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Schmitt DT, Ivanov PC. Fractal scale-invariant and nonlinear
properties of cardiac dynamics remain stable with advanced age: a
new mechanistic picture of cardiac control in healthy elderly. Am J
Physiol Regul Integr Comp Physiol 293: R1923–R1937, 2007. First
published August 1, 2007; doi:10.1152/ajpregu.00372.2007.—Heart
beat fluctuations exhibit temporal structure with robust long-range
correlations, fractal and nonlinear features, which have been found to
break down with pathologic conditions, reflecting changes in the
mechanism of neuroautonomic control. It has been hypothesized that
these features change and even break down also with advanced age,
suggesting fundamental alterations in cardiac control with aging. Here
we test this hypothesis. We analyze heart beat interval recordings
from the following two independent databases: 1) 19 healthy young
(average age 25.7 yr) and 16 healthy elderly subjects (average age
73.8 yr) during 2 h under resting conditions from the Fantasia
database; and 2) 29 healthy elderly subjects (average age 75.9 yr)
during �8 h of sleep from the sleep heart health study (SHHS)
database, and the same subjects recorded 5 yr later. We quantify: 1)
the average heart rate (�R-R�); 2) the SD �R-R and ��R-R of the
heart beat intervals R-R and their increments �R-R; 3) the long-range
correlations in R-R as measured by the scaling exponent �R-R using
the Detrended Fluctuation Analysis; 4) fractal linear and nonlinear
properties as represented by the scaling exponents �sgn and �mag for
the time series of the sign and magnitude of �R-R; and 5) the
nonlinear fractal dimension D(k) of R-R using the fractal dimension
analysis. We find: 1) No significant difference in (P � 0.05); 2) a
significant difference in �R-R and ��R-R for the Fantasia groups (P �
10�4) but no significant change with age between the elderly SHHS
groups (P � 0.5); and 3) no significant change in the fractal measures
�R-R (P � 0.15), �sgn (P � 0.2), �mag (P � 0.3), and D(k) with age.
Our findings do not support the hypothesis that fractal linear and
nonlinear characteristics of heart beat dynamics break down with
advanced age in healthy subjects. Although our results indeed show a
reduced SD of heart beat fluctuations with advanced age, the inherent
temporal fractal and nonlinear organization of these fluctuations
remains stable. This indicates that the coupled cascade of nonlinear
feedback loops, which are believed to underlie cardiac neuroauto-
nomic regulation, remains intact with advanced age.

aging; dynamics; heart rate; nervous system; autonomic; physiology;
sleep; fractals; nonlinearity; scaling

THE OUTPUTS OF PHYSIOLOGICAL systems under neural regulation
exhibit 1) high degree of variability, 2) spacial and temporal
fractal organization that remains invariant at different scales
of observation, and 3) complex nonlinear properties (6, 46).

These inherent features of physiological dynamics change
significantly with different physiological states such as wake
and sleep, exercise and rest, circadian rhythms, as well as with
pathological conditions. Because different physiological states
and pathological perturbations correspond to changes or even
break down in the mechanism of the underlying neural regu-
lation, alterations in certain dynamic properties of physiolog-
ical signals have been found to be reliable markers of changes
in physiological control.

Aging is traditionally associated with the process of decline
of physiological function and reduction of physiological com-
plexity (2, 35). One major hypothesis is that physiological
aging results from a gradual change in the underlying mecha-
nisms of physiological control (a regulatory network of neural
and metabolic pathways interacting through coupled cascades
of nonlinear feedback loops on a range of time and length
scales), leading to changes of physiological dynamics. Under
this hypothesis, even ostensibly healthy elderly subjects would
exhibit: 1) loss of sensitivity and decreased responsiveness to
external and internal stimuli, leading to reduced physiological
variability (2) and 2) breakdown of certain feedback loops
acting at different time scales in the regulatory mechanism of
various physiological systems. This breakdown would lead to
loss of physiological complexity as reflected in certain scale-
invariant and nonlinear temporal characteristics of physiolog-
ical dynamics (35, 41). This hypothesis of a breakdown of
physiological complexity with healthy aging has recently been
challenged (68). Furthermore, earlier studies have linked var-
ious pathological states with breakdown of the scale-invariant
fractal organization in physiological dynamics, which is likely
to result from disintegration of coupled feedback loops in the
regulatory mechanism (15, 27, 28, 54, 61, 71). Thus, based on
this hypothesis, mechanistically, physiological processes under
healthy aging would be categorized in the same class as
pathological dynamics where fractal organization and nonlin-
ear complexity is lost.

A second hypothesis is that, while aging may lead to reduced
variability, certain temporal fractal, scale-invariant and nonlinear
structures embedded in physiological dynamics may remain un-
changed. These two alternative hypotheses represent different
notions about which aspects of the physiological control mecha-
nisms are expected to change in the process of aging in contrast to
the changes accompanying certain pathological conditions.
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To test these two hypotheses, we analyze cardiac dynamics,
a typical example of an output of an integrated physiological
system under autonomic neural regulation. Previous studies
have shown that heart rate variability decreases with certain
pathological conditions (46, 69) and with advanced age (51,
65). Studies based on approaches from statistical physics and
nonlinear dynamics revealed that heart beat fluctuations in
healthy subjects possess a self-similar fractal structure charac-
terized by long-range power-law correlations over a range of
time scales (37, 54, 61). The scaling exponent associated with
these power-law correlations was shown to change signifi-
cantly with rest and exercise (13, 36, 48), posture (66, 72),
sleep and wake state (29), across sleep stages (8, 32, 33, 55)
and circadian phases (23, 49), and to be a reliable marker of
cardiac vulnerability under pathological conditions (21, 53).
Furthermore, studies have found that turbulence-like multifrac-
tal and nonlinear features in heart beat dynamics are reduced
and even lost with disease (25, 27, 39). Several studies have
also reported reduced heart rate variability (67; as also shown
in Fig. 1), apparent loss of fractal organization, as well as
breakdown of scale-invariant correlations and certain nonlinear
properties with advanced age (17, 18, 31, 41, 56), suggesting
that healthy aging is associated with changes in the neuroau-
tonomic mechanism of cardiac regulation related to disintegra-
tion of coupled feedback loops across a range of time scales.

Here, we investigate how cardiac dynamics change with
advanced age by analyzing scale-invariant, linear, and nonlin-
ear characteristics of heart beat fluctuations recorded from
subjects during rest and sleep from two independent databases.

DATA AND METHODS

We analyze heart beat interval recordings from two independent
databases.

Fantasia Database

The Fantasia database (15a) contains 20 young and 20 elderly
subjects. We carefully selected 19 healthy young subjects (9 male; 10
female) with an average age of 25.7 yr (youngest 21; oldest 34) and
16 healthy elderly subjects (6 male; 10 female) with an average age
73.8 yr (youngest 68; oldest 85). All subjects were recorded while
watching the movie Fantasia (Disney, 1940) in a relaxed supine or
semirecumbent posture. These conditions were chosen to avoid the

effect that differences in the level of physical activity between young
and elderly subjects during daily routine might have on cardiac
dynamics (Fig. 1). The continuous electrocardiogram (ECG) and
respiration signals were digitized at 250 Hz. Each heart beat was
annotated using the ARISTOTLE arrhythmia detector (50), and each
beat annotation was verified by visual inspection. Only intervals
between two normal beats were considered. One young and four
elderly subjects (shown in Fig. 8) were excluded from our analysis
because of artifacts in the data.

Sleep Heart Health Study Database

The Sleep Heart Health Study (SHHS) is a prospective cohort study
designed to investigate the relationship between sleep-disordered
breathing and cardiovascular disease. Subjects were recorded during
their habitual sleep periods of �8 h, and continuous ECG were
recorded with 250 Hz (Fig. 2). Full details of the study design and
cohort are provided in (40, 59). Details about obtaining the ECG and
polysomnographic recordings are outlined (60). Sleep apnea epi-
sodes were annotated, and heart rate data during apnea (obstructive
and central) were excluded from our analysis (Fig. 2). We selected
a subset of 29 subjects (8 males; 21 females) with average age at
the time of the first recording 75.9 yr (youngest 72; oldest 84). The
recordings were repeated 5 yr later when the subjects were again
screened and categorized as healthy.

Detrended Fluctuation Analysis

We use the detrended fluctuation analysis (DFA) method (52),
which has been developed to quantify fractal correlations embedded
in nonstationary signals, to estimate dynamic scale-invariant
characteristics in heart beat fluctuations. Compared with traditional
correlation analyzes such as autocorrelation, power-spectrum analy-
sis, and Hurst analysis, the advantage of the DFA method is that it
can accurately quantify the correlation property of signals masked
by polynomial trends; it is described in detail in Refs. 9, 10, 22, 34,
and 70.

The DFA method quantifies the detrended fluctuations F(n) of a
signal at different time scales n. A power-law functional form
F(n) � n� indicates the presence of self-similar organization in the
fluctuations. The parameter �, called the scaling exponent, quantifies
the correlation properties of the heart beat signal: if � 	 0.5, there is
no correlation and the signal is white noise; if � 	 1.5, the signal is
a random walk (Brownian motion); if 0.5 � � � 1.5, there are
positive correlations, where large heart beat intervals are more likely

Fig. 1. Consecutive heart beat R-R intervals from a representative young
healthy (A) and elderly (B) healthy subject from the Fantasia database. Under
the same resting conditions elderly subjects exhibit significantly reduced heart
rate variability.

Fig. 2. Representative elderly subject from the Sleep Heart Health Study
(SHHS) database. Consecutive heart beat R-R intervals (A) and apnea scoring
(B).
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to be followed by large intervals (and the same is true for small heart
beat intervals); if � � 0.5 the signal is anticorrelated.

One advantage of the DFA method is that it can quantify signals
with � � 1, which cannot be done using the traditional autocorrelation
and R/S analyses (14). In contrast to the conventional methods, the
DFA method avoids spurious detection of apparent long-range corre-
lations that are an artifact of nonstationary (63). Thus the DFA method
is able to detect subtle temporal structures in highly heterogeneous
physiological time series.

An inherent limitation of the DFA analysis is the maximum time
scale nmax for which the fluctuation function F(n) can be reliably
calculated. To ensure sufficient statistics at large scales, it was shown
that nmax should be chosen by nmax � N/6, where N is the length of
the signal (12, 22, 70). For time scales n � nmax there is no bias in
estimating the scaling exponent �. Thus recordings �1 h (N � 3,600
beats) are sufficient to reliably quantify � up to time scales n 	 600
beats, and differences in the length of the recordings between the
Fantasia database (2 h) and SHHS database (8 h) do not affect the
estimate of �. Recent studies have tested the performance of the DFA
method when applied to correlated signals with patches of missing
data, random spikes, and superposed trends related to different activ-
ity levels and patches with different standard deviation and local
correlations, as often found in heart beat data (10, 22).

Both the Fantasia database and the National Institutes of Health
SHHS database have used 250-Hz sampling rate for the ECG record-
ings. A precision of 0.004 s (250 Hz) is more than sufficient for our
analysis, since the DFA method as well as the magnitude and sign
analyses (MSA) and fractal dimension analysis (FDA) analyses we
employ (see below) are robust in that respect. Use of a lower sampling
rate (i.e., lower precision in the estimate of the R-R intervals) acts
effectively as added random noise with an amplitude proportional to
the sampling interval; in our case, the amplitude of this sampling noise
is more than two orders of magnitude smaller than the R-R interval.
It has been shown that adding noise with such a small amplitude to a
fractal correlated signal does not effect the correlation scaling and
fractal properties (10).

MSA

Because the DFA method quantifies linear fractal characteristics
related to two-point correlations, we have selected the MSA method
to probe for long-term nonlinear properties in the data. Specifically, it
has been shown that signals with identical temporal organization,
quantified by the DFA-scaling exponent �, can exhibit very different
nonlinear properties captured by the MSA method (5).

The MSA method (3, 4) consists of the following steps: 1) given
R-Ri series we obtain the increment series, �R-Ri 	 R-Ri
1 � R-Ri;
2) we decompose the increment series into a magnitude series �R-R
and a sign series (�R-R); 3) to avoid artificial trends, we subtract
the average from the magnitude series; 4) because of limitations in the
accuracy of the DFA method for estimating the scaling exponents of
anticorrelated signals (� � 0.5), we integrate the magnitude series

(22); 5) we perform a scaling analysis using DFA; and 6) to obtain the
scaling exponents for the magnitude series, we measure the slope of
F(n)/n on a log-log plot, where F(n) is the fluctuation function and n
is the time scale of analysis.

This approach is sensitive to nonlinear features in signals (64). We find
that positive correlations in the magnitude series (�mag � 0.5) are a
reliable marker of long-term nonlinear properties. Thus we employ the
MSA as a complementary method to the DFA, because it can distinguish
physiological signals with identical long-range correlations, as quantified
by the DFA method, but with different nonlinear properties and different
temporal organization for the sign(�R-R) series.

FDA

The fractal dimension D(k) is a local nonlinear measure used to
quantify the irregularity of a time series (47). We estimate the fractal
dimension using an algorithm proposed previously (19).

Starting from a discrete time series, x(i), with i � [1,N], a new
sparse time series xk

m is constructed in the following way

xk
m; x�m�, x�m � k�, . . . , x�m �

N � m

k
k� , (1)

with m � [1,k] where m and k are integers, and  (N � m)/k denotes
the largest integer number smaller than (N � m)/k. Then a length
measure for this sparse time series is defined as

Lm �k� �
N � 1

hk2 �
i 	 1

h

�xik
m � x�i�1�k

m ��, (2)

with h �  (N � m)/k . For a time series x(i) with a fractal dimension
D the length Lm(k) averaged over m is a power-law function of the
scale k: L(k) � �L(k)�m � k�D. In the general case D can depend on
the scale k. In this case, the local fractal dimension D(k) of the time
series x(i) is defined as the negative local derivative of log L(k) as a
function of log k (Table 1).

RESULTS

Variability in Heart Beat Intervals and Their Increments

We first test the possibility that advanced age in ostensibly
healthy subjects would lead to an increase in the average heart
rate and to a significant reduction in heart rate variability, a
behavior previously observed in subjects with congestive heart
failure where under suppressed vagal tone increased heart rate
is associated with reduced heart rate variability (69, 71). We
find that both young and elderly healthy subjects in the Fan-
tasia database exhibit very similar group average interbeat
intervals: �R-R� � � 	 0.9 � 0.14 for the young group and
�R-R� � � 	 1.06 � 0.17 for the elderly group, where � is
the standard deviation (Table 2). This is in agreement with

Table 1. Overview of measures used

Abbreviation Measure Significance

Static measures

�R-R� (AVNN) Mean of R-R intervals Inversely proportional to heart rate
�R-R (SDNN) SD of R-R Para- and sympathetic HRV measure sensitive to trends
��R-R (RMSSD) SD of �R-R Parasympathetic HRV measure insensitive to trends

Dynamic measures

� Scaling exponent of R-R Linear scale-invariant correlations
�mag Scaling exponent of ��R-R� Nonlinear scale-invariant correlations
�1

sgn Scaling exponent of sgn(�R-R) Fractal measure of directionality
D(k) Fractal dimension of R-R Nonlinear fractal measure
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previous studies (11, 31, 56). A Student’s t-test shows no
significant difference between the two groups with a P value 	
0.11. A very similar average heart beat interval was observed
for the healthy elderly subjects in the SHHS database with
�R-R� � � 	 0.92 � 0.075, indicating no significant
difference (P value 	 0.07) compared with the group of young
Fantasia subjects (Table 2). Furthermore, comparing the group
average heart beat interval of the elderly subjects from the
SHHS database with the same subjects recorded 5 yr later, we
find again no significant difference: �R-R� � � 	 0.92 �
0.08 at the first recording and �R-R� � � 	 0.92 � 0.1 after
5 yr (P value 	 0.92; Table 2). Thus we do not observe a
significant change in the average heart rate with advanced age.

To test whether there is a reduction in heart rate variability
with aging, we next estimate for each subject the standard
deviation of the heart beat intervals �R-R (often denoted as
SDNN) and the standard deviation of the increments in the
consecutive heart beat intervals ��R-R (often denoted as
RMSSD) (Table 2). For the young and elderly subjects in the
Fantasia database, we find a statistically significant difference
with 1) a higher value for the group average ��R-R� and
2) larger inter-subject variability for the young group: ��R-R� �
� 	 0.089 � 0.034 for the young compared with ��R-R� � � 	
0.051 � 0.017 for the elderly subjects (P value 	 3.3�10�4;
Table 2). Similarly, we observe a significantly higher value for the
group average ���R-R� for the young subjects in the Fantasia
database (���R-R� � � 	 0.061 � 0.031) compared with the
elderly subjects (���R-R� � � 	 0.027 � 0.012; P value 	
9.9�10�5), again with a larger intersubject variability for the
young group (Table 2). We note that the sampling rate of 250 Hz
does not effect the significance of the difference in ��R-R between
the young and elderly groups, since this difference is �0.034 s,
i.e., one magnitude larger than the sampling precision of 0.004 s.

For the group of healthy elderly subjects from the SHHS
database, we find a higher value of ��R-R� � � 	 0.077 �
0.027 compared with the elderly group from the Fantasia
database, a difference that could be attributed to the fact that the
SHHS subjects were recorded during sleep where transitions
between sleep stages are associated with trends and larger fluctu-
ations in the interbeat interval time series (32, 55), whereas the
elderly Fantasia subjects were recorded during rest. In
contrast, for ���R-R�, we do not observe a significant

difference between the elderly groups from the Fantasia and
SHHS database (P value 	 0.74; Table 2). However, we find
a significant difference between young and elderly subjects,
indicating a clear reduction in the heart rate variability with
aging.

Fractal Correlations

We next test whether the temporal organization in the heart
beat fluctuations changes in ostensibly healthy elderly com-
pared with young subjects. Earlier studies have shown that
heart beat fluctuations exhibit self-similar power-law correla-
tions over a broad range of time scales ranging from seconds to
many hours (37, 62) and that the scaling exponents associated
with these power-law correlations change significantly with
sleep and wake state (29) and with pathological conditions (53,
54), reflecting changes in the underlying mechanism of cardiac
regulation. Specifically, heart beat fluctuations of healthy sub-
jects during daily activity exhibit 1/f-like power spectrum (37,
54, 61) with a scaling exponent � � 1 (see DATA AND METHODS).
During sleep, this behavior changes to exponent � � 0.8 at
time scales �60 beats, indicating stronger anticorrelations in
the interbeat increments �R-R during sleep compared with the
wake state (29 and Fig. 3A). In contrast, for pathological
conditions such as congestive heart failure, earlier studies have
reported a value for the exponent � closer to 1.5, which is
typical for random walk behavior (Brownian motion) and
associated with loss of cardiac control (53).

Applying the DFA method, we obtain a very similar scaling
behavior for a representative healthy young and a healthy
elderly subject from the Fantasia database, both characterized
by a scaling exponent �2 � 0.8 at intermediate and large time
scales (Fig. 3, B and C). At small time scales for both
representative subjects, we observe a crossover to a higher
exponent of �1 � 1.1 (Fig. 3, B and C). Although there is
certain intersubject variability in the scaling functions F(n),
this crossover behavior remains robust with a group average
scaling exponent �1 � 1.1 at small scales and �2 � 0.75 at
large scales for the young subjects, and, respectively, �1 � 1.2
and �2 � 0.8 for the elderly subjects (see APPENDIX and Fig.
12). Our analysis indicates no significant difference in the scaling
behavior between healthy young and healthy elderly subjects

Table 2. Average values and SD of �R-R�, �R-R (SDNN), ��R-R (RMSSD), and DFA-2 scaling exponents for subjects from
the Fantasia database and the SHHS database

Fantasia Database SHHS Database

Measure Young Elderly P Value Elderly Elderly 
 5 yr P Value

�R-R� 0.9�0.14 1.06�0.17 0.11 0.92�0.08 0.92�0.1 0.92
�R-R 0.089�0.034 0.051�0.017 3.3 � 10�4 0.077�0.027 0.081�0.024 0.50
��R-R 0.061�0.031 0.027�0.012 9.9 � 10�5 0.028�0.015 0.028�0.013 0.74
�1 1.09�0.24 1.22�0.29 0.16 1.12�0.27 1.09�0.28 0.78
�2 0.76�0.08 0.78�0.12 0.47 0.88�0.12 0.97�0.12 0.01
�1

mag 0.53�0.1 0.56�0.08 0.36 0.57�0.13 0.60�0.13 0.49
�2

mag 0.64�0.11 0.68�0.11 0.45 0.70�0.12 0.72�0.13 0.58
�1

sgn 0.24�0.15 0.3�0.2 0.28 0.23�0.19 0.21�0.19 0.74
�2

sgn 0.47�0.09 0.44�0.08 0.37 0.38�0.07 0.39�0.07 0.77

Data are averages � SD. AVNN, average normal to normal heartbeat interval; SDNN, SD of normal to normal heartbeat interval; RMSSD, root mean square
SD of normal to normal heartbeat interval. For the Fantasia database, detrended fluctuation at the time scale n � F(n)� was fitted in the interval n � �6,16� for
�1 and n � �60,(N/6)� for �2. For the Sleep Heart Health Study (SHHS) database, F(n) was fitted in the interval n � �6,16� for �1 and n � �60,600� for �2. A
two-tailed Student’s t-test was performed to obtain the P values. P values that indicate significant differences between young and elderly groups are shown in
bold.
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under the resting conditions in the Fantasia study protocol (Table
2). We note that our findings for the young and elderly Fantasia
subjects (Fig. 3, B and C) are very similar to the scaling behavior
in heart beat fluctuations previously reported for healthy subjects
during sleep (29), which exhibit a crossover from �1 � 1.2 at
small time scales to �2 � 0.8 at intermediate and large time scales
(Fig. 3A). This similarity in the scaling properties of heart beat
dynamics of healthy subjects during sleep (Fig. 3A) and the
Fantasia database subjects (Fig. 3, B and C) may be attributed to
the fact that, under the Fantasia study protocol, subjects are resting
in a semirecumbent/supine posture, watching a relaxing movie,
physiological conditions that more closely resemble sleep than
daytime activity.

To confirm the validity of these findings, we further investigate
the scale-invariant correlation properties of cardiac dynamics for
healthy elderly subjects from the SHHS database, where heart rate
data were recorded during sleep, a protocol that differs from the
Fantasia study (see DATA AND METHODS). In Fig. 4, we show the
DFA scaling curves for a representative SHHS subject with a
crossover in the scaling behavior from �1 � 1.1 at small time
scales to �2 � 0.9 above 60 beats. This scaling behavior is very
similar to the one we find for both young and elderly subjects

from the Fantasia database (Fig. 3). Furthermore, comparing the
scaling behavior of the elderly subjects from the SHHS database
with the same subjects recorded five years later, we do not find a
significant difference in the correlation scaling exponents �1 and
�2 (Fig. 4 and Table 2). The results shown in Figs. 3 and 4, the
APPENDIX, and Fig. 12 indicate that the fractal correlation properties
of healthy heart beat dynamics remain stable and do not signifi-
cantly change with advanced age.

MSA

Recent studies have demonstrated that scale-invariant pro-
cesses with identical long-range power-law correlations may
be characterized by very different dynamics for the magnitude
and sign of their fluctuations (5, 32) and that the information
contained in the temporal organization of the magnitude and
the sign time series is independent from the correlation prop-
erties of the original time series (3). Specifically, for cardiac
dynamics of healthy subjects, it was shown (5) that heart beat
intervals during routine daily activity exhibit correlation prop-
erties at intermediate and large time scales characterized by
scaling exponent �2 � 1 while at the same time scales the
magnitude series of the increments in consecutive heart beat
intervals is characterized by �2

mag � 0.8. Furthermore, al-
though correlations reflect the linear properties of heart beat
dynamics, the temporal structure of the magnitude of interbeat
increments has been shown to relate to the nonlinear properties
encoded in the Fourier phases (3, 5, 64). For certain patholog-
ical conditions such as congestive heart failure, previous stud-
ies have reported loss of nonlinearity (57) associated with a
breakdown of the multifractal spectrum (25), and reduced
scaling exponent �mag for the magnitude series (3).

For the magnitude time series of the interbeat increments,
we obtain �1

mag � 0.53 at small time scales and �2
mag � 0.68

at intermediate and large time scales for a representative young
subject (Fig. 5A) and very similar results with �1

mag � 0.53 and

Fig. 4. Fluctuation function F(n) vs. time scale n (in heart beat number)
obtained from detrended fluctuation analysis (DFA)-2 for �8-h long records of
R-R heart beat intervals during sleep for representative healthy elderly subject
from the SHHS database (A) and the same elderly subject 5 yr later (B). The
very similar values for the exponents �1 and �2 indicate no breakdown of
linear fractal correlations with advanced age under healthy conditions. Note the
similarity with the scaling behavior for the young subjects, shown in Fig. 3, the
APPENDIX, and Fig. 12, which is not consistent with the hypothesis of a gradual
loss of scale-invariant complexity in the process of aging.

Fig. 3. Fluctuation function F(n) vs. time scale n (in heart beat number) obtained
using DFA-2 for 6 h-long record of R-R heart beat intervals during wake and sleep
from a representative healthy subject [MIT-BIH Normal Sinus Rhythm Database
(15a); A], as well as 2 h-long records of a representative healthy young subject (B)
and healthy elderly subject (C) from the Fantasia database. A very similar scaling
behavior is observed for the representative young (B) and elderly (C) subjects that
closely resembles the scaling behavior of the healthy subjects during sleep shown
in A [MIT-BIH Normal Sinus Rhythm Database (15a)], indicating no change in
the scale-invariant temporal correlations of heart beat intervals with advanced age
under healthy resting conditions. Scaling curves for all individuals are shown in
APPENDIX and Fig. 12.
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�2
mag � 0.72 for a representative elderly subject from the

Fantasia database (Fig. 5B). The DFA scaling functions F(n)
for all young and elderly subjects, shown in APPENDIX and Fig.
13, exhibit a consistent behavior among the subjects in each
group with a smooth crossover from a group average magni-
tude exponent �1

mag � 0.53 at small and intermediate time
scales to �2

mag � 0.64 at large scales for the young group, and
a similar crossover from a group average exponent �1

mag � 0.6
at small and intermediate time scales to �2

mag � 0.7 at large
scales for the elderly group (Table 2).

To confirm these findings, we next calculate the magnitude
scaling exponent of the interbeat increments for the elderly
subjects from the SHHS database. Again we observe a cross-
over from �1

mag � 0.52 at small scales to �2
mag � 0.7 at large

time scales shown in Fig. 5C for a representative elderly
subject, a behavior very similar to the one observed for both

young and elderly Fantasia subjects shown in Fig. 5, A and B.
Our analysis does not show a statistically significant difference
in the group average magnitude scaling exponents �1

mag (with
P value 	 0.71) and �2

mag (with P value 	 0.57) between the
elderly SHHS subjects and the elderly Fantasia subjects. More-
over, we find no significant difference in �1

mag (with P value 	
0.24) and �2

mag (with P value 	 0.16) between the elderly
SHHS subjects and the young Fantasia subjects.

For the sign of the interbeat increments time series, we again
find no significant difference in the scaling behavior between
the young and elderly subjects in the Fantasia database with
practically identical exponents of �1

sgn � 0.2 at short time
scales and �2

sgn � 0.4 at intermediate and large time scales
(Fig. 6, A and B). We observed a consistently similar behavior
for all subjects in the young and elderly group in the Fantasia
database (APPENDIX and Fig. 14), where the scaling function
F(n) exhibits a crossover from strongly anticorrelated behavior at

Fig. 6. Fluctuation function F(n) vs. time scale n (in beat number) obtained for
the sign of the interbeat increments [sign(�R-R)] using DFA-2 for a represen-
tative healthy young (A) and healthy elderly subject (B) in the Fantasia
database, and for representative healthy elderly subject from the SHHS
database (C) and the same elderly SHHS subject recorded 5 yr later (D). All
subjects exhibit a very similar scaling behavior for the sign with a crossover
from strong anticorrelations with �1

sgn � 0.2 at small time scales to weaker
anticorrelations with �2

sgn � 0.4 at large scales, indicating a similar fractal
organization of sympathetic and parasympathetic control in both young and
elderly subjects under healthy resting conditions. Scaling curves for all
individuals in the Fantasia database are shown in the APPENDIX and Fig. 14.

Fig. 5. Fluctuation function F(n) vs. time scale n (in beat number) obtained for
the magnitude of the interbeat increments ( �R-R ) using DFA-2 for a repre-
sentative healthy young (A) and healthy elderly (B) subject from the Fantasia
database, and for a representative healthy elderly subject from the SHHS
database (C) and the same subject recorded 5 yr later (D). All subjects exhibit
a very similar scaling behavior characterized by an exponent �2

mag � 0.7 at
intermediate and large time scales, very different from �mag 	 0.5 character-
istic for linear processes with no correlations in the Fourier phases (3, 5),
which indicates that the long-term nonlinear properties of heart beat dynamics
do not break down with advanced age under healthy resting conditions. This is
in contrast to the hypothesis linking the process of healthy aging with a gradual
loss of nonlinearity. Scaling curves for all individuals from the Fantasia
database are shown in the APPENDIX and Fig. 13.
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short time scales to weaker anticorrelations at larger scales,
respectively, characterized by group average sign exponents
�1

sgn � 0.24 for the young and �1
sgn � 0.3 for the elderly

subjects at small scales and �2
sgn � 0.47 for the young and

�2
sgn � 0.43 for the elderly subjects at large scales. These

results indicate no significant difference in the temporal orga-
nization of the sign series between the young and the elderly
subjects in the Fantasia database (Table 2).

Repeating our sign scaling analysis for the SHHS database,
we observe a crossover from strongly anticorrelated behavior
with an exponent �1

sgn � 0.2 at small time scales to weaker
anticorrelations with �2

sgn � 0.4 at intermediate and large time
scales, as shown in Fig. 6, C and D. This crossover behavior is
very similar to the one we find for both young and elderly
Fantasia subjects (Fig. 6, A and B, APPENDIX, and Fig. 14).
Moreover, we do not find a significant difference in the scaling
of the sign series for the elderly SHHS subjects and the same
subjects 5 yr later (Fig. 6, C and D and Table 2).

FDA

Finally, we employ the FDA method (see DATA AND METH-
ODS) to estimate the fractal dimension D(k) of a time series (14,
19, 47). It has been demonstrated that the fractal dimension is
a measure that represents the nonlinear properties in the output
of a dynamical system so that two signals with identical
scale-invariant correlations may be quantified by different
fractal dimension depending on the degree of nonlinearity
encoded in the Fourier phases (20, 64). Our analysis shows no
significant difference in the group average of the nonlinear
fractal dimension measure D(k) between the young and the
elderly subjects in the Fantasia database for the whole range of
time scales except for a very short time interval of six to eight
heart beats (Fig. 7A), which are time scales typical for sleep
apnea (see Fig. 8). At smaller and larger time scales, the
average fractal dimension D(k) converges for both groups (Fig.
7A). Furthermore, we do not observe a statistically significant
difference between the elderly subjects from the SHHS data-
base and the same subjects recorded 5 yr later (Fig. 7B). These
findings do not support the hypothesis that nonlinearity is
reduced in healthy elderly subjects.

Summary of the Results

In agreement with previous studies (11, 31, 56, 65), we
observe a certain degree of reduction in heart rate variability,
as measured by �R-R (SDNN) and ��R-R (RMSSD), when
comparing young with elderly subjects (Table 2). In contrast to
previous studies (31, 41, 56), however, we do not find a
significant difference in the scaling exponents �1 and �2

characterizing the fractal scale-invariant temporal organization
of heart beat fluctuations between young and elderly subjects
(Table 2). For the scaling properties of the magnitude and the
sign of heart beat fluctuations, which have been shown to carry
additional independent information about the nonlinear and
linear properties of a time series (3, 5, 32), we find that these
measures also remain unchanged when comparing young and
healthy elderly subjects (Table 2). Finally, for the fractal
dimension D(k) of the heart beat interval time series, an
independent nonlinear measure, again contrary to previous
reports (18), we do not find significant differences between
young and elderly subjects. Furthermore, comparing longitu-

dinal data from a group of elderly subjects who were also
recorded 5 yr later, we find that the heart rate variability is not
further reduced (Table 2) and that the scaling exponents �1 and
�2 of the heart beat fluctuations, as well as the nonlinear
features as measured by the magnitude exponent �mag and the
fractal dimension D(k), remain stable.

These findings indicate that, in the process of aging, the
alterations in the underlying mechanisms of cardiac autonomic
regulation are not likely to involve breakdown of coupling
between feedback loops at different time scales or dominance
of a particular feedback loop at a given time scale, as often
observed with pathological perturbations (21, 26, 30, 38, 42,
44). Rather, our findings suggest a reduced reflexiveness of the
neuroautonomic regulation with aging while the nonlinear
feedback interactions across time scales between elements of
the cardiac regulatory system remain unchanged.

INTERPRETATION AND MODELING

Our findings indicate that scale-invariant correlation and
nonlinear properties do not significantly change in healthy
elderly subjects compared with young subjects. This is in
contrast to some earlier studies, based on the same Fantasia
database (or on a subset of it), which have reported loss of
fractal organization in heart beat fluctuations, a behavior re-
sembling Brownian motion (random walk process) with � 	
1.5 at small scales and white noise with � 	 0.5 over large
scales (31, 56), as well as a significant loss of nonlinearity (18)
with healthy aging. A possible reason for these different
findings may be the presence of artifacts in the data such as

Fig. 7. Group average nonlinear fractal dimension D(k) vs. time scale log2 k,
where k is measured in beat numbers for young and elderly healthy Fantasia
subjects (A) and healthy elderly SHHS subjects and the same subjects 5 yr later
(B). There is no significant difference in the group averages indicated by the
overlapping SDs except for the interval of scales k � [3,6] marked by * in A
(P value 	 1.94 � 10�4 and 6 � 10�3 correspondingly). Note the very similar
profile of D(k) for all groups, indicating no apparent loss of nonlinearity with
aging, in agreement with our findings for the long-term nonlinear properties
represented by the magnitude exponent �2

mag shown in Fig. 5.
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segments of corrupted recordings or certain periodic patterns
(Fig. 8). These periodic patterns strongly resemble episodes of
sleep apnea, as shown in Fig. 9A. Indeed, sleep apnea may be
present in the elderly subjects from the Fantasia database, since
they have not been specifically screened for sleep apnea.
Furthermore, ECG recordings were taken when subjects were
watching a calming movie for 2 h in a semirecumbent or supine
posture during which subjects may have fallen asleep for
periods of time, when apnea episodes are likely to occur.

The periodic patterns we observe in wide segments of the
interbeat interval recordings shown in Figs. 8 and 9A have a
period of �30 to 60 s, typical for apnea episodes (Fig. 9B and
Refs. 26, 30, and 58). Similar apnea-like patterns are also
present in the breathing records of some Fantasia subjects
(Figs. 8 and 9A). These periodic patterns have a very strong
effect on the scaling analysis, as shown in earlier studies (22),
leading to a pronounced crossover at the time scale correspond-
ing to the period of the patterns. This crossover separates a
regime of apparent Brownian-motion-type behavior with � �
1.5 at smaller scales from a second regime of apparent white
noise behavior � � 0.5 at larger scales (Figs. 10F and 11), a
behavior that in earlier studies (31, 56) has been spuriously
attributed to changes in the cardiac neuroautonomic control
due to aging.

To model the effect that periodic patterns of sleep apnea
have on the scaling properties of heart beat intervals, we first
generate a fractal correlated signal X� using the Makse et al.
(45) algorithm. To account for the statistical properties ob-
served in heart beat intervals, we rescale the signal to have the
mean value �X�(i)� 	 1, standard deviation �X� 	 0.05, and
correlation scaling exponent �X� 	 0.8 (Fig. 10A), which
match the group mean �R-R�, standard deviation ��R-R�
(Table 2), and scaling exponent value ��2� (APPENDIX and

Fig. 12, C and D) of the elderly subjects in the Fantasia
database. To model the periodic influence of sleep apnea on the
heart beat intervals, we generate a sinusoidal signal, Xs(i) 	 A
sin(2�i/T), with a period T 	 50 (similar to the average period
of 50 heart beats in apnea patterns) and amplitude A 	 0.1 (as
observed in apnea patterns; Fig. 10B), and we superpose the
sinusoidal signal Xs with the fractal correlated signal X�(i) to
obtain X�s(i) 	 X�(i) 
 Xs(i) (Fig. 10C). We note that X�s(i)
strongly resembles the data shown in Figs. 8 and 9.

Applying the DFA analysis to the fractal signal X� we obtain
the scaling function F�(n) with a slope of 0.8 across all scales,
in agreement with the scaling exponent � 	 0.8 we have found
for healthy subjects (Fig. 10D). For the sinusoidal signal Xs the
scaling function Fs(n) exhibits a crossover at scale nx � T,
corresponding to the period of Xs. For scales nx � T, the
fluctuation function Fs(n) exhibits an apparent scaling, Fs(n) �
(A/T)n�s, with an exponent �s 	 2. For scales nx � T, because
of the periodic property of the sinusoidal signal Xs, the fluc-
tuation function Fs(n) is constant and independent of the scale
n, i.e., Fs(n) � ATn�s where �s 	 0. Thus changing the
amplitude A leads to a vertical shift in Fs(n) (Fig. 10E and
Ref. 22).

Applying the DFA analysis to our model signal X�s, we
observe that F�s(n) exhibits a very pronounced kink [not
present in F�(n)] with a crossover at nx � T because of the
sinusoidal trend (Fig. 10F). The behavior of F�s(n) around the
kink is very similar to Fs(n) around nx � T. At small scales
nx � T and at large scales nx � T the fluctuation function
F�s(n) converges to the scaling behavior expected for F�(n).
Testing our model for signals X� with different values for �,
we find that the position of the crossover nx for F�s(n) does not
depend on �. Thus this type of crossover behavior in the
scaling for different subjects depends only on the period T of
the periodic patterns embedded in the heart beat signals.

We find that our model in Fig. 10F reproduces well the
crossover behavior in F(n) observed for the sleep apnea subject
[Apnea-ECG Database (15a) shown in Fig. 9B]. Indeed, a very
similar kink in F(n) is observed at scale n � 50 beats for this

Fig. 8. Recordings of heart beat intervals from one young and four elderly
subjects in the Fantasia database excluded from our analysis. The first four
recordings contain many segments with well-pronounced periodic patterns, the
period and amplitude of which are typical for sleep apnea (see Fig. 9). The last
recording contains segments of corrupted data. These artifacts strongly influ-
ence scaling and fractal and nonlinear measures (see Figs. 10 and 11) and can
lead to spurious differences between young and elderly subjects.

Fig. 9. Segments of interbeat R-R interval time series for (A) an elderly subject
from the Fantasia database excluded from this study (shown in Fig. 8, top) and
(B) a subject diagnosed with sleep apnea from the apnea-ECG database (see
Ref. 15a). Both subjects show very similar and pronounced periodic patterns
with a period of about 50 beats, matching the periodic patterns in the breathing
record in A. These patterns strongly affect the scaling analysis as demonstrated
in Figs. 10 and 11.
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Fig. 10. Modeling crossover behavior in the scaling of heart beat dynamics associated with periodic patterns. A: artificially generated fractal signal X� with
long-range power-law correlations (corr), average value, and SDs as observed in healthy heart beat data. B: sinusoidal (sin) signal Xs with period and amplitude
matching the period T and amplitude A of typical sleep apnea patterns embedded in heart beat interval time series as shown in Fig. 9. C: superposition of the
signals X� in A and Xs in B. Note the apparent similarity between the signal X�s and the time series shown in Fig. 9. D: fluctuation function F�(n) obtained using
DFA-1 for the signal X� in A. E: fluctuation function Fs(n) obtained using DFA-1 for the signal Xs in B. The position of the crossover nx corresponds to the period
T in Xs. Changing the amplitude A leads to a vertical shift of Fs(n). F: fluctuation function F�s(n) obtained using DFA-1 for the signal X�s in C. Note the
appearance of a kink with a crossover at nx � T as observed in E.
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apnea subject, as shown in Fig. 11. Moreover, we find that this
behavior is also closely followed (as shown in Fig. 11) by the
Fantasia subject in Fig. 9A. Adding the same sinusoidal trend
to a real heart beat signal from a healthy subject [MIT-BIH
Normal Sinus Rhythm Database (15a)] also leads to a very
similar kink in F(n) (Fig. 11).

As we demonstrate in Fig. 11, the excluded Fantasia subject
shown in Fig. 9A exhibits a scaling curve very similar to the
curve obtained from a recording during sleep from a subject
diagnosed with sleep apnea [Apnea-ECG Database (15a)].
Furthermore, our model reproduces well the crossover in the
scaling behavior of F(n) and demonstrates that this crossover is
because of the superposition of healthy heart rate dynamics and
a sinusoidal trend with approximately the same period and
amplitude as the periodic apnea patterns shown in Fig. 9. Our
model reproduces also the scaling curve F(n) obtained for the
elderly Fantasia subject excluded from this study and shown in
Fig. 9A, suggesting that artifacts may have been the reason why
earlier studies (18, 31, 56) have reported scaling differences in
heart beat dynamics between young and elderly subjects.

Our modeling results confirm that the presence of pro-
nounced crossovers for some of the elderly subjects in the
Fantasia database are because of periodic patterns embedded in
the heart rate that strongly resemble sleep apnea episodes and,
thus, cannot be attributed to changes in the underlying mech-
anism of cardiac neuroautonomic regulation associated with
healthy aging. Because apnea is more prominent in elderly
subjects, our modeling results (Figs. 10 and 11) explain why
earlier studies using the same Fantasia database have reported
higher values for the scaling exponent �1 at small scales n and
lower values for �2 at large scales n for the elderly subjects
compared with the group of young subjects (18, 31), claiming
changes in cardiac regulation with healthy aging.

DISCUSSION

Our investigations demonstrate the presence of robust cor-
relation, fractal, and nonlinear properties in cardiac dynamics
of healthy elderly subjects that remain surprisingly stable
compared with healthy young subjects. Specifically, we find
that key dynamic characteristics such as the correlation scaling
exponent of heart beat fluctuations, the scaling exponent of the
magnitude and sign of interbeat increments, and the nonlinear
fractal dimension measure do not significantly change with
advanced age. Because the scaling exponents � and the fractal
dimension measure D quantify a robust scale-invariant fractal
and nonlinear structure in heart beat fluctuations (25, 29, 30,
53), and have been shown to reflect underlying mechanisms of
cardiac control (1, 16, 27, 28), our findings indicate that
important aspects of heart beat regulation do not break down
with healthy aging. Moreover, we observe no significant
change in these scaling and nonlinear measures when compar-
ing healthy elderly subjects with the same subjects recorded
5 yr later.

These findings do not support the hypothesis that healthy
aging may be associated with such a change in the mechanism
of cardiac neuroautonomic control that would lead to a loss of
all aspects of physiological complexity. In contrast, we find
that fundamental scale-invariant and nonlinear properties of
heart beat dynamics remain unchanged. Furthermore, our find-
ings do not support the hypothesis of a gradual change of
cardiac dynamics under healthy conditions with advanced age,
since key properties of these dynamics, including heart rate
variability (Table 2), remain stable in healthy elderly subjects
with advancing age. Indeed, in agreement with previous studies
(11, 31, 56, 65), we find a significant reduction in heart rate
variability as measured by �R-R (SDNN) and ��R-R (RMSSD)
(although not in the average heart rate) in healthy elderly
subjects compared with healthy young subjects (Table 2). The
observed reduction in heart rate variability is also in agreement
with decrease of the commonly used approximate entropy
measure with aging, as reported earlier (11) and often inter-
preted as loss of complexity. However, comparing elderly
subjects with the same subjects years later, we do not find a
further reduction in interbeat variability. Moreover, we do not
observe a loss in the scale-invariant fractal and nonlinear
features in healthy elderly compared with healthy young sub-
jects, indicating that the process of aging, even in elderly
healthy subjects, may not result in a gradual change of the
mechanism of control. Our findings support the hypothesis that
1) only certain aspects of cardiac regulation may change with
advanced age. These aspects are related to decreased respon-
siveness to external and internal stimuli, leading to reduced
heart rate variability and 2) other fundamental features of the
neuroautonomic cardiac control may remain stable and un-
changed with healthy aging. These features are related to the
network of nonlinear feedback loops responsible for the neu-
roautonomic regulation at different time scales, leading to
scale-invariant cascades in heart beat fluctuations (27, 28, 39).

This new emerging picture of healthy aging is fundamentally
different from the changes in neural regulation of cardiac
dynamics under pathological conditions (21, 24, 42, 43) and
also differs from previous studies reporting breakdown of the
scale-invariant and nonlinear features of heart beat dynamics in
elderly (17, 18, 31, 41). Indeed, suppression of parasympa-

Fig. 11. Scaling functions F(n) vs. time scale n obtained for the heart beat
intervals using DFA-2 for a healthy subject taken from the MIT-BIH Normal
Sinus Rhythm Database (15a), a Fantasia database subject we excluded from
this study (15a) (shown in Fig. 9A), a subject with diagnosed sleep apnea
(shown in Fig. 9B), and a healthy subject with a superposed sinusoidal signal.
A period of T 	 50 beats and an amplitude of A 	 0.1 s were chosen for the
sinusoidal signal to model the effect of periodic patterns resulting from sleep
apnea on the scaling function F(n). This effect leads to a change in the scaling
exponent to � � 1.5 (left of the crossover at T) and to � � 0.5 (right of the
crossover), which may be the reason why earlier studies have reported loss of
fractal organization in heart beat fluctuations with healthy aging (31, 56).
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thetic tone and dominance of sympathetic inputs, typical for
subjects with congestive heart failure, lead to changes in
cardiac dynamics associated with higher heart rate (62, 71),
lower heart rate variability (69), relative loss of the scale-
invariant long-range correlations in the heart beat fluctuations
with scaling exponent � between 1.25 and 1.4 (closer to � 	
1.5 corresponding to Brownian motion, i.e., random walk; see
Ref. 53), reduced responsiveness (7), and breakdown of non-
linearity and multifractality (1, 25, 27, 57). In contrast to such
pathological perturbations, healthy aging appears to be accom-
panied only by a reduction in heart rate variability as measured
by �R-R and ��R-R, whereas the heart rate and the scaling and
nonlinear properties remain on average unchanged. This im-
portant dissociation between heart rate variability on one side
and the scale-invariant and nonlinear temporal organization of
heart beat fluctuations on the other side may be specific for the
process of aging and suggests that the alterations in the cardiac
control mechanism with advanced age differ conceptually from
the mechanistic changes in the autonomic regulation associated
with pathological conditions. More specifically, the reduced
heart rate variability with advanced age suggests a reduced
responsiveness of cardiac control to external and internal
stimuli and thus a reduced strength of feedback interactions.
However, the cascade of nonlinear feedback loops (27, 28, 39)
controlling the dynamics across different time scales may
remain intact in healthy elderly subjects without breaking
down at a particular scale or across a range of scales, since the
scale-invariant fractal and nonlinear properties appear to re-
main stable with advanced age (Table 2). This is not the case
with pathological conditions such as congestive heart failure
where the self-organization of neural feedback interactions
indeed breaks down across time scales, shifting the dynamics
closer to a process that is more random (loss of long-range
power-law correlations) and closer to a linear process (loss of
nonlinearity and multifractality).

The value of the correlation exponent �2 � 0.8 we observe
at intermediate and large time scales for both young and elderly
Fantasia subjects (Figs. 3 and 4) is consistent with earlier
reports of a very similar value of �2 � 0.85 for healthy subjects
during sleep, compared with � � 1 for the same subjects
during wake and daily activity (29). This is also in agreement
with studies of heart beat dynamics of healthy subjects during
rest and exercise, with � � 0.8 for rest and � � 1.1 during
exercise (13, 36, 48). Indeed, the Fantasia subjects were re-
corded under conditions of rest (see DATA AND METHODS Section
I) (15a). Our findings of � � 0.8 consistently for both healthy
young and healthy elderly subjects from the Fantasia database
are further supported by our analysis of data from the longi-
tudinal SHHS study, where the same elderly subjects were
recorded during sleep several year later. These observations of
� � 1 are not because of artifacts in the heart beat time series
related to sleep apnea, since full polysomnographic data were
recorded for the SHHS subjects, indicating the apnea episodes,
and we have excluded the apnea segments in the data from our
analysis. Moreover, our preliminary results (a focus of a
subsequent study) indicate no significant differences between
young and elderly subjects even when we account for rapid eye
movement (REM) and non-REM (NREM) sleep stages. Be-
cause there is no statistically significant difference in the value
of the scaling exponent � between the young and elderly
subjects from both databases, the � value �1 is not likely to be

Fig. 12. Scaling curves F(n) vs. time scale n (in beat numbers) obtained for the
R-R heart beat intervals using DFA-2 for 19 young healthy subjects (A and B)
and 16 elderly healthy subjects (C and D) in the Fantasia database. Despite
certain intersubject variability, there is a very common scaling behavior with
a crossover from a higher average slope �1 at small time scales to a lower
average slope �2 at large scales as represented by the solid lines and consistent
with Figs. 3 and 4. Individual curves are vertically shifted to aid visual
comparison. Group average statistics are presented in Table 2. Vertical dashed
lines indicate the range of fit.
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related to a mechanistic breakdown of cardiac control with
advanced age as previously suggested (31, 56). Rather, this
decrease in � is most likely to be related to the normal regime
of cardiac regulation during rest and sleep when parasympa-

Fig. 13. Scaling curves F(n) vs. time scale n (in beat numbers) obtained for the
magnitude of the interbeat increments �R-R using DFA-2 for 19 healthy
young subjects (A and B) and 16 healthy elderly subjects (C and D) in the
Fantasia database. Despite certain intersubject variability, there is a common
scaling behavior characterized by a group average exponent �2 � 0.7 at large
scales for all groups as represented by the solid lines, indicating presence of
long-term nonlinear properties encoded in the Fourier phases of the heart beat
time series similar to those shown in Fig. 5. Curves are vertically shifted for
clarity. Vertical dashed lines indicate the range of fit.

Fig. 14. Scaling curves F(n) vs. time scale n (in beat numbers) obtained for the
sign time series of the interbeat increments sign(�R-R) using DFA-2 for 19
healthy young subjects (A and B) and 16 healthy elderly subjects (C and D) in the
Fantasia database. All subjects exhibit a crossover from strongly (at small scales)
to weakly (at large scales) anticorrelated behavior with no significant statistical
difference between the young and elderly groups (Table 2). Scaling curves are
vertically shifted for clarity. Vertical dashed lines indicate the range of fit.
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thetic tone dominates during NREM sleep stages, leading to
stronger anticorrelations with � � 0.8 in the heart beat fluc-
tuations (8, 28, 29, 33, 36).

We find very similar results for the scaling exponent �mag

for the magnitude of the interbeat increments between young
and elderly subjects in the Fantasia database (Table 2), as well
as between the young Fantasia subjects and the elderly subjects
from the SHHS database (see P values reported in RESULTS

Section II C). These findings do not support the hypotheses that
the nonlinear properties, as measured by the magnitude scaling
exponent �mag and encoded in the Fourier phases (64), are lost
with advanced age in healthy subjects under resting conditions.
We note that our results for the magnitude exponents for the
young and elderly subjects from both databases are in agree-
ment with previous studies reporting nonlinear magnitude
correlations in healthy heart beat dynamics (5) and more
specifically with the magnitude exponent values found in the
heart rate of healthy subjects during sleep (32, 33).

Furthermore, because the dynamics of the sign (directional-
ity) of the interbeat increments is directly related to inputs of
the sympathetic and parasympathetic branches of the auto-
nomic nervous system modulating the heart rate in opposite
directions, our findings of similar scaling for the sign series for
both young and elderly healthy subjects (Table 2) indicate that
fundamental features of the cardiac control mechanism remain
unchanged with advanced age. We also note that our results for
the sign scaling exponent �sgn for the young and elderly
subjects from both databases are in agreement with the values
reported in previous studies for healthy subjects during rest
(36) and sleep (32).

Although our results do not show a significant difference in
the scaling and nonlinear properties of heart beat dynamics
between healthy young and healthy elderly subjects during rest
and sleep, we note that, under conditions of high levels of
physical activity and stress, which are associated with a dif-
ferent regime of the neuroautonomic control, these properties
may differ between young and elderly subjects.

In summary, the observations reported here do not support
the hypothesis of a continuous gradual loss of the scaling and
nonlinear properties of cardiac dynamics with advanced age
under healthy conditions, since we do not find a statistically
significant change in these properties between the young and
elderly subjects from the Fantasia and the SHHS databases as
well as for the elderly subjects from the SHHS database and the
same subjects recorded five years later. Although cardiac
dynamics in healthy elderly subjects is characterized by mark-
edly reduced variability compared with healthy young subjects,
the stability we observe in key fractal and nonlinear character-
istics with advanced age does not support the mechanistic view
of a breakdown of specific feedback loops at given time scales
in the neuroautonomic regulation (which would lead to appear-
ance of dominant time scales in the dynamics) or of a break-
down of the feedback interactions in cardiac control across
multiple time scales (which would lead to random-like behav-
ior in the dynamics). Indeed, both dominant time scales and
close-to-random behavior in cardiac dynamics have been ob-
served under various pathological conditions. In contrast, car-
diac dynamics under healthy aging appears not to belong to this
class of processes. Instead, our results indicate that the inherent
structure and temporal organization in the cascades of nonlin-
ear feedback loops underlying the cardiac neuroautonomic

regulation remain intact in healthy elderly subjects, thus pre-
serving the fractal and nonlinear features in heart beat dynam-
ics across all time scales. The coupling strength of these
neuronal feedback interactions, however, is likely to diminish
with advanced age, leading to the observed reduction in heart
rate variability and dampened responsiveness in elderly com-
pared to young healthy subjects.

APPENDIX

Results of DFA and MSA Analyses for the Heartbeat Interval
Recordings for All Young and Elderly Subjects
in the Fantasia Database

All subjects show a consistent behavior with: 1) a smooth crossover
from �1 � 1.1 at small time scales to �2 � 0.8 at large scales for the
heart beat intervals R-R for both the young and the elderly group (Fig.
12); 2) a smooth crossover from � 1

mag � 0.6 at small time scales to
�2

mag � 0.7 at large scales for the magnitude of the interbeat
increments �R-R for both the young and the elderly group (Fig. 13);
and 3) a crossover from �1

sgn � 0.3 at small time scales to �2
sgn � 0.45

at large scales for the sign of the interbeat increments sign(�R-R) for
both the young and the elderly group (Fig. 14).

The results show that these fractal correlation and nonlinear prop-
erties of heartbeat dynamics do not break down with healthy aging.
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