Ppy.

Correction of externally induced inhomogeneous density is an important
consideration in the application of correlation measurements to data produced through
the techniques of microscopy, histology, and immunohistochemistry. Large-scale
inhomogeneities are introduced from sources such as uneven illumination, shadowing,
and differences in staining agent penetration and uptake. These will be discussed in
detail in the section on data collection. Uncorrected, these can have a large effect on the

estimation of g(r).

Three-Point Correlation Function: Extended Objects and Subsets

Consider how a set of oriented lines is different from a set of oriented pairs of points.
The two-point correlation function is similar for both. It is positive along the axis of
orientation up to the maximum length/separation distance. The increase in the
probability of finding a point at given distance from another is equal to the fraction of
pairs separated by that distance. The probability increase caused by a line of points of
length L and some density A greater than the background density p is different. Since
every point between the endpoints of a line has an increased chance of being occupied,
each line of length longer than R will contribute an enhancement, and the pair

L

g(R)= | oL

R

correlation function is , where L,,, is the maximum line length and

p(L) is the probability of a line of length L. However, this density enhancement could
also be produced by a set of point-pairs with a suitable separation distribution. Thus

there is nothing in the two-point correlation function that can uniquely identify lines.
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The key to the correlation signature of lines, and other extended structures, is the
implication of finding a pair of points on certain points intermediate to them: as we just
stated, every point between the endpoints of a line has a high probability of being
occupied. This means that a set of lines should produce a non-zero irreducible three-
point correlation. Lines form the basis of our study, being the simplest extended
structure, and having natural biological analogues in columns and long-range axons. We
will end this section by discussing how higher order correlation functions may be used
for the quantification of more complex extended structures, such as turning or branching

axons.

The higher-order correlation signature of interactions involved in extended
objects is useful for isolating a single interaction in a complex environment. For example,
take the columns of cells that form in the cortex. Cells in a given column share the same
radial glia scaffold during development. Their processes form a high density of synapses
with one another, and interact in the neuropil. These interactions form the columns we
identify by eye. However, there are numerous other pair interactions. Neurons from
adjoining columns, and non-columnar interneurons, interact via pair-wise volume
exclusion forces. Cell-cell signaling through the eph/ephrin [Marquardt et al.] and
semaphorin [De Winter et al.] systems mediates the growth of axons and some neuronal

migration [Rudolph et al.], and may cause other pair-wise interactions.
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Figure 3.3 Three-point neuron correlation. The three point correlation is a function of
two vectors, the displacement from the reference point to a first point x4, and to a second
point x,. These vectors can be expressed as x = r(cos(0)i + cos(0)j). This plot is a heat
map of 84 vs 0,. The correlation shows enhancement at 8, = 8, and 84 = -0,, denoted by
dashed lines. Columns of neurons in this tissue were aligned at about 60° relative to the
image plane, producing a strong signal at that angle. Evidence of other lines of cells are

also present.
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Filling a correlation function using every combination of pairs is a demanding
calculation, proportional to the cube of the number of points in the sample. Since we do
not expect long range correlations to be significant, we can achieve a speed up by only
considering the second set of pairs if the first is within a certain minimum distance, i.e
Ry, < R, This reduces the time requirement to (p7R,,,,”)N’ from N°, where N is the
number of points and p is the density. A sample algorithm implementing this strategy

for the number of triplets at different displacements:
PP DD = 4D array of zeros()
for each x in D:
for each y in D not equal to x:
if R(x,y) < R_MAX:
for each z in D not equal to X or y:

PP_DD[theta(xy),r(xy),theta(xz),r(xz)]+=1

This is the raw number of triplets as a function of the vector from x to y and x to z. When
normalized by the same quantity for a set of random points, it gives the E[P,P,P;] term
in Equation 3.3.3 (d). The two point distribution functions can be computed in parallel,

and combined as in Equation 3.3.3 (d) to compute c;(x;,x,).

The above example using neurons illustrates a few of the difficulties presented by the
three-point correlation function. The computational constraints are obvious: sets of
points typically number in the thousands, so estimation must be restricted to some
subset of the full domain. The remedy offered in the sample algorithm may not be
sufficient in the case of dense sets of points. We shall discuss a technique to increase the
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efficiency of computation, but first we must point out another difficulty, which is the

visualization of higher dimensional data.

Display of a function of more that two or three variables requires elaborate
techniques, even three-dimensional representation typically uses selected two
dimensional surfaces embedded in three dimensional space. A three-point correlation
function is twice the dimensionality of its embedding space, making projection along
one or more dimensions necessary for intelligible display. Knowledge of the interaction
of interest can guide the projection, for example, in a system we believe contains lines,

we are primarily interested in the subset of c; where 6., = 6,, and R,, <R,

The Three-Point Function and Path Probability

In a system containing continuous extended objects, the 8,, = 6,, and R,, < R,, projection
allows an efficient computation of the three-point correlation using a technique we have
dubbed Path Probability. Consider a function f that equals one in a neighborhood of
radius A around a point. In continuous space, Path Probability (PP) can be defined as the

product integral of f along a curve R as follows:

3414 TPO= E[I;[f (s)ds]= E[CXP['I[IOg(f (S))dsj]

The product integral is multiplicative equivalent of the Riemann sum. The argument of
the expectation evaluates to one if fis one at every point along R; it is zero otherwise.
Path probability is directly related to the three-point correlation function of extended
objects. Consider a system, containing lines, whose coordinate system is a discrete
lattice, such as an image produced by a microscope. We define a function f on the lattice

that equals one where a voxel contains an object. We wish to compute the irreducible
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three-point correlation function of the voxels c;(r,,1,), where r, and r, are collinear, to
determine if there are lines of a given orientation and direction. To compute this
correlation, we begin by testing triplets of points offset by r; and r,. There are four
possible configurations of lines that can contribute to each point in the triplet being

positive, shown in Figure 3.4.

Each of these configurations is represented by a term in the three-point expectation

introduced in Equation 3.3.3". Configuration 1 produces the irreducible three-point

r Q@ O
1@ O
2@ O
3@ ©O
‘9 O

Figure 3.4. Diagrammatic representation of three-point correlation. Configurations

of lines that can lead to f = 7 in the voxels denoted by black circles in the top line .
Values of fin other voxels considered unknown. Lines are represented by gray

rectangles.

1 E[PP,P,]=c,(x,,X,)+ E[P]E[P,P,]1+ E[P,)E[P,P ]+ E[ P,JE[P,P,]- 2E[P]’
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correlation c;; it obviously cannot be broken up into combinations of pair and single
point correlations. Configurations 2 and 3 correspond to E[P,P JE[P.] and E[P,P.]E[P,],
the third two-point correlation does not contribute because there is no linear line that
can connect the x and z without also intersecting the y. Configuration 4 corresponds to

E[P]E[P,JE[P,], with a line randomly intersecting each voxel.

From this single test, we have no way of knowing which interaction is causing
f(O)f(y)f(z)=1. We can make multiple tests with the same offsets throughout the sample,
and combine the averages of other tests according to Equations 3.3.3.5 (a)-(d) to solve for
¢1, ¢, and c;. However, by taking advantage of continuity, we can accelerate the
calculation and determine with high probability whether ¢; was responsible for the

outcome of this particular test.

In configuration 1, the outcome of the test is independent of the location of the
intermediate point y. In order for this to be true for the other configurations, they would
have to fill the entire space by random coincidences of pairs and single points, highly
unlikely unless density is extremely high or R,, is small. Thus if we find the combination
f(X)fty)f(z)=1 for every value of y on the vector from x to z, we do not need to correct for
pair and single point coincidences. It is easy to see that Path Probability performs just

such a test. On a discrete lattice, Path Probability is defined as

3415 PPO=E[[],_ f(]

where R contains every site on the lattice intersected by the vector r, and its relationship

to the three point correlation function can be summarized as:

3.4.16 C;(r.ar)= PP(r), 0O<a<l
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the three point correlation function of any two collinear vectors, in a system where the
irreducible three-point correlation is produced by continuous lines of objects, is equal to

the Path Probability of the vector with greater magnitude.

Path Probability takes the 2D c; function (where D is the dimension of the space)
into D dimensions by essentially projecting from a = 0 to a = 1 along the second
argument in Equation 3.4.16. Of course this same projection would be possible if we had
access to the full three-point function. Path Probability would not be useful unless it
offered a large advantage in computational efficiency. Fortunately, Path Probability can
be calculated using convolutions. The convolution theorem states that the convolution of
two functions is the Fourier pair of the product of the function’s Fourier transforms.
Furthermore, Fast Fourier Transform algorithms can compute transforms in Nlog[N]
time, where N is the number of sites in the lattice. Typically, we are interested in the
three-point correlation function of a two-dimensional image of about 2000x3000 pixels,
roughly 15% of which have f=1. If the time for the Path Probability calculation has a

prefactor C,,, and the full calculation has prefactor C;;, then the full calculation will

ppr
require more time than the Path Probability calculation by a factor of over a billion

T/ Tep = C5£(0.15*2000*3000)°/(C,,,*2000*3000*10g[2000*3000]) = 7.8x10° (C3¢/ C,,), given
reasonable assumptions for prefactors. One caveat is that calculation of Path Probability

requires a convolution for each r, so the time required is proportional to the radial and

angular precision.

Figure 3.4 shows a typical sample of an image from 2D confocal fluorescence
microscopy of white matter tissue containing axons. The calculation of Path Probability
for such an image requires three basic steps: the creation of a suitable matrix for each r to

convolve with the image, the convolution itself, and the computation of the product
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given in Equation 3.4.16 based on the result of the convolution. In the sample algorithm
that follows, the image is a binary two-dimensional array, and R is a sequence that
contains tuples of the image indices that a vector from 0 to r would intersect numbered

from O to N.
def PrepareRMatrix(list R):
M = matrix of zeros(Nrows= R[N][0],Ncols = R[N][1])

for r in R:

M{r[0],r[1]] 1

return M

def PP[image,R]:

M = PrepareRMatrix[R]

im ¢ = convolve(log(image)+1,M)

//each pixel x,y in im c contains the sum of

//log(im[x+R[1i][0],y+R[1][1]).

//In this hypothetical sample, the computer language can

//handle log[0] = negative infinity

im PP = exp(im c) //component-wise

return mean(im PP)
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Figure 3.4 A sample of a bright field microscopy image of white matter axons. (A)
is the original, (B) has been binarized by thresholding on intensity. Path Probability

applied to the full image this selection was taken from results in the spectrum shown in
(C). For comparison, the 2-point correlation is shown in (D) (contrast has been adjusted

for visibility of lobes).
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Figure 3.5. Correlation functions of complex shapes. Two linear lines, or four points
can unambiguously describe a kinked line. Analogously to the linear line, the position of
the two interior points does not matter, as long as one is on each side of the apex. The

figure illustrates that many kinked lines can pass through a set of two or three points,

however only one can intersect a set of four.

Since most efficient programming languages do not implement handling of infinities,

the binary image is typically transformed by C*(Im-1)+1, with C a very large number.

In summary, the three-point correlation function is a sensitive tool for detecting
interactions that create extended structures. Path Probability can efficiently compute

interesting subsets of the three-point correlation for linear continuous objects. It may be
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possible to ease these restrictions on Path Probability, allowing for quantification of non-
continuous objects, and more complex shapes. For example, an interaction may produce
a line of objects with a probability of a certain number of gaps per unit length. Path
Probability in this system could be adapted to produce a probability that a line of objects
of length L with a given number of gaps is the result of the extended interaction. An
extended interaction might produce a more complex shape. In this case, the order of the
correlation function of interest is equal to the minimum number of point necessary to

unambiguously describe the shape. This is illustrated in Figure 3.5.

Voronoi Diagrams

The computation of Voronoi diagrams has received extensive attention, both from
mathematicians and the computer graphics community. Several efficient algorithms for
constructing the diagram of a set of points in a continuous space exist. Fortune’s sweep
line algorithm can compute the diagram of a set of N points in two dimensions in
Nlog[N] time using memory proportional to N [Fortune]. Many algorithms first compute
the Delaunay triangulation, which is the dual of the Voronoi tessellation. An example is
the construction based on the Quickhull algorithm in the QHull package [Barber et al.]
In three dimensions the algorithms are generally less efficient, typically taking time of

order N” to N° [Ledoux].

The native space of our spatial analyses is almost always a digital image, which
mathematically is a discrete lattice. Furthermore, the space can contain holes (excluded
volumes), which in general are “rough” and voxelated, and cannot be accurately
represented by a smooth shape (see Figure 3.6). When measuring the volume

distribution of a Voronoi diagram, in many cases it is desirable to subtract these holes
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Figure 3.6. A 3D rendering of amyloid plaques, which are subtracted from the
volumes of the Voronoi domains of astrocytes in our analysis. The rough boundary

cannot be approximated accurately by a continuous curve.

from the individual Voronoi domains. This subtraction must be done in a discrete space,

which requires a discrete space Voronoi diagram.

The discrete Voronoi diagram could be computed in a straightforward manner
from the continuous one: for each site in the lattice, iterate through the domains until
one is found containing that side within its boundary. This requires coding a function to
check if a polygon contains a site, which can be difficult in three dimensions. Instead a
simple algorithm was implemented to compute the Voronoi diagram in three
dimensions. For a set of seed points S, and a three-dimensional lattice L of with N sites

in each dimension:
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for x in L:
minDist = 2*N"2
for i,s in enumerate(S):
d = (x[0]-s[0])"2 + (x[0]-S[0])"2 + (x[0]-s[0])"2
if d < minDist:
minDist = d
L[x] = i
This produces a lattice with every site numbered by the index of the seed whose Voronoi
domain it belongs to. This computation takes time NsN;, where N is the number of
seeds and N; is the number of sites in the lattice. The time can be reduced by sorting the
seeds according to position along one axis and only considering seeds within a certain
distance of the lattice site, which introduces the possibility of error. The maximum
distance from a lattice site to a seed can be quickly computed using the distance

transform [Kimmel], if all seeds within this distance are considered then possibility of

error is eliminated.
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4. The Structural Response of Astrocytes in Alzheimer’s

Disease

Alzheimer’s Disease is a progressive dementia that becomes increasingly
common with age, although approximately five percent of diagnoses are “early onset,”
and can occur in people as young as their thirties. Alzheimer’s is incurable, fatal, and
expensive; it will cost the United States an approximately $220 billion for care and
medicine in 2013. As the population ages, Alzheimer’s related costs will rise to an
estimated $1.2 trillion by 2050. [alz.org] Approximately 26.6 million people worldwide
were estimated to have Alzheimer’s in 2006, worldwide prevalence in 2050 is expected
to rise to one in eighty-five, and be still higher in nations with relatively older

populations [Brookmeyer et al.]

The diagnosis of Alzheimer’s disease must be confirmed with post-mortem brain
dissection. The pathological signature is the presence of amyloid-beta plaques and
neurofibrillary tangles. Tau is a protein that stabilizes and regulates the stiffness of the
neuron’s cytoskeleton in axons. In Alzheimer’s and some other brain diseases such as
chronic traumatic encephalopathy, normal tau function is disrupted, and it forms
distinctive “tangled” aggregates. Amyloid-beta is a protein fragment that is much more
common in the brain’s of individuals with Alzheimer’s than the average healthy person.
Amyloid-beta is known to be toxic to neurons, for example, some research suggests that
individual oligomers assemble into trimers and n-mers that are able to form ion
channels in cell membranes [Lal]. Pathologists diagnose Alzheimer’s by the presence of

amyloid-beta plaques, combined with the presence of tau tangles.
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Glial fibrillary acid protein (GFAP) is a component of the astrocytic cytoskeleton
that was first characterized by Eng in 1969 [Eng]. Since its discovery, it has become a
very popular histological marker for astrocytes. Soon after this development, it was
recognized that GFAP expression was markedly increased in Alzheimer’s disease, [e.g.
Panter, et al.] and that astrocytes in the vicinity of Amyloid-Beta plaques in particular
expressed high levels of GFAP. [e.g. Burbach, et al.] [See Figure 4.1] Astrocytes are
known to be a major component of the response to injury in the CNS [Fawcett and

Asher].

APP/PS1

Figure 4.1. Astrocytes visualized through a fluorescent antibody to GFAP (red)
appear to cluster around Amyloid-beta plaques (blue) in a transgenic mouse model of

Alzheimer’s disease.

This line of research led to a widespread assumption that plaques attract
astrocytes. For example, many papers on Alzheimer’s disease contain statements such as

“astrocytes migrate to amyloid-b plaques” and “amyloid-b plaques recruit astrocytes,”
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in analogy with their assumed role in other CNS insults. To summarize this line of
thinking, a subset of astrocytes detects injury, and increases its GFAP expression. These
“reactive astrocytes” migrate to the site of injury as part of the CNS immune response.
Recent studies, however, dispute the hypothesis that this response involves an active

migration.

Here we re-examine whether astrocytes migrate to plaques. Instead of relying on
GFAP expression to identify astrocytes, since reactivity may be spatially dependent, we
employ a pan-astrocyte antibody, sulforhodamine 101 (SR101). [Nimmerjahn et al.] This
allows us to characterize astrocyte distribution in healthy wild-type mice and Amyloid-
beta expressing transgenic mice in an unbiased manner. By characterizing structural
changes between wild-type and Alzheimer’s model mice, we can determine the

response of the global astrocyte population to amyloid-beta plaques.

4.1 Summary of Findings and Impact

The clustering of GFAP immunopositive astrocytes around amyloid-b plaques in
Alzheimer’s disease has led to the widespread assumption that plaques attract
astrocytes. Recent studies, however, question the ability of astrocytes to move in their
natural environment. In this study we deduce the existence of migration by analyzing
spatial structure of astrocytes, and its modification near amyloid-beta plaques, in a set of
3D images taken in living mice. These images are produced using 2-photon microscopy
in transgenic APP/PS1 mice and wild type littermates that have had a transparent
window surgically installed in their craniums. In wild type mice, cortical astrocyte
topology can be modeled as a fluid with Lennard-Jones like interactions. Plaques do not
appear to disturb this arrangement at a global scale, except perhaps at very large plaque
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loads. Density around plaques is subtly perturbed by outward shifts of the astrocytes, in
contrast with the attraction previously hypothesized. Shift magnitude is closely related
to the topological distance between the astrocyte and plaque. This suggests that
astrocytes respond to plaque-induced neuropil injury by changing phenotype, and

hence function, rather than location.

This has significant impact on the role of astrocytes as a therapeutic target in
Alzheimer’s. In the paradigm of reactive astrocytes as a mechanism for reducing
amyloid-beta related harm to neurons, therapeutic strategies focused on utilizing this
response to mitigate harm. Astrocytes themselves are known to have many important
roles in normal CNS function. This study puts forth the possibility that the reaction of
astrocytes instead serves to mitigate the effect of amyloid-beta toxicity on the astrocyte
system itself, and that dysfunction of this system may have a role in the cognitive

dysfunction associated with Alzheimer’s disease.

4.2 Experimental Design

An unbiased comparison of astrocyte structure in healthy wild-type and
Alzheimer’s model mice required careful consideration of experimental design. These
techniques have been recently developed, and have not been previously been combined
in an analysis of this nature. The experimental improvements and experimental system

are described in this section.

Three-Dimensional Location Acquisition

Astrocytes are distributed throughout all layers of the cortex. Description of their

spatial structure has been limited, but there are suggestions that it may be interesting.
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For example, it has been observed that the processes of astrocytes do not overlap,
forming discrete domains. [Bushong] Magavi, et al., have shown that astrocytes are
produced by the same precursor cells as neurons, and that clonally related astrocytes are
spatially localized in the cortex, suggesting that they may share a similar columnar
arrangement to neurons. In order to avoid missing possible structure, it is desirable to
have full three-dimensional location data (as opposed to the thin quasi two-dimensional
slices common in many imaging modalities). Ideally, the field of acquisition should

extend throughout the depth of the cortex.

Imaging should also acquire non-astrocyte objects that can affect the spatial
distribution of astrocytes. This includes identification of the boundary below the
topmost layer of the cortex, which lack neurons and has a higher than average astrocyte

density, and of blood vessels, which create large excluded volumes.
In-Vivo Imaging

Most neuroanatomical studied make use of preserved post-mortem tissue. Many
techniques are available to visualize cells and cellular components of interest in
preserved, or fixed, tissue. Dissected brain tissue is also mush more amenable for
imaging using common laboratory microscopy setups. However, tissue-fixing
techniques introduce shrinkage in at least one dimension, altering apparent spatial

relationships.

Although this was not pursued in the current study, in-vivo imaging would
allow monitoring of cytoarchitecture in the same animal throughout disease

progression. Longitudinal studies of cytoarchitecture with single cell resolution could
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offer new, previously unobtainable insight on cause-and-effect relationships in many

processes involved in brain disease and adaptive processes.

Pan-Astrocytic Labeling

The most common target for the labeling for astrocytes, GFAP, may have
differential expression in diseased and healthy animals. This makes inferences on
structural changes of GFAP labeled astrocytes difficult to interpret. A label that targets
all astrocytes regardless of the presence or lack of amyloid-beta pathology enables a fair

comparison.

Overview of Experimental System

Cranial windows are optically transparent material, used to replace a section of
the skull. Figure 4.2 shows a live mouse with the cortical surface visible through such a
window. Images were captured in vivo through cranial windows using 2-photon
fluorescence microscopy, capable of imaging up to 200 pm below the cortical surface.
Astrocytes were labeled with the pan-astrocytic dye SR101. In addition to astrocytes,
dense-core plaques were labeled, in order to investigate their effect on surround
astrocytes, as were blood vessels, since they create a large excluded volume that can
have an effect on cellular structure. Locations of astrocyte cell bodies, blood vessels, and
plaques were obtained using custom image analysis algorithms. The structural
relationships of these cortical components were quantified using correlation function

and Voronoi tessellation methods.
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Figure 4.2 A cranial window installed in a live mouse. The dorsal surface of the
cortex is visible, and the dark line down the center is the division between the

hemispheres. The thick ring around the window is sealant.

4.3 Experimental Methods

Animal care and preparation were performed by out collaborators in the Massachusetts

Alzheimer's Disease Research Center of Massachusetts General Hospital, director
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Bradley T. Hyman, PhD, MD. Dr. Elena Galea performed all experiments. Brief

descriptions of these procedures are given below.

Animals and Surgery

APPswe/PS1dE9 (APP/PS1) double transgenic mouse model (APP/PS1) mice
were purchased from the Jackson laboratory (stock number 00462), and bred in house.
These mice express a human mutant amyloid precursor protein gene containing the
Swedish mutation K594N/M595L, as well as the presenilin 1 gene deleted for the exon 9,
both under the control of the prion promoter [Verghese, et al.]. Mice were handled
according to the guidelines of the Institutional Animal Care and Use Committee
(IACUCQ). Mice, of both genders, were 5-9 months old. We used 6 wild-type (WT) and 6
APP/PS1 mice.

To install cranial windows, mice were anesthetized with 1.5% (vol/vol)
isoflurane in oxygen, and immobilized in a custom-built stage with mounted ear bars
and a nosepiece, similar to a stereotaxic apparatus. A 2-3 cm incision was made between
the ears, and the scalp was reflected to expose the skull. One circular craniotomy was
performed between the cranial reference points Bregma and Lambda [Paxinos et al.],
extending to 3-5 mm on both sides of the sagittal suture, using a high-speed drill (Fine
Science Tools, Foster City, CA) and a dissecting microscope (Leica, Wetzlar, Germany)
for gross visualization. Heat and vibration artifacts were minimized during drilling by
frequent application of calcium/magnesium phosphate-buffered saline (D-PBS, Gibco).
The dura (the membrane internal to the skull enclosing the brain) was carefully removed
with fine forceps.

The astrocyte labeling agent SR101 was applied at this point in the animal. After

topical application of SR101, the window was closed with a glass coverslip (8-mm
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diameter), creating a reservoir filled with D-PBS. The coverslip was sealed to the skull

with a mix of dental cement and crazy glue.

Labeling Procedures

Methoxy-XO, was injected (4 mg/kg i.p.) one day before each imaging session to
label amyloid-beta plaques (36). SR101 (0.25 mg/mL in D-PBS) was applied topically for
30 min before sealing the craniotomy with a coverslip. Flurorescein-labeled dextran
(FITC-dextran, 70,000 Da; Life technologies) was injected into a lateral tail vein (0.2-0.3

ml of 12.5 mg/mL) to visualize vessels.

In-vivo Imaging

Fluorescence microscopy is an imaging technique that uses photons to excite an
electron in a target dye molecule into a higher energy state. When this states decays, it
emits a photon that can be captured by an imaging apparatus. Two-photon imaging is a
specific technique in which the energy of the excitatory photons is one half of that
required to excite the dye molecule. This means that coincident arrival of the photons is
necessary to produce an excitation. This is advantageous because it allows the use of
infrared excitatory light. Biological tissue has much lower absorption of infrared light, in
relation to higher frequencies, allowing for much greater penetration depth, and

reducing the effects of photoxicity on neural tissue.

Images of SR101-labeled astrocytes, amyloid-beta plaques, and FITC-dextran
filled angiograms were obtained by Olympus Fluoview 1000MPE with prechirp optics
and a fast AOM mounted on an Olympus BX61WI upright microscope. A wax ring was
placed on the edges of the coverslip of the cortical window, and filled with distilled

water to create a well for an Olympus Optical 25x dipping objective (numerical aperture,
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1.15). A mode-locked titanium/sapphire laser (Tsunami; Spectra-Physics) generated
two-photon fluorescence with an 800 nm excitation, and three photomultiplier tubes
(Hamamatsu) collected the emitted light in the range of 380-480, 500-540, and 560-650
nm. Methoxy-XO4, FITC-dextran and SR101 were spectrally separated into these three
channels. Stacks of images were collected 0-200 mm below the pial surface at a 4 mm-
step and 1x zoom. Typically, 5-6 non-overlapping stacks were acquired from each

hemisphere.

Image Processing: Advantages and Challenges of Data Extraction from Fluorescence

Microscopy

Compared to traditional microscopy, fluorescent microscopy’s chief advantage is
the specificity with which individual labels can be extracted. Antibodies to specific
neural components of interest can be conjugated with fluorophores that emit light with a
limited range of wavelengths. A detector tuned to the wavelength of a specific
fluorophores can detect each component individually. Individual channels for each label

are shown in Figure 4.3.

The chief challenges in identifying individual components in fluorescent imaging
arise from bleed-through and uneven illumination. Fluorophores are only available with
a limited range of emission spectra, most of which have peaks in the visible range. Each
fluorophores’s emission spectrum has a finite peak, typically on the order of 100 nm. In
multi-label experiments, this means that spectral overlap is unavoidable, leading to the
complication known as bleed-through. Bleed-through creates an ambiguity, in which it
is impossible to tell based on signal frequency alone which fluorophores is being excited.

This primarily is a problem when one label has much higher density than another, for

73



Figure 4.3 Individual fluorescent labels for targeted objects. Images are samples of
typical 4 micron deep focal planes. (A) Methoxy-XO, labeled amyloid beta plaques. A
single amyloid plaque is visible in upper right of image. (B) Flurorescein-labeled dextran
label for blood vessels. (C) SR101 labeled astrocytes. Background is due to labeling of
astrocyte proceses, cell bodies are high intensity globules. Extended tubular structures

are blood vessels, visible in this channel due to a combination of bleed-through and end
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feet (see Figure 4.9). Amyloid plaque also visible bleeding-through in upper right. (D)

Astrocyte channel with blood vessel and amyloid-beta channels subtracted.

Figure 4.4 Demonstration of bleed through from blood vessel to astrocyte
channel. (A) Single plane of blood-vessel channel, (B) same plane of astrocyte channel.
Some distinctive objects appearing in both channels marked with red arrows. (C) and
(D): 3D renderings of blood vessel channel (C) and astrocyte channel (D). Arrows again

point out selected structures appearing in both channels.
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example in our case Fluorescin-dextran labeled blood vessels are much more present
than SR101 labeled astrocytes. The tail of the fluorescin-dextran emission spectrum in
the vicinity of blood vessels creates a background complicating the extraction of

astrocytes. An example is shown in Figure 4.4.

Uneven illumination is the second major challenge for data extraction from
fluorescence images. The intensity of fluorescence is proportional to the intensity of the
excitation laser. Although the infrared excitation used in our two-photon microscopy
setup provides a broad field of illumination with good depth penetration, intensity is
attenuated at the edges and bottom of the sample (see Figure 4.5). Object recognition

must therefore compensate for the spatial variation in fluorescence.

Image stacks were coded in the Olympus Origin Import Filter OIF format. All data
extraction was performed using Image] image processing software [Rasband] with the

Fiji interface and algorithm suite [Schindelin et al.].

Image Processing: Plaque Extraction

Amyloid-beta plaques have distinctive morphology, and their large size minimizes the
effect of bleed-through from other channels on their identification. Plaque size is a
parameter of interest. It is suspected the plaque size is related to the concentration of
toxic amyloid in the surrounding tissue, which may be an important determinant of the
effect on astrocyte structure. Plaques have diffuse edges, with density decreasing away
from the center of the plaque. Since plaques lack an unambiguous boundary, it is
desirable to implement an unbiased automated method for plaque identification. Figure

4.6 shows an example of the plaque channel in comparison with extracted plaques.

Extraction Algorithm:
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1. Auto-threshold stack using the intermodes method, which identifies the peaks
of an assumed bimodal intensity distribution [Prewitt and Mortimer]. The
automated threshold avoids bias, and the intermodes method agreed with the

boundaries identified by eye.

2. Apply 3D erosion and despeckle (i.e. median filter) each plane. This removes

very small objects.
3. Apply 3D dilation to reverse effect of erosion from previous step.

4. Remove plaques with radius < 4 pixels.

Figure 4.5 Uneven illumination causes variation in label intensity. Astrocytes near
the center of the sample (orange arrows) have higher fluorescence intensity than those

towards the edge (purple arrows).
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Figure 4.6 Plaque extraction. Raw plaque fluorescence channel (A) and (C) vs
extracted plaques (B) and (D). Panels (A) and (B) show a single plane, while (C) and (D)

are 3D renderings. Reconstructed plaque boundaries extend into the lower density

region around the dense amyloid core.
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Image Processing: Blood Vessel Extraction

In contrast to plaques, blood vessels have a well-defined boundary. The fluorescin-
dextran injection smoothly labels blood vessels without patchiness. Because blood
vessels are a large source of background bleed-through and excluded volume, it is
important to identify all blood vessels. The converse of this is that it is also desirable to
avoid false-positive identifications, which would cause unnecessary exclusion of

astrocytes.

False positives can be avoided by recognizing that blood vessels are part of a
continuous network: they cannot exist in isolation. Every blood vessel must therefore be

part of a connected component that contacts the image edge.

Extraction Algorithm:

1. Smooth by convolution with a three-dimensional Gaussian kernel with a

sigma of 2.0.

2. Auto-threshold using the Max-Entropy method, which maximizes the entropy
between the foreground and background classes of pixels [Rasband]. Threshold

is applied to each plane individually.

3. Find 100 largest 3D-connected regions. Discard any connected regions that do

not contact the edge of the imaging volume.
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Figure 4.7 Raw blood vessel fluorescence channel (A) and (C) vs extracted blood vessels
(B) and (D). Panels (A) and (B) show a single plane, while (C) and (D) are 3D
renderings. Blood vessels take up a significant portion of cortical volume, which must be
accounted for in analyses. Boundaries of blood vessels are well defined in comparison to

those of both plaques and astrocytes.
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Image Processing: Astrocyte Extraction

SR101 labels all parts of the astrocyte, including the processes. Since astrocyte
processes permeate the neuropil, this creates diffuse background fluorescence, which
should be proportional to (volume of astrocyte processes per unit cortical volume) x (excitatory
laser power). Processes are long, thin, tendrils, whereas the cell body of the astrocyte is
roughly spherical with a diameter approximately 5 times that of the processes. An
astrocyte cell body can therefore be discriminated from the background as a continuous

region with significantly higher intensity than the background.

Two complications arise with this approach: the first being how to define what a
“significantly higher” intensity is without bias, in the face of a variable background
intensity, and the second being that astrocyte also exhibit a morphological feature
known as end-feet. Astrocyte end-feet are thickened regions at the end of processes that
form part of the blood-brain barrier. They clump together on the surface of blood
vessels, and these clumps form continuous high intensity regions that could be mistaken
for cell bodies. Isolated end-feet also occur around synapses, but these have volumes

much smaller than cell bodies.

The unbiased definition of a significantly higher intensity is addressed through
the application of a local auto-thresholding method. This method applies an algorithm
to define a threshold between foreground and background based on the pixel intensity

histogram from a local neighborhood around a pixel, rather than the entire image.

Astrocyte end-feet clumps are eliminated by exploiting their proximity to blood

vessels. Blood vessels identified in the previous image recognition step are dilated by
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two voxels. Any astrocyte candidate overlapping this dilated region is eliminated as a

potential end-foot.

Extraction Algorithm:

1. Subtract blood vessel channel, and plaque channel if it is an APP/PS1 mouse,

from astrocyte channel to remove fluorescence bleed through across channels

2. Smooth by convolution with a three-dimensional Gaussian kernel with a

sigma of 2.0.

3. Apply rolling ball background subtraction on each plane to remove an

approximately constant background (Sternberg, 1983).

4. Apply local neighborhood Bernsen auto-thresholding to each plane with a
radius of 30 pixels (Bernsen, 1986);

5. Smooth by convolution with a three-dimensional Gaussian kernel with a
sigma of 5.0. This has the effect of connecting nearby foreground pixels from the
previous step (e.g. isolated foreground pixels will have their intensities greatly

reduced, while clusters of foreground pixels will be essentially unaffected).

6. Auto-threshold using the Otsu method [Otsu] applied to the intensity
distribution of the entire stack. Combined with the previous step this has the
effect of preserving clusters of foreground and removing isolated pixels. No hard

area cut is required with this method.

7. Dilate blood vessels previously identified. Eliminate any thresholded regions

from step (6) that have non-zero overlap with dilated blood vessels.
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Figure 4.8 Astrocyte Imaging. Raw astrocyte SR101 fluorescence channel (A) and (C)
vs. extracted astrocytes (B) and (D). Panels (A) and (B) show a single plane, while (C)
and (D) are 3D renderings. The raw 3D rendering clearly shows the variable intensity
throughout the stack, which has been compensated for in the algorithm. The extracted
astrocyes have approximately homogenous density. Plaques and blood vessels are also

clearly visible in the raw 3D rendering in (C).
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Figure 4.9 Example of astrocyte end-feet, marked by red arrows. They can be
identified by their stereotypical hollow circle or C shape. End-feet can also be recognized

by comparison of the astrocyte channel with the blood vessel channel.

Data Summary

From six wild-type and six APP/PS1 mice we obtained 77 usable 3D stacks
(stacks were discarded if channel bleed-through was two great to overcome in astrocyte
extraction). From these stacks, we obtained about 50,000 astrocytes, split approximately
evenly between wild-type and APP/PS1 mice. From the 42 APP/PS1 stacks, we
obtained 470 plaques. A composite 3D rendering showing plaques, blood vessels, and

astrocytes together is shown in Figure 4.10.
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Figure 4.10 Three-dimensional renderings of composite images showing astrocytes
(green), blood vessels (red), and amyloid-beta plaques (blue, bluish white). Raw

fluorescence is shown in (A), and extracted objects in (B).

4.4 Astrocyte Pair Correlation Analysis

The spatial structure of astrocytes has been the subject of relatively little
investigation, in comparison to the more popular neurons. Up to this point, the most
well recognized observation is that astrocytes establish exclusive, non-overlapping
domains: that is, the volume containing the processes of one astrocyte will not overlap

with the volume containing the processes of any other astrocyte [e.g Bushong].

This implies the existence of some interaction, at least between the processes of
astrocytes. It remains unknown whether the interaction that prevents processes from
extending into another astrocyte’s domain can exert a force on the cell body, or whether

astrocytes are arranged in a manner that creates some functionally advantageous
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distribution of domain sizes. For example, astrocytes might be structured such that
locally high densities and voids that would naturally occur at some frequency with a
Poisson point process are suppressed. Another open question is whether astrocytes are
associated with the neuronal columns widely distributed in the cortex. If amyloid-beta
causes a large-scale migration and reconfiguration of the spatial distribution of
astrocytes, it is reasonable to expect that interactions between astrocytes during this
process might be different than those experienced by immature astrocytes during

development, when they initially establish their position in the cortex.

Equation 3.2.2 states that any pair-wise interaction is related to a signal in the
pair-correlation function. This was thus our first avenue of analysis. An estimation of the
full three-dimensional correlation as a function of the vector between each pair of
astrocytes, as it should unambiguously reflect any existent columnar structure.
Unfortunately, most stacks contained only a few hundred usable astrocytes, and many
had as low as one hundred. Furthermore, the small size of the mouse brain leads to a
cortex with high curvature, making combining correlation functions from multiple
stacks impossible. If uncorrected, this curvature may have obscured three-dimensional
relationships even if stacks with sufficient statistics were obtained, a fact that will have
to be taken into account in future studies. Due to the curvature and limited statistics, the
correlation function was only considered as a function of the radial distance between

astrocytes.

To summarize the description of the pair-correlation function presented in
Chapter 3.2, the pair-correlation function, g(r), infers forces from the patterns they leave
in the relative spatial distribution of the objects. Both the range and nature of these
interactions can be measured from g(r). Within the range of interaction, an attractive
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force will cause clustering of objects, while a repulsive force will cause exclusion. At
inter-particle distances larger than the range of the force, the distribution will return to

randomness.

The pair correlation function was estimated by the Natural estimator (see chapter
3.4, Figure 3.1 for example), and normalized by a randomized point set created through
the shuffling method (also described in Chapter 3.4, see Figure 3.2 for example). The
Natural estimator was chosen to avoid introducing false correlations in the Pp; term
through the use of a shuffled normalization method. A shuffled normalization method

was necessary due to the inhomogeneous astrocyte density. Inhomogeneous density is

Figure 4.11. Shadowing. (A) Blood vessels near the cortical surface. (B) SR101,
staining for astrocytes, 24 microns below the plane pictured in (A). The shadowed
regions clearly visible in the astrocyte channel correspond to more superficial blood

vessels.
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caused by uneven illumination, as discussed in the preceding section, and illustrated in
Figure 4.8. Another source of inhomogeneity is shadowing due to large, opaque blood
vessels. Shadowing is difficult to correct for, since the blood vessels that cause the
shadow do not occupy the same space as the shadow — they are above the shadowed
region, towards the cortical surface (see Figure 4.11). Blood vessel identification cannot
therefore identify of the boundary of the excluded volume. The shuffling normalization
method was used to reduce the effect of shadowed regions. A randomized point set
created by shuffling the real astrocyte locations will have diminished density inside

shadows, depending on the length of the randomization vectors.

Typical astrocytes in these samples were spaced about 35 microns from their
nearest neighbor. A shuffling vector of 40 microns was used. As shown in chapter 3.2,
this is sufficiently large enough to avoid artifact. A 40 micron vector is small enough to
avoid placing a high density of random points in large shadowed regions, the region in
the bottom right of Figure 4.11 has a width of about 90 microns, for example. This vector
is also small enough to track inhomogeneous density caused by uneven illumination
fairly closely, for example that seen in Figure 4.8. Lastly, the convex hull of the real
astrocyte locations was used as the experimental volume; this ensured that the real and
randomized point sets had the same density. Astrocytes in the convex hull were

excluded from the calculation of the correlation function.

The g(r) function was computed in 5-9-month-old WT and APP/PS1 mice, an age
at which the transgenic mice have abundant plaque pathology. According to our
measurements, plaques represent 0.02-0.205 % of the total brain volume in cortical layers
IT and III. This is below the plaque volume percentage in humans, which ranges from

0.8% up to 6% in advanced cases [Perez-Nievas et al., Urbanc et al.]. These values
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represent a moderate plaque load for APP/PS1 mice. Qualitatively, under visual
inspection at low magnification, astrocytes do not appear to possess a strong spatial
order, although there seems to be a dearth of neighbors with low radial separations in
both WT and APP/PS1 mice. (See Figure 4.12). This of course does not rule out some
type of organization, for example Magavi et al.’s columnar clusters, especially given the
difficulty of software based visualizations of three dimensional structure. Obvious
visual evidence of a strong interaction between plaques and astrocytes is also lacking,
despite the previously popular assumption of a chemo-attractant effect. SR101 stained
astrocytes were not arranged in plaque-centered concentric rings, as frequently
documented in studies making use of the GFAP stain. These rings were present in a
brain section from a litter-mate of our APP/PS1 mice stained post-mortem for GFAP

(Figure 4.1).
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Figure 4.12 Examples of astrocytes (red) in planes from wild-type (A) and APP/PS1
(B)-(D) mice. Blood vessels are green in these images, plaques can be purple, blue, or

whitish, and are denoted by white arrows. No pattern in astrocyte spatial distribution is

obviously discernable.
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Figure 4.13 A typical astrocyte-astrocyte radial correlation function. The correlation
function shows three zone: (1) Exclusion, denoted by the red region at low radius below
about 18 microns, where other astrocytes are excluded. (2) Transition, denoted by the
yellow region from about 18 to 25 microns, where probability of finding a neighbor
increases rapidly. (3) Enhancement, a relatively broad region from about 25 to 50
microns, where the probability of finding a neighbor is higher than the probability

expected in a random distribution.

All radial distribution functions for both wild-type and APP/PS1 mice had the same

typical shape: a region at low radius where g(r) = 0, a steep transition regions, an
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enhanced region immediately following the transition with one or several peaks, and a

featureless region thereafter where ¢(r) = 1 £ (noise). This is illustrated in Figure 4.13. We

parameterized g(r) by fitting using a hyperbolic tangent f(x)=tanh((x—X,)/S), with
center X, and steepness S. (See Figure 4.14). The fitting function reaches a value of % at x
= X,. This is a measure of width of the exclusion region, or the minimum allowable
separation between the somas of two astrocytes. X is calculated from the center of mass

of the astrocyte soma, and astrocyte somas without processes are approximately 7 pm-

wide (i.e. 3.5 pm radius). This means the range of the exclusionary interaction cannot be
due to the steric effects of the cell body. The parameter S measures the steepness of the
transition region, with larger S corresponding to a shallower slope. S is proportional to
the variability in the inter-astrocyte separation (Fig. 2D). Unfortunately, this study
lacked sufficient statistical power to reliably characterize the width and magnitude of
the enhancement region. Figure 4.13 shows an example of g(r) from an animal with a
larger than average number of astrocytes, and even in this animal the signal-to-noise
ratio of the enhancement region is close to unity. Future studies should focus on
obtaining sufficient statistics for this region, as we shall see that it appears to be a non-
trivial consequence of the specific long-range interaction between astrocytes, and may
therefore be functionally important. For example, the interactions that create this
enhancement may suppress the existence of large voids, as compared to the case of
simple hard spheres.

The spatial distribution of astrocytes resembles a liquid of polydisperse hard
spheres. Hard spheres also exhibit an exclusion region, at separation distances up to

2xR, where R is the sphere radius. The radial correlation of hard spheres with uniform

radii displays a discontinuous transition, with g(r) = 0 for r < 2xR, and g(r) > 1 for
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2XR <r < (2+A)XR, where A is a fraction determined by the packing density of the
system [Santos]. This abrupt transition is relaxed in a system of spheres with a
polydisperse radius distribution. A hard-sphere liquid also displays a density
dependent peak following the exclusion region. We will find, however, that the shape

and size of the peak observed in astrocytes cannot be explained through hard-sphere

interactions.
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Figure 4.14. A demonstration of the fits using a hyperbolic tangent on typical radial
correlation functions from wild-type (blue) and APP/PS1 (red) mice. Black lines denote
where Xy is measured, S is extracted from slope of the hyperbolic trangent. In this
particular example, X, is greater for the APP/PS1 mouse, and S is approximately the

same for both.
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Since both wild-type and APP/PS1 mice exhibited the same basic set of regions
in their radial correlation, we checked if the size of these regions varied. In wild-type, X,
=17.61 £1.25 mm and S = 2.89 + 0.57 mm (means + SEM, n=6). Plaques occupy volume
and would therefore reduce the available volume for the spheres. At the observed
plaque loads, however, the effect of this effective reduction in volume would be
expected to be negligible. The radial correlation function of astrocytes does not show the
oscillations that indicate the stacking interactions important in higher density fluids,
which would make volume reduction significant. Typical spacing between astrocytes is
about 4xX,, and with plaques occupying about 0.2% of the cortex at most, the volume
reduction alone should not lead to any rearrangement. Simulations of hard sphere fluids
confirm that at high densities, the addition of an immobile foreign body representing a
plaques will prevent efficient packing, leading to slightly lower astrocyte density in the
surrounding region.

The spatial structure of astrocytes may be altered however, if we consider the
possibility of attractive or repulsive interactions between astrocytes and the plaque.
Astrocytes competing for energetically favorable positions, either close to (attractive
interaction) or far from (repulsive interaction) plaques would interact strongly with one
another. If astrocyte interactions remain unchanged, this competition would produce a
large effective volume reduction, causing astrocytes in favorable regions to adopt a
close-packed configuration, indicated by a peak in g(r) at X,. It was also hypothesized
that plaques and compression of astrocyte may reduce the ability of astrocytes to repel
one another, resulting in both a smaller S and X,. However, function appearance and
parameters for APP/PS1 mice were X,=17.51 £1.16 mm and S = 2.96 + 0.46 mm (means
+ SEM, n=6), values not significantly different to the ones computed in WT mice (Fig.
2C, D).
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Figure 4.15 Comparison of radial correlation functions of APP/PS1 mice (A) and
wild-type (B). Fit parameters: APP/PS1 mice: Xo=17.51+£1.16 ym and S = 2.96 + 0.46
pm (means = SEM, n=6), Wild-type Xo=17.61£1.25 ymand S =2.89 + 0.57 ym
(means £ SEM, n=6). Although fitting was not performed, enhancements region shape
and magnitude appears consistent in APP/PS1 and wild-type mice, especially if
correlation functions with high noise (red and blue lines wild type, yellow APP/PS1) are

ignored.

These results suggest that plaques do alter the interactions between astrocytes,
and that the magnitude of the attraction, if any, is not large enough to change their
spatial structure on a global scale. However, plaques represent only up to 0.205% of the
brain volume in the mice analyzed. This raises the possibilities that only a small subset
of astrocytes is affected at this plaque load, or that not enough astrocytes migrate to be
forced into a close-packed configuration. To address these possibilities, we asked
whether plaques disturb the spatial structure of the astrocytes closest to the plaque. This

is accomplished by examining the size of domains defined through the Voronoi
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tessellation as a function of their distance from plaques, and by simulating the effect of

larger plaque loads on g(r).

4.5 Astrocyte Voronoi Tessellation Analysis

Analysis with the pair correlation function shows that the global distribution of
astrocytes is not altered by the presence of plaques. The possibility remains, however,
that plaques alter the local spatial structure of astrocytes. One tool with which this could
be studied is the plaque-astrocyte cross-correlation function, which is analogous to the
normal pair correlation, except that we consider the radial separations of mixed plaque-
astrocyte pairs. This was unfeasible because of the low number of plaques per stack, and
their apparent tendency to cluster, which complicates the production of a good
normalizing point distribution. A correlation function also discards some potentially
useful information on the distribution of densities at each distance, using only the mean.

An alternative analysis makes use of Voronoi tessellations, reviewed in Chapter
3. The Voronoi tessellation subdivides a space into separate domains, one per astrocyte.
Voronoi tessellation has been used before to study the spatial arrangement of neurons
[e.g. Duyckaerts and Godefroy], and has some key advantages for our system.

The Voronoi domain is the most finely grained measurement of density possible,
and is sensitive to details lost in other approaches. Since a local density can be assigned
to individual cells, it also allows density to be parsed in ways (i.e. the tiers used below)
that are not available using estimators such as kernel density.

A second advantage deals with the fact that astrocytes are large extended objects
exposed to many influences, so that the distance from their soma to the plaque edge may
not accurately capture their degree of amyloid-beta exposure. In a correlation function

approach, this creates an ambiguity in the identification of the proper distance to
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describe interaction. Voronoi tessellation defines neighbors, allowing us to measure
domain size as a function of the topological distance between an astrocyte and a plaque.
The topological distance is defined as the smallest number of domains you must travel
through to reach the astrocyte starting from the plaques. Astrocytes are thus arranged
into several concentric tiers (as observed in GFAP staining). We expect that tiers may
form more homogenous groups than astrocytes divided into distance bins. Individual
tiers can be analyzed for plaque-size effects. Tiers are defined as follows (see Fig. 3A-C):

1. The first tier consists of astrocytes with domains that contact the surface of the

plaque.
2. The second tier contains neighbors of the first tier not already in the first tier.
3. The third tier consists of neighbors of second-tier astrocytes that are not already
in the first or second tiers.

4. Remaining domains are used as control.
This tiered approach is especially advantageous if the effect of a plaque on an astrocyte
is “buffered” or shielded by the presence of other astrocytes, or if the plaque has a
complicated effect on surrounding structure, for example repelling the closest astrocytes
because of its toxic halo, while attracting astrocytes at ensuing shells. Amyloid-beta
concentration will be a function of topological distance if each astrocyte can absorb up to
a finite amount of amyloid beta. The change in concentration across a biological (process
defined) astrocyte domain of size L centered at a distance d from the plaque will be

approximately AC = max[(1-(r-L)’/(r+L)?) + AC,, C], where AC, is the reduction due to

absorbance. If AC, is large compared to 1-(r-L)*/(r+L)?), AC can be approximated by
topological distance, as long as Voronoi domains are close to biological domains. It has
been shown that Voronoi domains are identical to the domains generated in a system

where processes grow at a uniform rate from a set of seed points until they collide with
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the processes of a neighbor and stop growing [Pineda, et al.]. This is similar to the
growth of crystalline domains, and is termed a Poisson-Voronoi nucleation process. The
typical linear size L. of the Voronoi domain (Table 4.1) closely matches the radii of

process-defined domains measured by Wilhelsson et al.

Figure 4.15. Single plane of stack showing Voronoi domains of simulated astrocyte
seeds (multicolored polygons) around a plaque (green circle). Domains in tiers 1-3
around the plaque are numbered. Colors are for visual discrimination only, they do not

reflect properties.
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The Voronoi domains and geometric neighbors of astrocytes in the APP/PS1 and
wild-type mice were computed as described in Chapter 3.3. Domain sizes of astrocytes
in the first three tiers around plaques in APP/PS1 mice were then compared with more
distant astrocytes, which are at least four tiers away from any plaque. Astrocytes in the
fourth and greater tiers should be approximately 3-4xL, from any plaque, a distance of
75 — 100 pm, where the effect of plaques should be negligible [Koffie et al.]. Mean
domain size was largest for domains bordering the plaque, and decreased in each
successive shell (Figure 4.17, and Tables 4.1 and 4.2). Linear domain sizes in the first,
second and third tiers were enlarged by an average of 4, 2.5 and 1 mm, respectively, in
comparison to the domains of more distant astrocytes. These results indicate that
plaques push astrocytes away, and that the effect, is sensed by at least three shells of

astrocytes, with interaction strength diminishing at each tier.

Table 1. Radii of Voronoi domains (um)
Shells Means * CI*
1% shell 28.04 + 0.50
2" shell 26.58 + 0.17
3" shell 24.93 £0.10
Control 24.06 £ 0.15

Table 4.1 Means of linear domain size in each tier over all APP/PS1 mice. One half

width of 95% confidence region calculated through bootstrapping given as uncertainty.

99



Domain radius (microns)
N N N N N N
H w o)) ~ 0 (o]

N
w
T

22

Figure 4.17. Mean linear size of domains in each tier. Colored dots show means for
each animal (one animal excluded for insufficient statistics, less than 10 plaques with

first shell astrocytes). Black points show mean over all animals, error bars are 95%
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confidence interval, as calculated through bootstrapping.

Table 2. Welch's t-Statistic of inter-shell comparisons
Shell 157 2" 3"
2" 8.5
3" 18.8 23.6
Control 23.6 32.9 14.5
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Table 4.2 Domain size distributions were compared using Welch’s t-Statistic to
determine if the mean linear domain size was significantly different from tier to tier. Table
gives Welch’s t-statistic for the hypothesis that the tier listed in the column is greater
than that of a given row. This test confirms that domain size decreases significantly at

each tier.

This data indicates that an interaction between astrocytes and plaques exists, but
its effect on the spatial distribution of astrocytes is repulsive: precisely the opposite of
what was commonly assumed. The surprising nature of this result leads us to parse it
more carefully, and model the system to confirm that a repulsive interaction leads to the
observed domain reorganization.

One potential explanation for the conflict with prior studies is a dependence of
the character of the interaction between astrocytes and plaques on plaque size. Older
studies may have only observed a subset of plaques that caused an attractive interaction.
To explore this possibility, we plotted domain size of first tier astrocytes as a function of
the size of the plaque they are adjacent to. In the case of domains adjacent to multiple
plaques, domains were associated with the largest adjacent plaque. We observed a small
increase in the magnitude of the shift away from plaques at larger sizes, but the domains
of astrocytes adjacent to plaques of all sizes were enlarged in comparison to those of
more distant astrocytes. This result is shown in Figure 4.18.

Finally, it is also possible that a subpopulation of greatly enlarged domains
drives the increase in the mean, while most domains are unaffected, or possibly even
reduced. Domain size distributions are shown in Figure 4.19. Domain size distributions

are well approximated as gamma distributions, which are well-known as the limit of the
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distribution of domain sizes for the Voronoi tessellation of a Poisson point process.
Pineda, et al. showed that a three-parameter gamma distribution also models the sizes of
domains with finite radius hard-sphere seeds. This indicates that the interaction affects
all adjacent domains, and neither cell death nor limited enlargement of a subset of

domains cause the observed change in the mean.
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Figure 4.18. Domain size vs. Plaque size. Each aqua dot represents a single first shell
domain, with its linear size on the Y-axis, and the radius of the adjacent plaque on the X-
axis. Orange circles and dotted line show a running average, with window size +2
microns, red line is a linear fit. Domain size is weakly dependent on plaque size and

increasing, with no evidence of an inverted interaction at any plaque size in this sample.
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First shell domain size at all plaque radii was greater than that of control domains,

although domains associated with very small plaques do approach control.
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Figure 4.19. Domain size distributions. (A) Domain sizes for the 1*' through control
tiers, top to bottom. Red line indicates mean of each distribution. (B) Gamma distribution
shown with different scale and location parameters. Domain distributions show the

typical positive skew of a gamma distribution.
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4.6 Simulation of Astrocyte-Plaque Interactions

Simulations were used to help interpret the effects of attractive, repulsive and
contact interactions on domain size distributions and g(r), and investigate how astrocyte
topology would be affected in the presence of higher plaque loads in the upper limit of
what could be found in humans with age. Astrocytes were compared with a model of
polydisperse hard spheres, with mean diameter of X,, and density matched to the value
of a typical section from an APP/PS1 mouse, to investigate the cause of the
enhancement region of g(r). A fluid of hard spheres with long range interactions with a
fixed set of spheres representing plaques was then used to investigate potential

structural changes at higher plaque loads.

Plaque volumes followed an approximately exponential distribution with a 3000
pm® decay length, corresponding to a mean radius of about 9.5 pm and a mean volume
of 3500 pm”’. This matched the size distribution recovered by our image analysis. Hard
spheres representing plaques with sizes randomly selected from this exponential
distribution were added to the simulation space until their volume fraction reaches
0.059%, which was the plaque volume fraction of a test subject with density in the
middle of our APP/PS1 cohort. Total simulation volume was 1.3 mm?, and contained 84

plaques and 39,000 astrocytes.

To simulate scenarios in which astrocytes were attracted toward or repelled from
the plaque, the hard-sphere astrocytes were treated as thermalized particles ina 1/r*
potential. This potential was chosen to simulate a potential proportional to the
concentration of some chemical emitted by the plaque. Lastly, we found that simulations

exhibited the monotonic relationship between domain size and shell index we observed
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in our measurements only if the 1/r” potential was set to zero outside a finite range of
approximately 60-100 pm. This finite range potential is roughly the same size as the toxic
zone around plaques previously reported [Koffee et al.]. It may indicate shielding of

amyloid toxicity, either by astrocytes, or possibly another agent.

Our first investigation was of the radial correlation function of a set of particles
with only hard sphere interactions. We found that hard-spheres with logistically
distributed radii produced a radial correlation function with exclusion zone and
transition region exactly matching the experimental correlation function. The logistic
distribution function was chosen for the radii because its cumulative distribution
function is the hyperbolic tangent — the steepness parameter S of the hyperbolic tangent
correlation function is precisely the width parameter of the logistic radius distribution:

r—X
a.6.1) Fr(:X0.5)= %sechz(To)

The hard shell interactions failed, however, to reproduce the observed
enhancement region. In comparison to experimental data, the enhancement region in
simulation decayed much more quickly, approaching no correlation at 35 microns in
comparison to approximately 50 microns. This indicates that though astrocytes repel one
another at short range, the interaction is attractive at longer range, similar to the familiar

Lennard-Jones potential.

Because the attractive part of the astrocyte interaction should not affect spatial
structure at high densities, we used a hard sphere model to investigate higher plaque
loads. Our primary interest was whether the small repulsive force detected between
astrocytes and plaques, enough to cause the nearest astrocytes to move a few microns,

would increase packing interactions enough to disturb g(r). While in APP/PS1 mice the
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percentage of brain covered by thioflavin or methoxy-labeled plaques can reach 1%, in
humans it can range between 0.8-6.0%, with an average of around 3% [Urbanc et al.,

Perez-Nievas, et al].
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Figure 4.20. Comparison of enhancement zone with model. A hard sphere model
shows that an enhancement in g(r) due to packing interactions only decays more quickly
than the observed enhancement region. Plots of g(r) are shown for four mice from each
cohort — the four remaining mice had high noise and were visually distracting. Each

mouse shows evidence of the extended enhancement region.
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Figure 4.21. Radial correlation of spheres with hard-core interactions only. Green-

line shows lack of change when repulsive interaction between astrocytes and plaques
with a 0.07% volume fraction is introduced. Enhancement region extends only to about

35 microns, in contrast with the 50 microns observed experimentally.

We first increased the plaque load in our simulations with hard sphere astrocytes
to 5%, to establish whether plaque load has any impact using a value in the upper limit
observed in humans. We observed that a 5% plaque load has no effect on g(r) if the only
action of the plaque is to occupy space (Figure 4.21). If a small repulsive interaction
between plaques and hard spheres mimicking the one observed is introduced, a large
peak appears in g(r) at X,, followed by a small valley, and a smaller, broader peak,

before decaying to one (Figure 4.22).
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This implies that at high plaque loads, plaque-astrocyte interactions force
astrocytes to be more tightly packed, so that the inter-astrocyte interactions become an
important factor. Although a “shielding” of the astrocyte-plaque interaction due to
amyloid absorbance was not considered in the simulation because of its computational
cost, at a 5% plaque load, the system enters a regime with nearly every astrocyte (>99%)
directly adjacent to a plaque, i.e. in the “first shell,” making buffering impossible. Thus it
is possible that the effect at high plaque load may be even more extreme than the

simulation predicts.
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Figure 4.22. Radial correlation of spheres with hard-core interactions only. Green-
line shows large change when a repulsive interaction between astrocytes and plaques is

introduced with plaques occupying 5% of cortical volume.
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We next explored the effect of intermediate plaque loads, taking into
consideration two variables, plaque load and plaque size. We found the g(r) was
insensitive to plaque load in the ranges we encountered in experiments up to 1% (Figure
4.23A). The most rapid changes occur between 1% and 3%, with the peak shifting to
lower values and transition region steepening.

The fraction of astrocytes in the first shell is important for shielding effects, it is
also a proxy for the amount of configurations available to the distribution of astrocytes
in the cortex. If a high fraction of astrocytes are adjacent to plaques due to energetics, the

number of potential configurations are highly constrained. At just less than 1% plaque
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Figure 4.23 Simulation of high plaque loads. (A) The radial correlation function is
dependent on plaque load at volume fractions higher than what we observed
experimentally. The most rapid change occurs between plaque loads of about 0.5% and
2%, with the enhancement peak increasing in magnitude and shifting left. (B) Decrease
in astrocyte configuration possibilities, as indicated by the percentage of astrocytes
adjacent to plaques, increases more slowly with plaque load for large plaques than small

plaques.

109



volume, the fraction of first shell domains reaches 50%, and increases to 90% at 3%
plaque volume. This corresponds to a significant increase in the amount of astrocytes
directly affected by the plaque. The effect is highly dependent on plaque size, as shown
in Figure 4.22B. While the fraction of astrocytes in the first shell always increases
exponentially with plaque load, the change is inversely related to plaque radius so that
small plaques cause a steeper increase, probably because large plaques concentrate more
amyloid in one place thereby reducing the surface of contact with astrocytes. Ata 3%
plaque load the fraction of astrocytes exposed to plaques directly ranges between 30%
and over 90% depending on plaque size. In summary, the simulations suggest that
higher plaque loads, particularly if small plaques are abundant, forces maintaining

astrocyte topology may be compromised.

4.7 Biological Interpretation of Alzheimer’s Associated

Modifications in Astrocyte Structure and Discussion

The analysis of astrocyte topology in normal and transgenic mouse brains with
methods commonly used in physics has produced two main results that may help
redefine existing and emerging notions about astrocytes. First, the g(r) function indicates
that the defining structural feature of cortical astrocytes is a domain-based arrangement
caused by exclusionary forces. Second, after examining the effect of plaques on local
structure, we did not find evidence that plaques attract astrocytes. On the contrary, our
data suggest that something within the plaque microenvironment pushes the nearest
astrocytes away up to 4 pm. This repulsion appears to have a negligible impact on the
global astrocyte topology at low or average plaque loads, but it may put a stress on

inter-astrocyte interactions at the heaviest plaque loads.
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Unlike humans with Alzheimer’s disease, APP/PS1 mice do not develop tau
pathology or substantial neuronal loss. It is possible that these have additional impacts
on astrocyte organization, and change in some way the interaction between astrocytes
and amyloid plaques. Even though astrocytes do not express tau protein, they are

known to interact with neurons, which do.

A chief advantage of this study is the use of SR101 to label astrocytes instead of
resorting to GFAP immunohistochemistry. A prototypical response to brain injury is
“reactive astrogliosis,” which is typified by cytoskeleton hypertrophy and GFAP up
regulation. However, GFAP does not stain “non-reactive” astrocytes prominently,
which, if not recognized by the experimentalist. can lead to incorrect interpretations on
the general role of astrocytes in disease and injury. Alternative labels to GFAP include
SR101, used in this study, and also techniques for the immunodetection of glutamine
synthase or glutamate transporters, which label astrocyte arbors [Kulijewicz-Nawrot, et
al.], and non-specific body filling-dyes such as Nissl stain, GFP, or Lucifer yellow

[Wilhelmsson,U. et al].

This pan-astrocytic stain allows investigation into the basic spatial structure of
astrocytes. Neurons in the cortex are known to have non-trivial structure, namely an
arrangement into linear columns perpendicular to the cortical surface. Recent studies
have proposed that astrocytes may also be components of the cortical column [e.g.
Magavi]. It has been shown the correlation functions can identify and quantify cortical
columns [Buldyrev, Cruz]. Columns are an anisotropic structure, and better suited to
detection using a full vector correlation function rather than the radial function used
here. However, a periodic structure of columns would still be expected to show

enhancements at multiples of the lattice spacing in the radial correlation function, which
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we did not observe. It is possible that columnar spacing is not regular enough to be
distinguished above noise, or that cortical curvature is a confounding factor. We do note,
however, that the spacing of mouse columns would be expected to be narrower than
that of monkeys, which is approximately 25 microns. Astrocytes would need to be
almost perfectly centered on columns of this spacing in order to agree with the observed
exclusion zones. This would produce a very regular arrangement, almost surely
observable in the correlation function.

The observed correlation function presents some interesting relationships with
known astrocyte cellular structure and biology. We found that astrocytes in the adult
brain exclude one another below distances of 18 mm, and are more likely than simple
hard-spheres or random particles to have neighbors in the enhancement region of 20-50
mm. Enhancement region separations are compatible with the range of diameters (36.8-
50.9 mm) of the extent of astrocyte processes labeled with Lucifer yellow.
[Wilhelmsson,U. et al]

The minimum exclusion zone, on the other hand, has no obvious biological
correlate, either to a component of the astrocyte, or a known interaction between
astrocytes, which raises the question of its meaning. In light of this, we recognize that
the Voronoi domain size distribution closely matches the result of a model of crystal
growth proposed by Pineda, et al., in which crystalline domains grow at a constant rate
from finite sized seeds, until colliding with the growing domain of another seed. In this
analogy, astrocytic processes replace crystalline domains, and the finite size of the seeds
is due to an inter-astrocyte force that is present during development, when astrocytes
establish their position. This force might serve to optimize the size of the astrocyte arbor.
It is likely that the signaling mechanism that underlies the interaction is still active in
adult astrocytes, since astrocytes in APP/PS1 mice undergo some rearrangement when
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interacting with the plaques, and their correlation function remains the same as that of
the wild type.

This can be expressed as a developmental principle: body sizes (including soma
and processes) do not determine astrocyte topology but, rather, collisions and
interactions during development forces determine body size. Neurons and their axons
determine one anothers positioning through chemicals known as semaphorins and
ephrins. It is tempting to speculate that similar chemical cues emanates from astrocytes,
maintaining proper spacing. Further, local interactions with neurons, blood vessels, and
other glia might contribute to the variability in astrocyte sizes, thereby shaping final
astrocyte topology. Overall, there is little understanding, and a theoretical framework is
lacking, of the origin and maintenance of the astrocyte domain-based organization, and
its contribution to information processing in cortex.

In summary, the accumulation of amyloid-b plaques in 5-9 month-old APP/PS1
mice did not perturb the domain-based astrocyte topology although, locally, plaques
had a repulsive effect on surrounding astrocytes that extended to at least three shells,
representing a distance of approximately 80 pm from the plaque edge. This 80 pm is far
beyond the boundary of the plaque extracted in our images. However, amyloid-beta
plaques and their microenvironment contain a complex and heterogeneous collection of
amyloid-beta species in different structural conformations and densities. MethoxyO,,
used in this study, stains only the fibrillar amyloid-b in the compact plaque core, but not
the toxic halo of soluble oligomeric amyloid-b surrounding the core. [Koffie, et al.] The
average astrocyte (cell body + processes) is over 10 times larger than an average plaque
core ( filling a volume of 43400 versus 3500 pm®), making it highly improbable that a
plaque kills several astrocytes at once, as it does neurons. [Urbanc et al.] The halo,

however, is highly toxic, producing high levels of synapse loss within 6 pm from the
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plaque edge, and lower levels up 50 um away. High levels of synapse loss are consistent
with regions where soluble oligomeric amyloid-beta is detected immunohistochemically
detection of soluble oligomeric amyloid-b. [Koffie et al.] Our finding that plaques had a
decreasing impact over three shells of astrocytes, mirroring spine loss, can be interpreted
in support of a model where a decreasing gradient of soluble oligomeric amyloid-beta is
toxic to astrocytes, causing the nearest of them to attempt to distance themselves from
the plaques. It is worth noting that the detection of domain expansion in the second and
third tiers rules out a scenario in which, in the first tier, migration of astrocytes to the
plaques has been masked by astrocyte exclusion from the zone of highest halo toxicity.

Our findings thus contradict the widespread belief that plaques and / or their
microenvironment act as a chemo-attractant for reactive astrocytes, which, as part of
adaptive defense response, go to plaques, phagocytose fibrillar amyloid-beta and seal
plaque-induced injury with a scar, thereby reducing the growth of plaques and their
overall impact. This idea is mostly based on evidence from astrocytes transplanted ex-
vivo into brain slices, which have very different properties than normal astrocytes, and
deletion of genes for GFAP and vimentin in transgenic mice, which interferes with
astrocytic cellular mobility, but also likely interferes with a range of other astrocytic
functions.

Overall, our study changes the view of how astrocytes interact with plaques in
favor of a model where astrocytes are passively engaged, if not directly deranged, by
plaques and their microenvironment. Should astrocytes limit plaque growth, they do so
indirectly by clearing soluble oligomeric amyloid-b, [Verghese,P.B. et al.] or recruiting
microglia through the release of soluble chemokines. [El, et al.] Time-lapse microscopy
has already provided unequivocal proof that microglia migrate to plaques. [Meyer-

Luehmann, et al]
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Our findings are consistent with the observations of previous analyses of the
interaction of microglia, astrocytes and plaques in human brains. [Serrano-Pozo et al., a
and b] These results showed astrocyte numbers detected with glutamine synthase
immunohistochemistry were not greatly altered in Alzheimer’s disease, while GFAP
immunostaining showed the expected intense clustering around plaques. The density of
microglia around plaques, but not that of GFAP-positive astrocytes, correlated with
plaque size, suggesting that amyloid-beta attracts microglia, but not astrocytes. Here we
extend those observations to directly examine plaques and astrocytes in their vicinity in
an experimental model, using 2-photon microscopy and 3D reconstructions from living
mice, and conclude that plaques do not attract astrocytes, supporting recent
observations suggesting that astrocytes do not move after development to sites of injury.

In summary, our study leads to two main conclusions. One, repulsive, and
possibly attractive chemoactive agents are essential for the maintenance of astrocyte
spacing even in face of disease. Two, major changes in astrocytes in the vicinity of
amyloid-beta plaques are confined to phenotypic alterations including strained inter-
astrocyte interactions, increased production of GFAP and development of a “reactive”
appearance rather than proliferation or migration towards plaques. Finally, the

functional alterations associated with these phenomena remain an outstanding question.
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5 Structural Motifs of Long-Range Axons

The brain is compartmentalized into subunits that perform specific functional
tasks. In the human brain, for example, there are at least five distinct regions involved in
visual processing, performing tasks such as pattern recognition, assembly of contours
into shapes and objects, and motion perception. Many neurons are devoted to the local
circuitry involved in these processing tasks, and have axons that stay within their
region. However, a subset of neurons is devoted to broadcasting the results of this
processing to other areas. The axons of these neurons can extend up to several
centimeters, as compared to the sub-millimeter range of other axons, and together with
supportive glial cells, make up the interior portion of the brain known as the white

matter.

These long-range connections play a crucial part in the proper functioning up the
brain. A basic result from network science is that the addition of a few long-range
connections changes the character of a network from a “large world” to a “small world,”
with only a small number of links between any two nodes. [Watts and Strogatz] The
particular importance of these long-range connections to intelligence is shown by the
increasing ratio of white matter to gray matter in the brain throughout evolution,
especially in the prefrontal region responsible for executive tasks (see Figure 5.1)

[Schoenemann et al.].

Establishing these long-range connections is a non-trivial problem at the cellular
scale. Since connectivity patterns between areas are generally conserved among
members of a species, there must be some system of guiding axons between areas.

Although it has long been recognized that axonal growth responds to chemical cues,
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[Huber et al.] the manner in which local directional signals are integrated into a long-

range trajectory remains unknown to neuroscience.

We expect that whatever strategy is used for long-range guidance, it will leave
clues in the geometry of axons. For example, what are the similarities, and what are the
differences, between two axons both extending from neurons in area A to targets in area

B? How are they different from feedback axons going instead from B to A? Where do a
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Figure 5.1 From Schoenemann et al. The ratio of prefrontal white matter to
prefrontal grey matter is much higher in humans than non-human primates. Units are
percentage of total brain volume. The solid line represents least-squares regression
based on nonhuman species average values (prefrontal percentage white volume =
4.794 + 0.212 (prefrontal percentage gray volume)) and the dotted lines represent the

95% confidence intervals.
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pair of axons with the same origin, but different targets, diverge?

These types of questions were beyond the limits of experimental neuroscience for
most of its history. Recent advances, especially in the fields of 3D microscopy and tissue
preparation (e.g. the CLARITY method [Chung et al.]), have made asking these

questions feasible for the first time.

A clue to a possible structural motif governing the guidance of axons was
discovered by Wedeen, et al. in 2012. This result used a technique called Diffusion
Spectrum Imaging, (DSI) a type of high-angular resolution diffusion MRI (dMRI), which
images the diffusion propagator of water. Since water in the white matter is confined
within the fatty myelin sheaths of axons, its diffusion propagator gives information on
the orientation distribution of axons within a dMRI voxel. Wedeen, et al. found that
even at high angular resolution, the diffusion propagator in any given voxel had at most
three lobes. Furthermore, in voxels with three lobes, the vectors describing the lobes
always spanned three-dimensional space — three lobes in a single plane were never
observed. In most regions of the brain, in fact, the vectors to the maximum of each lobe
were close to mutually perpendicular. Axonal tracts can be reconstructed from dMRI
data by connecting the vectors of adjacent voxels into streamlines. The tracts uncovered
by DSI were arranged in non-intersecting sheets, a very unique structure almost
impossible to create by chance [Wedeen, et al. 2012b]. This white matter structural

arrangement was coined “the Grid” by its discoverers.

The smallest dMRI voxels are about (0.5 mm)’, while axons average about 10
microns in diameter. Furthermore, the diffusion distance of a water molecule during an
MRI pulse sequence is only a few tens of microns. Even the most technologically

advanced dMRI then, can only report the average behavior of the thousands of axons
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contained within a voxel, and the grid, at this point, was a mesoscale phenomena,
describing neither long-range trajectories or single-axon behavior, but the average local

behavior of several hundred axons.

Our goal in this analysis is twofold: one, to investigate the scale at which the grid
constrains individual axons, and two, to formulate a hypothesis on the constraints that
the grid puts on the long range trajectories of axons, and understand how long range
trajectories are related to events at the microscopic level. The question of how the
different scales in a system interact with one another is a common one in statistical
physics. We will find that the mesoscale grid description also applies to single axons,
and that there is a deep connection between behavior at the microscale and long-range

trajectories.

5.1 Experimental Design.

At a basic level, our experiment consisted of comparing descriptions of the
geometry of the brain’s white matter at two scales: the millimeter scale, using dMRI
imaging, and the micron scale, just above the average diameter of an axon, using
histology and high resolution microscopy. We chose to examine axons in the white
matter below the motor cortex. Most axons in this region are part of the corticospinal
tract, a prototypical long-range pathway projecting from the cortex towards structures in
the mid and forebrain. Other populations of axons in this region connect the motor
cortex with other cortical areas, or simply pass through the area without making a

connection. Our experimental program was as follows:

1. Confirm millimeter-scale grid structure in motor area of our experimental

subjects using dMRI imaging.
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2. Describe distribution of axon orientations at scale of tens of microns. Relate
properties to millimeter-scale grid.

3. Attempt to identify notable subpopulations with alternative structural motifs.

4. Identify modalities of long-range navigation in the grid, such as turning and

branching between grid axes.

Step one in this program was performed by Dr. Van Wedeen, using the
methodologies from Wedeen, et al. 2012. They will be briefly described in the upcoming
section. The primary challenges for steps two and three were constructing an unbiased
sample of axon orientations, and extracting single axon orientation information from the
microscopy. Sampling is important, since a major part of the grid hypothesis is that a
region should contain at most three primary orientations. A small sample may not
contain sufficient statistical power to distinguish multiple orientations. Our approach to
creating an unbiased sample was to image a large continuous area. The continuity of the
sample allows for an easy estimation of the effect of brain curvature on the orientation

distribution, and avoids selection bias.

The fourth step arises from the constraints the grid places on axon trajectories.
An axon restricted to the grid can only target neurons directly in front of it, unless it can
switch between the different orientations — a path composed of 10 steps North, 4 East,
then two more North, for example. Non-trivial connectivity in a gridded brain requires
that axons branch, or execute turns. The length scale of the grid imposes a maximum
size on these turns. If, roughly speaking, it is unlikely to find a section of an axon of
length greater than L not oriented with one of the grid directions, then the turning

radius must be less than (2/r)L. Turns are necessary for the grid to be a global
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organizational principle of the brain, and are an important, testable prediction of the

grid.

5.2 Experimental Methods — Animals, Tissue Preparation and

Imaging

The animal care, tissue preparation, and tissue microscopy for this experiment were
performed by our collaborators at Boston University Medical School, doctors Douglas
Rosene, Farzad Mortazavi, and Adrian Oblak. Diffusion MRI imaging was performed by
Dr. Van Wedeen of the MArtinos Center as Massachusetts General Hospital. A brief

description of their efforts is given in this section.

Subjects:

Three young, adult male rhesus monkeys were used in these experiments. All were
obtained from national primate centers or domestic breeders and had known birthdates
and health records, which were screened to ensure they were free from disease or
experimentation that might compromise the brain. All were part of other ongoing
studies and were housed at the Laboratory Animal Science Center on the Boston
University Medical Campus (BUMC), which is managed by a licensed veterinarian and
fully accredited by the Association for the Assessment and Accreditation of the
Laboratory Animal Care. All procedures conformed to the National Institutes of Health
guidelines and the Institute of Laboratory Animal Resources Commission on Life
Sciences’ Guide for the care and use of laboratory animals and were approved by the BUMC

Institutional Animal Care and Use Committee.
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Surgical Procedure and Tracer Injections

Animals were first sedated then anesthetized, while heart rate, respiration, oxygenation
and muscle tonus are monitored to ensure a safe surgical level of anesthesia. The head
was stabilized, and a midline incision made. A bone flap was removed in one piece and
the dura incised to expose the precentral gyrus. Three to five injections of biotinylated
dextran amine (BDA) were placed into the hand representation of primary motor cortex,
1.5 mm deep. Once all injections were completed, the dura was closed, the bone flap

sutured back in place and the muscle, fascia and skin closed in layers.

Perfusion Procedure and Tissue Harvest

Post-operative survival times ranged from 21 to 36 days after which monkeys were
deeply anesthetized and euthanized. Following perfusion with paraformaldehyde, the
brain was removed from the skull, weighed, photographed and then post-fixed

overnight.

Tissue Processing Procedures

Following MRI scanning (see chapter 5.3), the brain was blocked in the coronal
stereotactic plane, photographed and then cryoprotected for 5 total days. Each block
was then flash frozen and stored at -80°C until cut in the coronal plane on a sliding
microtome into series of sections of 30 um thickness, spaced at 300 micron intervals. All
cut sections stored at -80°C until further processed immunohistochemically (e.g.,

Giannaris and Rosene).

Visualization of Tract Tracers

To visualize the motor cortex projection fibers labeled with BDA, one series of 30 ym

thick sections were thawed at room temperature, rinsed remove glycerol, and processed
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free-floating. After rinses with contrast agents designed to conjugate with the BDA,

mounted on gelatin-coated slides, dried and coverslipped.

Immunohistochemistry for SMI-312 and SMI-32

Series of 30 ym sections adjacent to the BDA series were thawed and rinsed to remove
the glycerol. They were then immunohistochemically processed through a blocking
solution, irradiated, and then incubated in primary antibody solution of mouse
monoclonal SMI-312 antibody or SMI-32 antibody, and irradiated again. Sections were

then kept for an additional 36 hours in the primary antibody solution.

Sections were rinsed, then incubated in with fluorescent labels selected to
conjugate with the SMI antibodies. Sections were kept in solution overnight, after which

they were rinsed, then mounted on gelatin-coated slides and cover-slipped.

Microscopy

Immunostained fibers were visualized using a Zeiss LSM710 laser scanning confocal
microscope. Stacks of images were acquired at a z-step of 1.0 ym and reconstructed

using Image] (version 1.47b).

dMRI Imaging

The existence of the previously observed grid structure in the white matter below the
motor cortex was confirmed using the previously described Diffusion Spectrum Imaging

methods [Wedeen 2012a]. To summarize the methods:

After 24 hours of fixation the brain was transferred to an MRI scanning solution
of perfluorocarbon and Diffusion Spectrum MRI (DSI) was acquired at 9.4 Tesla (Biospec

20 cm, Bruker Corp., Billerica MA) as previously described. [Wedeen, et al., 2005] The
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acquisition pulse sequence was a spin echo TR/ TE 1000/40 ms with hybrid echo-planar
3D Fourier transform spatial encoding with isotropic resolution of 400 ym - 500 ym
depending on brain size. A 3D volume image of the brain for each of 515 diffusion-
encoding g-vectors, with maximum sensitivity b,,,, = 40 ms pm?, with spin-echo
diffusion-encoding gradient pulse pair with peak intensity G,,,, = 440 mT m", inter-
pulse delay A = 24 ms pulse durations d = 13 ms. Using 4 averages, total scan times were
24-32 hrs. Orientation density functions were reconstructed, orientation maxima
identified, and paths computed with streamline tractography and visualized using

MGH Diffusion Toolkit and TrackVis software. [Wedeen, et al. 2008]

5.3 Experimental Methods — Image Analysis

Image analysis was performed through a combination of correlation-based
measurements to measure fiber orientation distributions, and manual identification and

measurement of turning and branching events.

Correlative Orientation Analysis

The application of correlation functions to fibers requires a statement of what is being
correlated. One might expect an analysis to begin with an extraction of fibers from an
image, followed by measurement of properties of each fiber individually. We resort to a
correlation function description because of the difficulty in extracting individual fibers,
see Figure 5.2 for examples. Thus what we are actually correlating is the distribution of

some contrast agent in the image.
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Figure 5.2. lllustration of difficulty of extracting individual fibers. (A) An example of
BDA stain, light microscopy. (B) An example of SMI-312 fluorescent confocal
microscopy. Fibers cross one another many times in both images. Each intersection
create an ambiguity. An algorithm may be able to detangle dense fields, but the

mathematics may be difficult to understand, unlike our correlative methods.

Correlating the contrast agent is equivalent to the correlation of a sample of
points in the volume of an object, as discussed in Chapter 3.3. Correlation functions are
estimates of the joint probability of observing events at two spatially separated points. In
this particular case, the “event” is a positive outcome for a test of whether or not that

point is inside an axon.

One might first consider measuring orientation with the two-point correlation
function (see Chapter 3 for background). Consider an image containing axons which
have one or more preferred orientations. Given one point x in the image that tests
positive for being inside an axonal fiber, it is more likely that another point, y, will test
positive if the vector y-x is aligned with one of the preffered directions. Thus anisotropy
in the two-point correlation is related to anisotropy in fiber orientations. Our goal,
however, is to measure what fraction of axonal trajectories are oriented along some

particular direction. (i.e. in a sample of 3 linear millimeters of axonal fibers, 1.5 mm

125



worth of fibers are at angle 0). Unfortunately, the two-point correlation function will
respond to all correlations, for example non-uniform density or the clustering
demonstrated in Figure 5.2. This makes it unsuitable for our task of describing the

orientation distribution of single fibers.

These inter-fiber correlations are strong in the white matter. For example, Figure
5.3 demonstrates anisotropic bundles of multiple axons. The width of a peak in the two-
point correlation function will reflect both the distribution of single fiber orientations,
and the width of these bundles. The two-point correlation function is also unable to

separate the signal of randomly oriented fibers and correlations in image density. These

Figure 5.3 A field of SMI-312 stained axons was smoothed by convolution with a
Gaussian kernel, with a sigma about 5 times the diameter of a large fiber. A heat map of
the density still shows noticeable anisotropy. The sub-selection shows that anisotropy at

this scale corresponds to bundles of axons.
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fibers would expect to create an isotropic correlation background that decays with
radius in proportion to the number of fibers with a given length. This is exactly the same
signature produced by correlations in image intensity or fiber density. Such correlations
could be caused by a gradient in the density of fibers. A fiber density gradient is
expected with tracer injections, since fibers disperse as they move away from their
source, and is clearly visible in our BDA tracer injection (see Figure 5.8 B and C).
Intensity correlations can also be introduced by the experiment, for example fluctuations
in laser intensity over the sample during image acquisition, or variation in the
absorption of the contrast agent. A two-point correlation function is shown in Figure
5.6A, and exhibits an isotropic background much higher than that estimated from other

methods.

To isolate the single fiber orientation distribution, the Path Probability method
for calculating the relevant subset of the irreducible three-point correlation was
developed. The theory of this method is discussed in Chapter 3. Briefly, the Path
Probability (PP) is a method for estimating the subset of the three-point correlation
function where displacements from the reference point are collinear, e.g. c;(r,Cr), where
C <1, and the point distribution is dense, or line-like. As discussed in Chapter 3.3, the
three-point correlation function isolates the contribution of single extended structures to
the correlation, making it better suited for measurements of orientation than the two-

point correlation.

The results of the three-point correlation function were confirmed by comparison
with the results of the Structure Tensor method, a technique from computer graphics
and digital image analysis. [e.g. Knuttson et al.] Recently Budde and Annese [2012]

applied it to measure the orientation distribution of fiber pathways in histological
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images of both the corpus callosum and cortical grey matter, and our method follows
theirs. It calculates the direction of maximal change in intensity in a small region of
pixels by finding the eigenvectors of the second moment matrix of the gradient,

averaged over the window, with some averaging function W(r) (equation 5.3.1).

| ), (L))
5.3.1 (a) (1,x)(1,(x)) <1y(x)>wz

®) (1), = J.W(r)l(x— r)dV

In our present analysis a 7x7 pixel window was used, which translates to a different real
size in each image preparation (BDA image: 1 px/ pm, SMI312: 0.83 px/ Mm, SMI32: 1.67
px/um). If this region contains a fiber, the direction of maximal change will be
perpendicular to the fiber’s edge. The orientation reported from the ST method is
perpendicular to the direction of maximal change, i.e. parallel to the edge. In contrast to
AC and PP, the ST is a local method. It is sensitive to sinuosity of the fibers, since it has
no mechanism for averaging fluctuations in orientation over distances larger than the
window size. For the Structure Tensor to function properly, window size must be small
enough to contain a single fiber. A larger window will average gradients due to multiple
fibers, outputting eigenvectors that do not correspond to the orientation of any actual
fibers. A small window will usually contain only a single fiber, so the distribution can be
directly interpreted as the proportion of fibers with a given orientation. The critical
parameter window size must be small compared to is inter-fiber distance, so the ST
method performs better with low density images. An anisotropy measurement can also

be derived from the ST matrix, for example anisotropy = |e;-e, |/l e;+e,1, where e; and e,
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are the eigenvalues of the matrix. Filtering low anisotropy pixels from the orientation

distribution diminishes the effect of multiple fibers appearing in the same window.

Unlike the three-point correlation function, the structure tensor does not contain
length information. It did, however, serve as a useful check on the resolution of the
three-point correlation function, especially at short ranges where the Path Probability
estimate may be expected to include some contributions from two point correlations, in
the form of the E[P,]E[P,P;] and E[PF terms from line 2-4 of the diagram shown in
Figure 3.4. In all cases no orientation peaks were observed in distributions produced by
the Structure tensor that were not also present in those produced by the PP method,

although PP did resolve peaks not above noise in the other methods.

Turn and Branch Identification and Measurement

Identification of turning and branching axons in 2D microscopy is still best performed
by eye. Automated methods cannot overcome the difficulties of discriminating these
from crossing fibers. Identification of sharp turns and of branches is of interest, as the
existence of these events is necessary for the grid to govern axons along their entire
trajectories, due to the limitations restricted orientation places on connectivity. Besides
being strong evidence for the validity of the grid at small scales, a high rate of these
events places important constraints on current dMRI techniques as a tool for study of

connectivity.

To estimate the lower bound of frequency, we first placed a randomly oriented
square counting grid (30.26 ym X 30.26 ym) onto a 20x image of BDA stained tissue. We
identified turns and branches within every fourth box in every fourth row of the grid

according to the following conservative identification criteria:
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1. Fibers must be visible in both the unprocessed image and after smoothing with a
Gaussian filter with 5-pixel radius to insure fibers have a minimum size and stain
intensity.

2. Fibers must clearly have a linear orientation on all sides of the turn or branch.

3. The apex of the turn or branch must occur within the counting box.

Two separate surveys were done, because it was found that an eye accustomed to

looking for branches was less effective at identifying turns, and vice versa.

After counting turns and branches in this way, we estimated the total fiber length
in the region sampled by the counting grid through direct and indirect methods, which
were compared to ensure their reliability. The direct method proceeded by measuring
the length of each fiber in each counting box that passed criteria (1) for turn
identification. Error in this measurement could be introduced by shifting acceptance

thresholds, a phenomenon known as experimental drift.

Total length was estimated indirectly by dividing the total area occupied by
fibers in the sampled region by their mean cross-sectional width. Total area was
measured by thresholding the Gaussian smoothed image. The threshold used an HSB
decomposition of the image to separate the darker fibers from the light background, and
remove colored glial cells (e.g. the cells visible in Figure 5.2). To obtain a threshold that
reflected selection criteria (1), we lowered the threshold to the point just below where all
identified turn were selected as foreground. Applying an image-wide threshold

eliminates the complication of experimental drift.

Width was estimated by measuring, in the thresholded image, the edge-to-edge

distance perpendicular to the backbone, of the fiber closest to the center of each
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sampling window. This produced 54 measurements, the mean and standard deviation of

which were used to estimate the range of possible mean widths for the sample.

The survey was expanded to measure the orientation structure and fraction of
turns and branches between each axis. Two images, one 40x and one 20x image of BDA
stained tissue were obtained. A grid was placed on each image for bookkeeping
purposes, however every box was counted. Two separate surveys, one for turns, another

for branches, were conducted for each image.

After identification geometry of both turns and branches was quantified using
simple image]J tools. Ideal sharp turns can be described by three points in space: their
apex, and a point on each of their legs. Turning axons are not ideal in this sense:
instantaneous orientation fluctuates, a ray from the apex to a random point on the leg
may not be parallel with the true long-range orientation, and axons turn with some
radius, not instantaneously at a point. Each leg of the turn was approximated with a line

segment, which were joined at the apex (see Figure 5.4).

The legs of branching fibers are not symmetric about its apex. Two legs are
collinear; these will be referred to as the “trunk.” The remaining leg will be referred to as
the “branch.” These terms reference the view that following one of the legs of the trunk
will lead back to the root of the axon, however this assumption is not used in analysis.
The branch is approximated by 3 line segments, one for each leg, all joined at the branch
point. In analyses the trunk angle refers to the average angle of the two legs of the trunk,

relative to the image.
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Figure 5.4. Turn geometry measurement. The turn is visible as a light gray fiber in
panel (A). The yellow line in panel (B) shows approximation of the turn with two line

segments joined at an apex, using the imagedJ angle tool.

5.4 Results of Image Analysis

Patterns of Axon Orientation

Figure 5.5 shows an image of the pan-axonal label SMI-312 in the white matter
below the hand region of the motor cortex. Visual inspection suggests there are two
major orientations, although some fibers do appear to deviate from this pattern. These
SMI-312 labeled fibers include axons that originate not just from primary motor cortex

but also fibers that pass through this region regardless of their origin or target.
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Figure 5.5. Pan axonal labeling. Panel A shows a montage of confocal images of
subcortical white matter beneath primary motor cortex that was immunohistochemically
stained with the pan axonal antibody, SMI-312 that stains all axons. Panels B and C are
higher power images showing that most fibers distribute in approximately orthogonal
directions in the x,y plane while others disappear into the orthogonal z-plane. Scale bar

in A =200 pm and in B and C = 50 ym.

Higher power images in Figure 5.5 B and C clearly show a tendency for fibers to
align with the 2 dominant average orientations displayed in the image, even at length
scales smaller than the 50 micron scale bar. Fibers that appear as truncated segments or

small dots intersect the plane of section at angles close to the perpendicular, and have
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3D orientation that may not be accurately captured by their projection in this image.
The image was interrogated to identify preferred orientations, estimate the
fraction of fibers in each preferred orientation, and estimate the background level of
randomly orientated fibers. For the purpose of comparison, the orientation distributions
of axons in the image of Figure 5.5 were measured using three methods: Two-Point
Correlation, Structure Tensor, and Path Probability (PP), the results of which are shown
in Figure 5.6A-C. All three methods produced distributions with two large peaks
corresponding to the two most common fiber orientations, with the center of the smaller
peak between 64° and 69° for each method, and the larger between 160° and 163°. These
primary orientations were almost perpendicular, agreeing with the separation of the
lobes identified by dMRI to within its resolution. The separate methods produced a
range of offsets from 83° to 86°, where offset is defined as the lesser of the two
supplementary angles between the two orientations, i.e. a value between 0° and 90°.

Unlike the other methods, PP also shows a minor direction at 97°

To visualize the anatomic distribution of fiber orientations, a color image was
created based on the PP analysis of Figure 5.5. First the original image is converted to
grayscale, so each pixel has brightness (intensity) matching that of the original image,
where brightness is proportional to SMI-312 fluorescence. The human visual system has
the ability to recognize a range of hues. Orientation at each pixel is specified as the angle
that maximizes the PP(r = 30um, 6) distribution calculated for that pixel. Orientation
information is coded as hue, as shown in Figure 5.7, and mapped onto the image.
Finally, the visual system can also perceive how saturated a color is. Saturation is related
to how power is distributed among the visible wavelengths. A flat power spectrum
produces a gray color, and has a saturation of zero, while maximum saturation

corresponds to monochromatic light. This translates naturally to anisotropy — at low
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anisotropy, all orientations are equally probable, and at high anisotropy, a single
orientation is vastly more likely than others. This Hue-Saturation-Brightness (HSB)
encoding allows us to represent a three-dimensional vector valued function on a two
dimensional map. It has previously used by others in the neuroscience community [e.g.

Budde and Annese].

The probability densities produced by each method gives the relative likelihood
for a randomly selected pixel: i.e. PP(r,0) gives the relative likelihood of finding two

occupied points along some vector of length r and direction 0 from another occupied
point, minus contributions from two-point correlations and randomness. This means
each fiber is essentially weighted by its diameter and length. This added importance for
thicker fibers is not necessarily desirable or undesirable, but it must be taken into
account when comparing the relative amounts of fibers in different peaks and
background. Steps can be taken to remove this diameter weighting, such as only
tabulating the results of the measurement for pixels on an edge, but the weighting and

uncertainties they themselves introduce should be taken into account.

The Path Probability method was used to estimate the fraction of fibers in each
direction, because of its good angular resolution and discrimination between
isotropically distributed fibers and other sources of background. As detailed in the
Image Analysis Methods section of this chapter, the estimate of background produced
by the two-point correlation method includes contributions from fiber density variation
and experimental details, making it unreliable. The two-point method applied to this
image produces a very large background, much higher relative to the peaks than the
amount of randomly oriented fibers estimated by visual inspection. Background in the
distribution produced by the structure tensor method is smaller than the two-point,
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Figure 5.6: Comparison of different quantitative evaluations of orientation. Plots in
Panels A-C show the whole Two-Point, Path Probability and Structure Tensor
distributions. Units of radial axis are relative strength in the given angular bin.
Autocorrelation (A) reveals a large isotropic background, (blue dashed circle) and
primary orientations at 161° and 64°. Structure Tensor orientation distribution (B) shows
primary orientations at 160° and 66°. Path Probability (C) reveals primary orientations of
163° and 69° as well as small peak at 97°. Panel D shows SMI-312 labeled fibers of
Fig. 5.5 with Path Probability (PP) applied to code each fiber orientation in hue,
saturation and brightness with hue of orientation according to the color wheel in Figure
5.7 and brightness proportional to the anisotropy of PP (Pmax/Paverage)- Thus primary
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orientations are revealed at 163° (green hues) and 69° (purple) plus for 19% of the fibers
(reddish-orange) at 97°. An enlarged view is shown in E. Scale barin D = 200 ym, in E

=50 um.

however it is hard to estimate what that fraction is. Artifacts can be produced in this
method if a window contains only a non-representative part of a fiber, such as its
terminus, where the edge direction is not related to fiber orientation, or if the window

contains multiple fibers, as detailed in Image Analysis Methods.

The mechanism by which local fiber orientation is governed is unknown, and we
did not wish to assume normal, or an alternative distribution, of fluctuations around
mean values. This precluded the use of fitting to estimate the amount of fiber area in

each peak. Fortunately, peaks were well separated, so we were able to estimate the size

of each peak through integration. For each distribution f(8), our procedure was:

1. Estimate background level B as global minimum of f{6). Total amount of
isotropically distributed fibers is B.

2. ldentify local minimums m; and local maxima M; with some tolerance. Regions
between local minimums are peaks. Overlapping peaks were identified as those
where [mi-m;;;/ was significantly greater than zero, where significance was
determined on a case by case basis with respect to background and M..

3. The peaks are characterized by the moments of f{6)-B, with the zero-moment
corresponding to fraction of orientations in a peak, first moment the center of the
peak, and second moment the width. For non-overlapped peaks, the moment

integral can be taken between the entire range between the minimums:
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F= [ (f©)-B)a8

Fraction of orientation in peak

My

l
Center of peak —F J 0(f(6)—B)do

m;

1 i
Width of Peak ' F J (6—M)*(f(6)-B)do

This procedure must be altered for overlapped peaks. In this case, the integral is
performed from the smaller of m; m;; to the next local maximum, M; or M;.;. In this
region overlap is minimized, and the formula above can be adapted to estimate
proper values by assuming that the distribution is symmetric around the local
maximum. This of course automatically gives M = M;. If a case is encountered where
one peak is a shoulder of another, or a small peak sits on the tail of another such that
both m are significantly above background, or if peaks are generally asymmetric
around their maximums, this technique will fail and one will be forced to resort to
fitting. Fortunately all distributions here had well enough separated peaks for these
integral methods to be applied. Peaks all appeared to be symmetric around
maximums, as they should be if width reflects random errors in orientation. The

adapted formula, for the case of the overlap on the right side of the maximum, are:

T = j £(0)do

Percentages are reported as F/T, B/T, where

F= 2f(f(9)—B)d0

Fraction of orientation in peak

Center of peak M =M,
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2 M )
Width of Peak W‘Emj (6—M)'(f(6)-B)d6

The largest peak in the Path Probability was well separated enough to use the
formulae described in step 3 of the procedure. The two smaller peaks were overlapped,
necessitating the use of the formulae in step 4. Using the above procedure, 49.5% of fiber
area was found to be in the peak centered at 163° relative to the image, 30% in a peak
almost perpendicular to this one at 69°, while 19% were in a peak intermediate to these
two at 97°. Only 1.5% of fibers were randomly oriented. The two large near
perpendicular peaks correspond to the observations in this region using dMRI, we
therefore refer to fibers with this orientation as “grid” fibers, and the remainder as non-
grid. The weight of the smallest peak should be taken with a grain of salt, due to the area
weighting discussed above. These correspond to the reddish-orange false colored fibers
in Figure 5.6. Many of these are among the larger fibers in this section, with a mean
diameter near 8 microns, compared to the mean for all fibers of 5 microns (unpublished
data). It is probable that if we were able to sample on a per-fiber basis, the fraction of

fibers in this peak would be substantially less than reported by Path Probability.

Thus the majority of fibers, about 80%, are observed to adhere to the grid
structure. The nineteen percent of non-conformist fibers raise the possibility that some
subpopulations may follow different organizational principles. There are fibers from
sources other than the motor region in the region sampled. Fibers with different sources
(i.e. cortex and midbrain) may follow different cues; this raises the possibility that there
may be multiple grids. This would not be necessary, however, if fibers from the same

source displayed non-grid behavior. Observations of non-grid behavior in a fiber
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population with a common source would instead be indicative that the nature of a
fiber’s target, or its type, determines its geometry. To observe whether a group of fibers
from a common source had similar aberrant fibers to the SMI-312 population, we
examined the fibers stained with the BDA tracer, which all projected from a small region
of the motor cortex controlling hand movement. An unprocessed microscopy image of

these fibers is shown in Figure 5.8.

The fiber orientation distribution of the BDA tracer image was obtained using the
Path Probability method (shown in Figure 5.9 C). The Two-Point and Structure tensor
methods were also applied to check for peaks not resolved by Path Probability; none
were found. Path Probability revealed two major directions at -3° and 70°, comprising
57.5% and 21% of the total fiber population respectively. The peak at 70° may appear to
have a shoulder near 45°, but examination of the image suggests these (purple-blue
fibers) appear due to curvature, not an additional preferred direction. No additional
peaks were observed. Instead, the remaining 21.5% of fibers were randomly oriented.
Figure 5.9 A and B display the HSB encoded results of the analysis in the same manner

as Figure 5.6 D and E.

90°

135° ‘ 45°

180° 0°

225° ‘ 315°

270°

Figure 5.7. Mapping from hue to angle for color-coded orientation images.
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Figure 5.8 Panel A is a 30 micron section though the BDA injection into the precentral
gyrus, counterstained with neutral red to show gray matter. Panel B is an adjacent
section at higher magnification showing BDA labeled fibers leaving the injection site.
Panels C and D show the fibers as they disburse into orthogonal directions. In D, fibers
are identified as crossing (green arrows), branching (blue arrows) or making sharp turns
(red arrows). Panels E through J show these and similar fibers at higher magnification.

Scale Bars: A=10mm, B =2 mm, C =200 um, D =100 ym, J =20 ym for E-J.
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Figure 5.9 Analysis of BDA tracer image. Panel (A) used Path Probability with R = 40
pm to analyze the BDA labeled fiber in Fig. 1C and encode their orientation in hue and
saturation as was done for SMI-322 in Fig. 3. Panel (B) is a close-up view of the
encoding. The orientation distribution in Panel (C) shows two primary orientations are
present at 70° (reddish to green hues) and -7° (aqua to blue hues). These two primary
directions account for about 80% of all fibers while the remaining 20% are isotropically

distributed.
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This population of fibers projecting from a the same region of the motor cortex
contrast with the SMI-312 labeled population in having a large fraction of randomly
oriented fibers. The large isotropic background is explicable by the proximity to the less
organized grey matter. In fact, it is surprising that the observed degree of organization is
achieved so soon after the fibers enter the white matter. The fraction of randomly
oriented fibers noticeably decreases in deeper white matter, towards the right in Figures

5.8 and 5.9.

A minor point of similarity is the large fraction of fibers in the medial axis,
approximately horizontal in both SMI-312 and BDA images. This likely reflects that
motor fibers likely make up a large fraction of those labeled by SMI-312, although they
are not equally represented in each axis. Still, the large number of BDA-labeled fibers
perpendicular to the medial axis suggests that a large number of turning and branching

events must have occurred.

Lastly, the population of BDA-labeled fibers shows only two peaks in the plane
of section. This suggests that all long-range axons exiting the motor cortex navigate the

white matter by means of the grid.

This result supports the hypothesis that non-grid fibers arise from a different
source. It does not exclude the possibility that these fibers have different characteristics
than the typical fiber. For example, we observed that the out of grid fibers in our SMI-
312 sample were larger than average. The subpopulation of larger fibers may be
expected to deviate from the grid. Larger fibers are able to transmit signals between

areas very quickly, at the expense of energy [Perge, et al.] A grid trajectory imposes a
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factor of v2 length penalty, as compared to a straight-line route, so it may be that a
subpopulation of axons dedicated to rapid signal transmission are routed more directly
to decrease transmission time. Unique myelin sheath proteins can identify large fibers.
The orientation distribution of directly routed axons should show a peak corresponding

to every target.

To investigate this hypothesis, we stained additional sections nearby the SMI-312
section with SMI-32, labeling axons that mainly originate from large projection neurons.
As shown in Figure 5.10A, SMI-32 labels a fraction of fibers, as compared to SMI-312
(Figure 5.5). The fiber orientation distribution was extracted using the Path Probability
method, which was again checked against distributions produced using the Two-Point
and Structure Tensor, and is shown in Figure 5.10 C. The results of the analysis were

spatially encoded using the HSB space of previous analyses (shown in Figure 5.10 B).

SMI-32 labeled fibers were concentrated in two major orientations offset by 69°,
with 46.8% of fibers in a large peak at 150° (reddish-purple fibers in Figure 5.10 B), and
35.7% of fibers in around 81° (green fibers). In addition to this grid pattern, 6.8% of fibers
formed a narrow peak around 44° (blue fibers). The remaining 10.7% of fibers were
isotropically distributed; these may have resulted from the in-plane projection of axons
intersecting the section at high angles. Based on tissue curvature, this section appears to
have been rotated clockwise by about 90° during either mounting or imaging, compared
to the other sections. If this is true, the largest component of the orientation distribution

is again aligned with the medial-lateral axis.

Similar to the SMI-312 labeled fibers, a small number of fibers appeared to be
ignoring the grid structure. In this population of large axons, however, they represented

a smaller fraction than in the general population, 6.8% vs. 19.0%. These numbers cannot
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be directly compared, because the distribution is weighted by area, and the blue fibers in
the SMI-32 image appear to be of the same or smaller diameter than the axons in this
image, while those in the SMI-312 image were larger than average. However, it is fair to
say that this cannot account for the factor of three decrease, meaning that out of grid
behavior is actually less common in the subset of large axons than in the general
population. Though some-long range fibers do deviate, they do not form a

subpopulation following a different set of rules.

Figure 5.10 (A) Raw microscopy of SMI-32 stained fibers. Population is noticeably
sparser than SMI-312 fibers (Figure 5.5.1). (B) Orientation-Hue encoded fibers. Fibers in
primary orientations are green and purple, a subpopulation of blue fibers deviating from

the grid are interspersed throughout.
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Branching and Turning Rates, Anisotropy, and Alignment with Grid

Inspection of 3D confocal images by our neuroscientist collaborators revealed the
existence of fibers branching, and making turns with radii comparable to their diameter
(Wedeen et al., 2012). Three-dimensional images remove the ambiguity associated with
discriminating between these structures and crossing fibers using conventional two-

dimensional microscopy.

Unfortunately, the small size and experimental variability between available
confocal images precluded their use in a systematic study of branching and turning. By
comparing two-dimensional projections of crosses and turns to their 3D structure, we
were able to learn to identify true turns and branches in two-dimensional images with

good accuracy.

This allowed us to undertake a systematic survey of the branching and turning
behavior of axons in the shallow white matter under the motor cortex, as displayed in
Figure 5.8. With our available data, we were able to measure the rate of turns and
branches per linear fiber length, the relative amount of turns between each pair of
directions, the direction of branches from fibers in a given axis, and the alignment of

these small scale features with the grid.

The total rate measurement was limited to a subset of the total analyzed region,
because of the labor involved in measuring the length of every fiber in the sample.
Direct measurement of the sampled fiber length in this region produced an estimate of
5.747 mm. The indirect measurement, produced by dividing the total area by mean fiber
width, estimated the sampled fiber length as 5.558 mm, with lower and upper limits of

4.047 mm and 8.8868 mm, calculated as (Total Area/Mean Width+Std Deviation). The good
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agreement of the direct measurement with the most likely length value estimated

through thresholding suggests that experimental drift was minimal.

A total of 9 turns and 8 branches were found in the sampled region. Using the
directly measured 5.747 mm sampled fiber length gives an estimate of an average of 3.0
trajectory altering event in every linear millimeter of fiber. The total uncertainty in this
rate due to error in the length measurement is likely to be small compared to that due to
statistical fluctuations in event number. The confidence interval for the event rate was
estimated by assuming that branches and turns are randomly distributed in space, so the
number counted in a randomly selected area follows the Poisson distribution. If these
events are clustered, this will lead to an overestimate of the rate, anti-correlation will
lead to an underestimate. The confidence interval of a Poisson mean can be calculated

through its link with the quantiles of the x* (Chi-squared) distribution [Ulm]. For the 1 -

o confidence interval:

P(,)=P(Y. <22)=0a/2

2

(5.4.1) 1-P(A,)= P( <2A,)=1-a/2 [Ulm]
U % ) U

2¥%(N+1

where N is the number of observations. In plain English, from Ulm: “2\; is simply the
o/ 2 fractile of a x° variable with 2N degrees of freedom, while 2\ is simply the 1-a /2

fractile of a x° variable with 2(N+1) degrees of freedom.” So, for example, the lower limit

of the 95% confidence interval of a process where N events occurred in time T is:

(5.4.2) A, =(0x’,,(0.025)/2)/T
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where QX’\(p) is the pth quantile of the x* distribution with N degrees of freedom.
Applying these formulas to our turn counts gives upper and lower limits of 27
and 10 events in our region, which translates to a 95% confidence interval of 1.7/ mm -
4.7 /mm for the total event rate. If this result holds true for all cortical fibers, it would
imply that even short fibers may have time to execute about four turns, while long-range
fibers may turn and branch tens of times. It will be interesting to extend these
measurements to other regions, and measure their dependence on variables such as

distance from the cell body, and whether or not branches can also branch and turn.

The rate estimates suggest that turning and branching occur at rates high enough
to allow for arbitrary connectivity with the entire trajectory of each fiber obeying grid
geometry. This led to further investigation into their properties, namely: 1) do the
incoming and outgoing legs of turning fibers align with the grid axes identified through

orientation analysis, and 2) are turns between, and branches into, certain directions more

Figure 5.11. Quantification of Branch Geometry. Schematic illustrates definition of
trunk angle, 01, and branch angle, 8z. Angles are relative to the X-axis of the image. In

the results that follow, counterclockwise rotation is defined as positive.

148



common than others, and does observed asymmetry align with the traditional targets of

fibers from the motor area?

These questions can be answered simultaneously by measuring the geometry of
turns and branches. First we will examine branching fibers. The geometry of a branching
fiber can be described by the angle of its trunk and its branch relative to the image (see
Figure 5.11). The distributions of 8, and 8, can be compared to the orientation
distribution of all fibers. Asymmetry can be observed is certain combinations of 6; and
0y are more common than others. We must point out here that 8; has a periodicity of .
This is because the trunk is not directed — we cannot ascribe unique properties to either
end. This is not the case for the branch — one end is pointed away from the apex, so it has

a periodicity of the full 2m.

A survey of a large 20x image of BDA stained tissue, and area of 208,000 square
microns, produced a total of 25 branches. Plotting 0 vs 8 produced four groups, with a
single outlier, as illustrated in Figure 5.12. Each group corresponded to a combination of
the primary axes observed for the full population of fibers, with the trunk aligned with
either the medial-lateral or superior-inferior axis. The medial-lateral trunks are near the
-7° major axis, and the average of the superior-inferior trunks is about 80°, offset by 10°
from the peak of the superior-inferior axis identified in the bulk population of fibers,
most likely due to tissue curvature. Each group of trunks has two groups of branches,
into the positive and negative directions of the complementary axis. Neglecting the
outlier, 71% of trunks were aligned medial-laterally, and 19% superior-inferiorly. This
closely matches the fraction of non-random axons in each axis determined by the Path
Probability orientation analysis, 73% and 32%. Interestingly, branching was highly

anisotropic. Of 17 branching fibers with trunks aligned with the medial-lateral axis, 76%
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Figure 5.12. Geometry of branches. (A) Four clusters of points correspond to

branching fibers with trunks aligned one grid axis sprouting branches aligned with the

other grid axis. Trunk angles are shown on the x-axis, and branch angles on the y-axis.

The distribution of orientation for all fibers is shown in (B). Typical examples from each

type of branching event are shown in (C) — (F).

(13) had branches that descended inferiorly. The remaining 24% (8) with trunks aligned

with the medial-lateral axis were more evenly distributed, with 62.5% (5) medial

branches and 37.5% (3) lateral branches.
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A survey of a separate 260,000 square micron section of tissue imaged at 40x
revealed similar results. Twenty total events were observed, 70% of which had trunks
aligned with the medial-lateral axis. This group of axons showed a similar asymmetry.
Of branching axons with trunks aligned with the medial-lateral axis, with 64% of
branches into the inferior direction. Axons with trunks aligned with the superior-inferior

axis had a two-to-one excess of branches into the medial direction.

Turning requires some modifications to the analytical tools used above. Like the

trunk of branches, there is an ambiguity to which leg of the turn a signal enters and

Figure 5.13 Quantification of Turn Geometry. Turns can be quantified by two angles:
Br the angle the resultant (gray dashed arrow) of the two legs makes with the image

(black line = x-axis), and 6r, the and the axon must turn through to change orientations.
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exits. Any analysis must be agnostic to which branch is which, thus we cannot simply
plot the angle of leg one vs. leg two. A branch can be defined by two angles, as shown in
Figure 5.13. Algebraically, these are the average of, and the difference between, the
angles the legs make with the image, although we equivalently use the supplement of
the difference, for reasons we shall explain shortly. Geometrically, the average of the
angles can be viewed as the angle of the resultant formed by normalizing the length of
the two legs, and adding them tip to tail. The supplement of the difference in angles is
the amount of degrees the axon must alter is trajectory by in order to execute the turn. It
is a more appealing number than the angle between the legs because unlike that angle, it

is large when the change in trajectory is large.

In contrast to the rate measurements, where the number of turns and braches
was approximately equal, turns were outnumbered in this sample two to one, with only
twelve examples found. This may be due to small number fluctuations, or possibly a

lower rate of turn recognition in the lower resolution 20x image than the 40x.

Turns were extremely anisotropic. The resultant angle of two thirds of the turns
matched that of turns with legs extending from the apex in the lateral and inferior
directions. Two turns had legs extending in the superior and medial directions, one of
the twelve had legs in the lateral and superior directions, and the remaining turn was

ambiguous.

The turning angle 8; matched the expected value of about 103° for several of the
lateral-inferior turns. Half of these fibers, however, turned through angles less than this
by more than ten degrees. This may be due to an experimental limitation: if a fiber exits
the plane of the thin section before completing its turn, 8 will be reduced from its true

value. This is actually a general limitation of two-dimensional microscopy, since thicker
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sections will decrease the likelihood of this effect, but increase the error in angle, due to

projection through the slab.
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Figure 5.14. Distribution of Turns. Panel (A) shows the distribution of Bz vs 6+, with Bg
on the polar axis, and 61 on the radial axis, for measured turns. 6 is clearly clustered
around about 210° degrees, and the turning angle for most of this group is greater than
100°, although some are less, possibly due to truncation. Panel (B) shows the
orientation distribution of all fibers. The solid black lines represent a turn with legs in the

lateral and inferior directions. Their resultant is at 211.5°, with a turning angle of 103°,
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corresponding very well to the observed behavior. Panel (C) shows an overlay of turn
schematics with apex translated to (0,0), demonstrating the abundance of negative
vertical-to-negative horizontal turns, as well as a few between other directions, and one
obtuse outlier (green line), that corresponds to a turn in the main group accoriding to 6g,

but with a 61 of about 75°.

A survey of a smaller section of tissue imaged at 40x revealed similar results.
Twelve total turns were observed, of which 58% were lateral-inferior. This is a smaller
anisotropy than observed in the 20x sample, but is still greater than twice the fraction

expected for isotropic turning.

The directional asymmetry in turning and branching are quite striking, with 60%
of observed branches connecting the lateral and inferior directions, and close to a three
to one preference for the inferior direction in branching fibers with trunks aligned with
the medial-lateral axis. This asymmetry is strongly supportive of the hypothesis that
axons navigate the white matter by means of turns between the grid axes. The largest
fraction of axons from the motor cortex are known to target the cerebellum, pons and
other structures in the hindbrain, as part of the pyramidal, or corticospinal and
corticobulbar tracts. These hindbrain structures are medial and inferior to the motor
area. Axons in the grid targeting the hindbrain would be expected to descend medially,
and either turn into the inferior direction, or extend a branch inferior. The observed turn
would have legs extending laterally and inferiorly from its apex. The most common
target for these fibers then corresponds to the most commonly observed turns and

branches.
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5.7 Implications for Grid Structure and Long-Range Trajectories

Our findings can be summarized into two major points:

1. The grid structure extends down to length scales of a few tens of microns, and
the observed collective behavior at the mesoscale is not emergent, it is a result
of microscale organization. Turning and branching occur at sufficient rates for the
grid to be the primary organizational principle for all white matter.

2. Long-range trajectories are a result of a series of discreet events, namely turning

and branching, at the microscale level.

Turn and branch based navigation is a necessary result of the strict adherence to the grid
system at the micro level. This suggests that whatever the functional role of the grid, be
it a navigational principle, temporal regulator, or otherwise, it may be necessary, or at

least maximizes its effectiveness, if it is enforced at the scale of a few microns.

Mathematical Modeling of Connectivity

The functionality of the brain is largely determined by its connectivity.
Connectivity, in turn, is the product of the routes taken by axons. One way to quantify
connectivity in terms of structural parameters is through “potential connectivity” of a
neuron. We define potential connectivity, PC(ry,1,), as the probability there will be a
connection between from a neuron at r, to a neuron at r, as a function of their locations.
We are interested in the shape of PC(r,1,): PC(r,,1,) for some choice of r,. For example, a
neuron that always targets a specific location R would have PC(r, r,) = 8(r,-R), and a
neuron that grows an axon a random length in a random direction would have PC(r,r1,)

= constant. In the first case, the variance of the distribution is zero, in the second case it
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tends to infinity with the size of the brain. It is probable that PC(ryr,) is peaked around
one or more R. In a traditional view, the variance of PC(ryr,) around each peak would

be a function of quantities such as the variance in axon angle.

In a grid, the variance of axon angle tends rapidly to zero with distance. Our
observations suggest instead PC(ryr,) is determined by branching and turning rates.

Consider, for example, the distribution of contacts neurons make on the opposite
side of one of the folds in the brain, known as a gyrus. The spatial distribution of the
terminal ends of the axons is a function of branching and turning rates. The white matter

in a gyrus is typically on the order of a single millimeter thick, just enough for most

Figure 5.15. Axons crossing a gyrus. A hypothetical distribution of the terminals of
axons crossing this gyrus is visualized by a heat map. The distribution is determined by

branching and turning, indicated by purple arrows.
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axons to turn into a trajectory parallel to they white/grey boundary, then back into a
trajectory taking them into the opposite side of the gyrus, as illustrated in Figure 5.15. A
simple model of this system starts with axons that turn randomly with constant
probability at any point along their length, although turns in different directions may
occur with unequal probability. For simplicity, we consider the distribution in the X
dimension for fibers growing between two sides of a gyrus separated by a distance of A
in the Y dimension. We also institute a no backtracking rule. Backtracking should be
suppressed due to its waste of material and transmission time. Turn probabilities can be

described by a two rates, Ay, the mean number of turns into the X direction by fibers

growing in the Y direction per unit length, and A,, the mean number of turns into the X

direction by fibers growing in the Y direction. The no backtracking rule prohibits

If turns occur at random, the length of fiber between turns will be exponentially
distributed. This is a well-known result from the study of Poisson processes. Since the
no backtracking rule prohibits growth in the -Y direction, the number of segments

oriented in the Y direction is Poisson distributed:

(A A) e ™ _@/ Ly ) eV
k! k!

(5.7.1) P(Ny =k)=

the second parameterization is in terms of piy, the mean distance between turns. This
allows us to derive the expected horizontal displacement at A. An axon with N segments
oriented in Y direction will have N-1 segments oriented in X, with exponentially
distributed lengths. Due to the no-backtracking rule, these segments will all be in the
same direction, and their lengths will add. The sum of N independent exponentially

distributed random variables is the Erlang distribution:
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The length distribution is a sum of Erlang distributions, weighted by the probability of

an axon with N segments oriented in X:

B oo ()‘ A)N e—ﬂ.XA )‘ LN—2eZyL
P(L)=(A,A)e ™ S8(L X Y
(L)=(A,D)e ()+Z; N (Vo)

B ) A/‘Ll )N e—A/ﬂx LN—2 /'Lt eL/ﬂy
(5.7.3) P(LY=(A/ Al S (L) + ( X Y
(L= (8 e 6L+ 3, == Foo)

The term outside the sum represents fibers that do not turn. The mean value of the
Erlang distribution described by Equation 5.7.2 is N 1y, and its variance is Nuy”. The

relative deviation is 1/VN, maximized when fibers make a single turn crossing the

gyrus.

This has an interesting implication for connectivity. Fibers traveling short
distances have a relatively broad distribution of potential targets. The areas occupying
opposite sides of a gyrus perform related computations — widely distributed
connectivity is likely to be beneficial. Conversely, a long distance pathway will make
many turns and branches, and its targets will be concentrated in a small region. This
may allow the brain to concentrate long distance connections in their intended target

regions.

In reality, turning and branching behavior may include such effects as
correlation and spatial variation in turning probability. Another interesting effect is the
interaction with the curved geometry of the brain. Curvature may act as a funnel,

effectively changing the size of a region. Because of curvature, two fibers that turn near
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one another may have widely separated terminals. This divergence hints at “chaotic”
behavior, which is interesting given the debate on where connectivity falls on the

continuum between deterministic and random.

Biological Implications

These findings have some immediate implications for the traditional biological
understanding of the brain as well. The conventional view of pathways between
different areas of the brain may need to be revised. Neuroscience envisions brain
pathways as relaying a representation of the processing done by a particular area to
another area where it can be used. For instance, visual information is combined with
proprioceptive information, resulting in what athletes know as hand-eye coordination.
The physical realization of the pathway was thought to be fibers organized into bundles
of parallel fibers, like streamlines in fluid, or strings under tension. We have shown that

instead, trajectories consist of linear paths punctuated by sharp turns.

For axonal fibers to remain as part of a coherent pathway with other fibers from
the same origin, branches and turns must be coordinated. This implies so spatial
variation in the probability of turning and branching events, or interaction between
axons. It is known that axons secrete chemicals, the semaphorins, that can deflect other
axons; it is possible that they may be able to initiate turning and branching behavior as
well. Large concentrations of turns have not been noticed, although they have not been
specifically looked for, to our knowledge, which raises the question of how they are

related to one another spatially.

There are also functional implications. For example, action potential propagation
is known to be disrupted at branch points. Branches were thought to be uncommon in

the white matter, our measurements suggest that most axons of the motor cortex have
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branches, and the grid makes it likely that others do as well. Propagation failure may be
more important than commonly recognized. This can be combined with the possibility
of widespread axon degeneration in the developing brain. O'Leary and Takashima
observed branching axons in the spinal tract. During development, one leg of the
branched axon would often die back, leaving either a sharp turn or linear fiber. This
degeneration is known to occur if the information transmitted by an axon is not being
used — the neuron trims the axon back to avoid wasting energy. Widespread branching
may allow developmental flexibility, at the cost of information loss in transmission

during the early stages of life.

These small radius turns and branches place an important constraint on the most
commonly use brain mapping technology, dMRI tractography. This technique connects
neighboring voxels in a dMRI scan if the orientation of their peaks line up. A line of
connected voxels between two regions of grey matter is interpreted as a “tract” of axons
connectin neurons in the two regions. All current dMRI technologies average diffusion
over voxels that are far larger than microscopic axon turns and branches, and even high
angular resolution techniques like the aforementioned Diffusion Spectrum Imaging
cannot resolve turns and branches. This can lead to errors in the reconstruction of axonal
tracts. Wedeen, et al., for example, suggest that dMRI tractography renderings of the
corticospinal tract from cortex to peduncle as a smooth arc [e.g., Catani et al.] are due to
error in the resolution of fiber orientations, since this smooth tract disagrees with
observations of the axons obtained from high resolution microscopy [Wedeen, et al.
2012b]. While axonal branches and turns may be too small to be spatially resolved with
present or foreseeable dMRI, these structures may potentially be reflected and mapped
with other features of diffusion contrast [Assaf et al., Callaghan, et al.]. The grid poses

additional challenges to dMRI tractography. Adjacent parallel fibers, identified and
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named “kissing fibers” [Basser, et al.], may be a ubiquitous phenomenon as fibers
navigate along and across grid axes. These cause ambiguities in tractographic
reconstruction. Thus, these observations pose a notable challenge for dMRI of the
human brain connectome, as well as opportunities to better understand and map brain

connectivity.

6. Discussion and Future Prospects

The analyses performed in this dissertation have demonstrated two ways in which
spatial analysis can shed light on the inner workings of the brain. In our study of
astrocytes, we ultimately showed that the prevailing belief that astrocytes play an active
role in protecting the cortex from the toxic amyloid-beta plaques of Alzheimer’s disease
is incorrect. This illustrates the use of spatial information as a proxy for difficult-to-
observe processes. A full understanding of astrocytes response would require
knowledge such as gene expression as a function of amyloid-beta in the region around
the astrocyte, what chemicals were absorbed and released by the astrocyte, and their
effects on surrounding neurons. However, this exquisite detail is not necessary to
dispute the hypothesis that astrocytes are sent to the site of plaques, like infantry on the
front lines. From spatial information alone, we can deduce that instead the astrocyte
system is itself disrupted by Alzheimer’s, and that another cell type must be responsible

for defense.

We also observed a previously unknown aspect of astrocyte biology, a force with
a repulsive core up to about 18 microns, and a weakly attractive well extending another
20-30 microns. This is 13 microns greater than the average diameter of the astrocyte, but

less than the extent of the mature astrocyte’s processes. Both the origin and function of
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this force is unknown. It may be a frozen in remnant of development, when astrocytes
are establishing their position in the cortex, and may be a result of chemical signaling or
mechanical contact between the nascent processes of immature astrocytes. In the second
case the 18 micron range of the force would reflect the size of the processes of immature
astrocytes when their density reaches the point where interaction becomes common. The
first case implies a novel chemical messenger, similar to the semaphorins in neurons.
Future investigation will involve the existence and character of the interaction in
primate species. Systems where astrocytes are mobile will help elucidate the nature of
the force. Developing brains are an obvious case of such a system; it will also be
interesting to study astrocyte interactions in gliomas. Gliomas are a common type of
malignant brain cancer, making up 80% of all malignant brain tumors [Goodenberger
and Jenkins]. Astrocytes in gliomas divide, and are mobile, so it may be possible to
observe this interaction. These are not normal astrocytes, of course, so the interaction

may be altered or absent.

Our successful investigation into the role of astrocytes leads us to investigate
other populations of cells. Microglia, are known to be mobile, entering an amoebic state
to migrate to injury, toxins, or foreign cells such as bacteria. It is not known how the
spatial distribution of the microglial population changes in response to a diffuse insult,
such as the plaques of Alzheimer’s. They are assumed to be attracted to plaques, hence
high density should be expected near plaques, with low density at farther distances. Our
experience with astrocytes, however, suggests that observations may be misleading, and

that interesting interactions may have gone unobserved.

The interplay between astrocytic domains and their regulatory function also

leads to interesting uses of spatial information. For example, how does the concentration
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of a drug depend on the configuration of astrocytic domains? Do neurons belonging to
the same domain act as any kind of functional subunit? Answering these functional
questions is much easier experimentally if the domain can be approximated without
direct imaging of the processes, as we have done using the Voronoi tessellation. One
function of the repulsive force between astrocytes may be to regulate domain size. This
force may then vary between brain structures and species. The range of the force was
observed to vary among members of our cohort. The manipulation of the concentration
of various neurotransmitters is a huge industry, and forms the backbone of
neuropharmacology. Billions of dollars a year are spent on antidepressants, which
primarily regulate the neurotransmitter serotonin. The illegal narcotic cocaine increases
the concentration of three key neurotransmitters, dopamine, serotonin, and epinephrine.
It would be interesting to model how the spatial distribution of astrocytes effects the

regulation of these important chemicals, and how this can be manipulated by drugs.

Our analysis of axons shows a system in which the role of space is paramount to
function. This can be deduced by the strict adherence to the grid pattern at a broad
range of scales. Targeting a distant point is a difficult task for a cell, and it is not
surprising to find some interesting pattern in the spatial structure of axons. The
description and validation of this structure, however, requires novel imaging techniques

and precise mathematical tools.

The connectivity of the brain determines its function. A large amount of research
focuses on the modification of connectivity during the brains lifetime. This research it
justified: the modification of connection strength is the physical basis of learning, and
the loss of connectivity due to axon death probably underlies the mental decline

associated with aging. [Peters et al.] The brain is unique among networks, however, in
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how its initial connectivity is established. Neurons are initially disconnected from one
another, and related to one another spatially. The axons that eventually connect them
map this spatial relationship into connectivity. Some simple spatially dependent
network models have been proposed, for example separation based connection
probability in models of the airport and internet hub networks. [Daqing et al.] The
spatial-connectivity mapping in the brain is likely to be much richer, and has the added
benefit that there are a large number of brains to measure the properties of, unlike many

networks.

The development of the brain creates a novel set of questions, based on the
translation of the structural properties of single cells in properties of a network. An
example might be the relationship between turning probability and the degree

distribution of the brain, or the average distance between nodes.

The observations of the grid at the axonal scale raise a host of interesting physical
questions. For example, the modeling of 3D trajectories comprised of grid-like segments
in non-Euclidean geometry may turn up interesting statistical properties, such as
relationships between first-passage times and curvature or turning probability.
Modeling should help to determine how deterministic the pattern of turns and branches

of a single axon must be in order to produce realistic connectivity patterns.

The grid may also affect signal transmission characteristics. It imposes a
Manhattan distance metric (L, norm) for example, which means that all non-
backtracking paths between two points are the same length. Signals transmitted between
areas along different axons with different sequences of turns will arrive at the same
time. The L, norm has particularly interesting implications for traveling waves of action

potentials in the brain. A circle in Manhattan geometry is a square. Action potentials
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could build up on the edges of a spreading square, creating coherent waves at 45° to the
grid axes. Oscillations in the hippocampus appear to travel at about 45° to the axes of the

hippocampal grid measured using DSI.

Measurements of correlations between these events will help elucidate how
pathways are formed. They will also pave the way for exploration by biologists into the
signaling behind branching and turning. Aberrant connectivity is thought to underlie
schizophrenia, and possible autism, understanding the signaling underlying the
formation of pathways should help expose the causes of these conditions. Interestingly,
schizophrenia emerges later in life, typically in young adulthood, although its roots are
thought to lie in development. Long-range connectivity should be established by this
age. This may implicate branching axons as the culprit, since connectivity patterns may

be altered by the degeneration of branches, as we discussed earlier.

The brain is a unique system in that it translates small-scale physical processes,
such as axon growth and cell division, and environmental regulation, into a large
complex network. It is a rich field of study, and deserves to be on the frontier of physics.
We hope this dissertation demonstrates why spatial information is invaluable for the

understanding of the brain.
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