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Scale-Invariant Aspects
of Cardiac Dynamics

T
he normal electrical activity of the heart is usually
described as a regular sinus rhythm. However, cardiac
interbeat intervals fluctuate in an irregular manner in
healthy subjects—even at rest or during sleep. In recent

years, the intriguing statistical properties of interbeat interval
sequences have attracted the attention of researchers from dif-
ferent fields. Analysis of heartbeat fluctuations focused initially
on short-time oscillations associated with breathing, blood pres-
sure, and neuroautonomic control [1], [2]. Studies of longer
heartbeat records revealed 1/f-like behavior [3], [4]. Recent
analyses of very long time series (up to 24 h) show that under
healthy conditions interbeat interval increments exhibit power-
law anticorrelations [5], [6], follow a universal scaling form in
their distributions [7], and exhibit turbulence-like dynamics
characterized by a broad multifractal spectrum [8]. These scal-
ing features change with disease and advanced age [9]–[12].

Sleep-wake cycles and the endogenous circadian rhythms are
associated with periodic changes in key physiological processes
[13]–[15]. Here, we ask the question if there are characteristic
differences in the behavior between sleep and wake cardiac
dynamics across multiple time scales. We hypothesize that, in
addition to the known periodic rhythms with a characteristic
time scale, the endogenous mechanisms of sleep and circadian
regulation may influence cardiac dynamics over a broad range
of time scales, and thus could lead to systematic changes in the
scaling properties of the heartbeat fluctuations. Elucidating the
nature of these interactions could lead to a better understanding
of the neuroautonomic mechanisms of cardiac regulation.

Results

Sleep-Wake Differences in Heart Rate Distributions
Typically, the differences in the cardiac dynamics during
sleep and wake phases are reflected in the average and
standard deviation of the heartbeat intervals (Figure 1) [15].

To analyze the statistical properties of human cardiac activ-
ity we introduced the cumulative variation amplitude analysis
(CVAA), designed to quantify probability distributions of
physiologic fluctuations embedded in nonstationary signals
[7]. This method comprises sequential application of a set of

algorithms based on wavelet and Hilbert transform analyses.
The first step is the wavelet transform [16], which extracts the
cumulative variations in the heartbeat intervals over a spacific
wavelet (time) scale by simultaneously removing polynomial
trends associated with the nonstationarity in the data. The sec-
ond step of the CVAA method is to extract the amplitudes of
the variations in the beat-to-beat signal by means of an ana-
lytic signal approach (Hilbert transform) [17], which provides
a measure for the duration of segments with different ampli-
tudes of heartbeat variations. The CVAA method for nonsta-
tionary time series analysis has been consequently applied to
different physiological systems [18]–[21].

We studied the distribution of the amplitudes of the beat-to-beat
variations for a group of healthy subjects (N ¼ 18: five males and
13 females; age: 20–50, mean: 34 years). We begin by considering
night phase records (sleep between midnight—6:00 a.m.). Inspec-
tion of the distribution functions of the amplitudes of the cumula-
tive variations reveals marked differences between individuals.
To test the hypothesis that there is a possibly universal structure to
these heterogeneous time series, we rescale the distributions and
find for all healthy subjects that the data conform to a single-
scaled plot [7]. Further, we find the rescaled data are well fit with
a homogeneous Gamma distribution (Figure 2), defines with a sin-
gle parameter for all healthy subjects, and that the form of the
probability distribution of the cumulative heartbeat variations is
preserved when changing the time scale of the analysis over a very
broad range of time scales from seconds to hours [7]. This stability
of the from of the probability distribution at various time scales
has been confirmed by follow-up studies [23]. Such robust scaling
behavior is reminiscent of a wide class of well-studied physical
systems with universal scaling properties [24], [25]. The collapse
of the individual distributions for all healthy subjects after rescal-
ing their individual parameter is indicative of a universal structure,
in the sense that there is a closed mathematical scaling form
describing in a unified quantitative way the cardiac dynamics of
healthy subjects over a broad range of time scales [26].

We next analyzed heart rate dynamics for healthy subjects
during the daytime (wake state between noon—6 p.m.). The
apparently universal behavior we find holds not only for the
night phase but for the day phase as well. However, semilog
plots of the averaged distributions show a slower decay in the tail
for the sleep-state, whereas the wake-state distribution follows
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the exponential form over practically the entire range [22], [26].
Counterintuitively, the slower decaying tail of the distribution of
heartbeat fluctuations for the night phase indicates higher proba-
bility of larger variations in the healthy heart dynamics during
sleep hours in comparison with the daytime dynamics during
wake state (Figure 2). Modeling approaches to heart rate dynam-
ics based on stochastic feedback mechanisms suggest that the
marked change in the distribution of the cumulative heartbeat
variations we observe during transition from wake to sleep state
may be due to the relative decrease of the sympathetic tone in
relation to the parasympathetic inputs during sleep [27].

Sleep-Wake Differences in the Correlations
of Heartbeat Fluctuations
As we observed sleep-wake differences in the form of the
probability distributions of the amplitudes of the fluctuations
in the heartbeat intervals (Figure 2), we next asked the ques-
tion if there are characteristic differences in the temporal cor-
relations of cardiac dynamics between sleep and wake state.
We applied the detrended fluctuation analysis (DFA) method
[28]. The advantage of the DFA method over conventional
methods, such as power spectrum analysis, is that it avoids the
spurious detection of apparent long-range correlations that are
an artifact of nonstationarity related to linear and higher-order
polynomial trends in the data [29]–[32].

We analyzed 30 datasets from 18 healthy subjects, 12
patients with congestive heart failure and six cosmonauts dur-
ing long-term orbital flight. We analyzed the nocturnal and
diurnal fractions of the dataset of each subject, which corre-
spond to the 6 h from midnight to 6 a.m. and noon to 6 p.m.

We find that at scales above � 1 min the data during wake
hours display long-range power-law correlations over two
decades, with average exponents aW � 1:05 for the healthy
group and aW � 1:2 for the heart failure patients [33]. For the
sleep data, we find a systematic crossover at scale n � 60
beats followed by a scaling regime extending over two deca-
des characterized by a smaller exponent: aS � 0:85 for the
healthy and aS � 0:95 for the heart failure group [33]. We find
that for all individuals studied the heartbeat dynamics during

sleep are characterized by a smaller exponent (Figure 3), sug-
gesting stronger anticorrelations in heartbeat fluctuations dur-
ing sleep compared with wake state.

The findings of stronger anticorrelations [33], as well as higher
probability for larger heartbeat fluctuations during sleep [7],
[22], [26], suggest that the observed dynamical characteristics in
the heartbeat fluctuations during sleep and wake phases are
related to intrinsic mechanisms of neuroautonomic control, and
support a reassessment of the sleep as a surprisingly active
dynamical state. Surprisingly, we note that for the regime of large
time scales (n > 60 beats) the average sleep-wake scaling differ-
ence (aW � aS � 0:2 for both healthy and heart failure groups)
is comparable with the scaling difference between health and dis-
ease. We also note that the scaling exponents for the heart failure
group during sleep are close to the exponents observed for the
healthy group during wake [33]. Since heart failure occurs when
the cardiac output is not adequate to meet the metabolic demands
of the body, one would anticipate that the manifestations of heart
failure would be most severe during physical stress when meta-
bolic demands are greatest, and least severe when metabolic
demands are minimal, i.e., during rest or sleep. The scaling
results we obtain are consistent with these physiological consid-
erations: the heart failure subjects should be closer to normal dur-
ing minimal activity. Of related interest, recent studies indicate
that sudden death in individuals with underlying heart disease is
most likely to occur in the hours just after awakening [34], [35].
For all cosmonauts during orbital flight, the values of the scaling
exponent a during wake and sleep are consistent with those found
for the healthy terrestrial group (Figure 3).

The sleep-wake changes in the scaling characteristics we
observe possibly indicate different regimes of intrinsic neuroauto-
nomic regulation of cardiac dynamics, which may switch on and
off in accordance with circadian rhythms. These findings raise
the intriguing possibility that the transition between the sleep and
wake phases is a period of potentially increased neuroautonomic
instability because it requires a transition from strongly to weakly
anticorrelated regulation of the heart, i.e., a phase transition from
one fractal state of self-organization over a range of time scales to
another. This hypothesis triggered further investigations on the
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Fig. 1. Consecutive heartbeat intervals versus beat number for six
hours recorded from the same healthy subject during (a) wake
period: 12 p.m. to 6 p.m. and (b) sleep period: 12 a.m. to 6 a.m.
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Fig. 2. Plots of the sleep- and wake-phase distributions of
heartbeat variations obtained using the CVAA method [7],
[26]. Data are averaged over a subset of 18 healthy subjects
after rescaling the individual distributions. Adapted from [22].
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potential influence of the circadian rhythms on cardiac vulner-
ability, as outlined in ‘‘Temporal Correlations in Heartbeat
Dynamics Change with Circadiar Phase.’’ These transitions in
the scale-invariant temporal organization of the heartbeat fluctua-
tions between sleep and wake state have been futher investigated
and confirmed by recent studies [36]. We also note that similart
transitions have been observed in the correlation scaling proper-
ties of heartbeat dynamics during rest and exercise [37], [38].

Temporal Correlations in Heartbeat Fluctuations
Change with Sleep Stages
Healthy sleep consists of cycles of approximately one to two
hours duration. Each cycle is characterized by a sequence of
sleep stages usually starting with light sleep, followed by deep
sleep, and rapid eye movement (REM) sleep [39]. While the
specific functions of the different sleep stages are not yet well
understood, many believe that deep sleep is essential for physi-
cal rest, while REM sleep is important for memory consolidation
[39]. It is known that changes in the physiological processes are
associated with circadian rhythms (wake or sleep state) and with
different sleep stages. Thus, we next ask how cardiac dynamics
of healthy subjects change during different sleep stages.

A recent study has confirmed our finding of lower value for
the scaling exponent during sleep compared with wake and
has further shown that different stages of sleep (e.g., light

sleep, deep sleep, REM stages) could be associated with dif-
ferent temporal correlations in heartbeat fluctuations [40],
suggesting a change in the mechanism of cardiac regulation in
the process of sleep-stage transitions.

We employed a recently proposed approach of magnitude
and sign analysis [41], [42] to further investigate how the linear
and nonlinear properties of heartbeat dynamics change during
different stages of sleep. We focus on the correlations of the
sign and the magnitude of the heartbeat increments obtained
from recordings of interbeat intervals from healthy subjects dur-
ing sleep. We apply the DFA method [28] on both the sign and
the magnitude time series. We find that the sign series exhibits
anticorrelated behavior at short time scales, which is character-
ized by a correlation exponent asign, with smallest value for
deep sleep, larger value for light sleep, and largest value for
REM sleep (Figure 4). The magnitude series, on the other hand,
exhibits uncorrelated behavior for deep sleep with amag � 1:5,
while long-range correlations are observed for light and REM
sleep, with a larger exponent for REM sleep (Figure 4). The
observed increase in the values of both the sign and magnitude
correlation exponents from deep through light to REM sleep is
systematic and significant [43]. We also observe that the values
of the sign and magnitude exponents for REM sleep are very
close to the values of these exponents for the wake state.

Our studies suggest that long-range correlated behavior for
the magnitude series obtained from a long-range anticorre-
lated increment series relates to the nonlinear properties of the
signal, while the sign series reflects the linear properties [41],

Changes in the physiological processes are

associated with circadian rhythms and with

different sleep stages.
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Fig. 3. Log-log plots of the DFA fluctuation function F(n) versus
the time scale n (number of beats) for 6 h wake records
(open circles) and sleep records (filled triangles) of (a) one
typical healthy subject; (b) one cosmonaut during orbital
flight. The slope indicates the scaling exponent a. Note the
systematic lower exponent for the sleep phase (filled trian-
gles), indicating stronger anticorrelations. Adapted from [32].
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Fig. 4. The average values of the exponents amag for the
integrated magnitude series and asign for the integrated sign
series for the different phases (wake state, REM sleep, light
sleep, and deep sleep). For each of the 24 records from 12
healthy subjects the corresponding second order DFA fluc-
tuation functions F(n) have been fit in the range of
8 � n � 13 and 11 � n � 150 heartbeats for asign and amag,
respectively, where the most significant differences between
the sleep stages occur. Adapted from [42].
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[42]. Thus, our finding of positive power-law correlations for
the magnitude of the heartbeat increments during REM sleep,
and of loss of these correlations during deep sleep (Figure 4),
indicates a different degree of nonlinearity in cardiac dynam-
ics during different sleep stages. A stochastic model has been
subsequently developed to account for the complex changes in
the scaling and nonlinear features of heartbeat dynamics with
sleep and wake state and across sleep stage transitions [44].

Temporal Correlations in Heartbeat Dynamics
Change with Circadian Phase
Epidemiological studies have reported a robust day/night pat-
tern in the incidence of adverse cardiovascular events with a
peak at� 10 a.m. [45]. This peak has been traditionally attrib-
uted to day/night patterns in behaviors including activity lev-
els. We hypothesized that these dynamical scaling features of
the healthy human heartbeat have an intrinsic circadian
rhythm that brings them closer to the features observed under
pathologic conditions at specific circadian phases.

We investigated heartbeat dynamics in healthy subjects (four
males and one female; age: 20–33; mean: 25.8 years) recorded
throughout a ten-day protocol in which the sleep/wake and
activity cycle were desynchronized from the endogenous circa-
dian cycle, enabling separation of internal circadian factors
from behavior-related factors. Subjects’ sleep-wake behavior

cycles are adjusted to 28 h [46]. This 28-h recurring sleep/wake
schedule is repeated for seven cycles in the absence of bright
light, so that the body clock oscillates at its inherent rate. Sub-
jects have been asked to repeat the same schedule in all seven
wake periods so that, statistically, the same behaviors occur at
each circadian phase throughout all seven 28-h cycles.

We separated all interbeat interval data into 1-h windows, and
for each window we calculate the value of the DFA scaling expo-
nent and the mean heartbeat interval. Since the sleep and wake
states have different effects on cardiac dynamics [22], [33], [40],
[43], we analyzed wake and sleep-opportunity periods sepa-
rately. Averaging the data according to the circadian phase yields
effects caused only by the endogenous circadian rhythms inde-
pendent of behavioral factors, because in the forced desynchrony
protocol each behavior is represented at each circadian phase.

We find that the DFA scaling exponent characterizing the
temporal correlations in heartbeat dynamics exhibits a signifi-
cant circadian rhythm, with a sharp peak at the circadian phase
corresponding to � 10 a.m. (Figure 5), coinciding with the
window of cardiac vulnerability reported in clinical studies [45].
We find that this peak in the value of the scaling exponent is
independent of the scheduled behaviors and occurs during both
sleep and awake periods scheduled across different circadian
phases [46]. Since cardiac dynamics under pathologic condi-
tions such as congestive heart failure are associated with a larger
value of the scaling exponent, our findings suggest that circa-
dian-mediated influences on cardiac control may be involved in
cardiac vulnerability. Further, we find that the peak in the value
of the correlation exponent at� 10 a.m. is not related to the cir-
cadian-mediated influence on the mean activity levels, leading
to changes in the average heartrate that displays a very different
circadian rhythm with a peak in the window 5–9 p.m. [46].

Conclusions
We find that key scale-invariant features of heartbeat dynam-
ics, which have been previously associated with the underly-
ing mechnisms of cardiac regulation, change significantly
with sleep-wake transition, across sleep stages and circadian
phases under both healthy and pathologic conditions. Our
findings indicate that sleep-wake and circadian cycles do not
simply modulate basic physiologic functions by generating
rhythms with a fixed periodicity, but also influence the neural
regulation of fundamental physiologic systems such as the
cardiovascular system simultaneously over a broad range of
time scales. Our empirical observations suggest that the neural
systems of sleep and circadin regulation play an important role
in the scale-invariant fractal organization of cardiac dynamics
(and perhaps also of other physiologic dynamics), which has
been shown to breakdown with disease and advanced age.

Acknowledgments
The results reviewed here represent a collaborative research
effort with contributions from many individuals, including Z.
Chen, A. Bunde, A.L. Goldberger, S. Havlin, K. Hu, J.W. Kant-
elhardt, T. Penzel, M.G. Rosenblum, S.A Shea, H.E. Stanley.
This work was supported by NIH (Grant No. 2RO1 HL 071972).

Plamen Ch. Ivanov received an M.S. degree in theoretical
physics/condensed matter physics from Sofia University in
1988, and a Ph.D. in biophysics from Boston University in
1998. He is currently a senior research associate at the Center
for Polymer Studies and the Physics Department at Boston

Circadian Phase (Degrees)
(a)

(b)

−8

−4

0

4

8

Data
Model

Wake Periods—Group Average

−8

−4

0

4

8

Data
Model

Sleep Periods—Group Average

%
 D

ev
ia

tio
n 

fr
om

 M
ea

n 
α

%
 D

ev
ia

tio
n 

fr
om

 M
ea

n 
α

0 60 120 180 240 300 360 60 120 180 240 300 360

Circadian Phase (Degrees)
0 60 120 180 240 300 360 60 120 180 240 300 360

Usual Sleep
Period

Usual Sleep
Period

Fig. 5. Circadian rhythms in the group average of the scaling
exponent a for (a) wake periods and for (b) sleep-opportunity
periods. Consistent and significant circadian rhythms are
observed for both wake periods (p-value ¼ 0.01) and sleep-
opportunity periods (p-value ¼ 0.0003). Note the well-
pronounced peak at between 60 and 90 circadian degrees
(9–11 a.m.). Adapted from [45].

IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE NOVEMBER/DECEMBER 200736

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on November 5, 2009 at 12:15 from IEEE Xplore.  Restrictions apply. 



University, lecturer at the Division of
Sleep Medicine at Harvard Medical
School, Brigham and Women’s Hospital,
and an associate professor at the Institute
of Solid State Physics, Bulgarian Academy
of Sciences. His research interests include
methods of analysis and modeling of inte-
grated biological and physiological sys-

tems and networks; multiscale dynamical properties
emerging from cellular level interactions; neural regulation;
stochastic processes; and phase transitions. He has served as
an editor of FNL in the period 2000–2002, and he is currently
on the Editorial Board of the Journal of Biological Physics.

Address for Correspondence: Plamen Ch. Ivanov, Center
for Polymer Studies and Department of Physics, Boston
University, 590 Commonwealth Ave., Boston, Massachusetts
02215. E-mail: plamen@buphy.bu.edu.

References
[1] R. I. Kitney and O. Rompelman, The Study of Heart-Rate Variability,
London, U.K.: Oxford Univ. Press, 1980.
[2] S. Akselrod, D. Gordon, F. A. Ubel, D. C. Shannon, A. C. Berger, and R.
J. Cohen, ‘‘Power spectrum analysis of heart rate fluctuation: a quantitative probe
of beat-to-beat cardiovascular control,’’ Science, vol. 213, no. 4504, pp. 220–222,
July 10, 1981.
[3] M. Kobayashi and T. Musha, ‘‘1/f fluctuation of heartbeat period,’’ IEEE
Trans. Biomed. Eng., vol. 29, no. 6, p. 456, 1982.
[4] J. P. Saul, P. Albrecht, R. D. Berger, and R. J. Cohen, ‘‘Analysis of long term
heart rate variability: Methods, 1/f scaling, and implications,’’ Comput. Cardiol.,
vol. 14, pp. 419–422, 1988.
[5] C.-K. Peng, J. Mietus, J. M. Hausdorff, S. Havlin, H. E. Stanley, and
A. L. Goldberger, ‘‘Long-range anticorrelations and non-Gaussian behavior of the
heartbeat,’’ Phys. Rev. Lett., vol. 70, no. 9, pp. 1343–1346, Mar 1, 1993.
[6] C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, ‘‘Quantification
of scaling exponents and crossover phenomena in nonstationary heartbeat time-
series,’’ Chaos, vol. 5, no. 1, pp. 82–87, Mar 1995.
[7] P. Ch. Ivanov, M. G. Rosenblum, C.-K. Peng, J. Mietus, S. Havlin,
H. E. Stanley, and A. L. Goldberger, ‘‘Scaling behaviour of heartbeat intervals
obtained by wavelet-based time-series analysis,’’ Nature, vol. 383, no. 6598,
pp. 323–327, Sep 26, 1996.
[8] P. Ch. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, M.
G. Rosenblum, Z. R. Struzik, and H. E. Stanley, ‘‘Multifractality in human heart-
beat dynamics,’’ Nature, vol. 399, no. 6735, pp. 461–465, June 3, 1999.
[9] L. A. Lipsitz, J. Mietus, G. B. Moody, and A. L. Goldberger, ‘‘Spectral charac-
teristics of heart-rate-variability before and during postural tilt—Relations to aging
and risk of syncope,’’ Circulation, vol. 81, no. 6, pp. 1803–1810, June 1990.
[10] D. T. Kaplan, M. I. Furman, S. M. Pincus, S. M. Ryan, L. A. Lipsitz, and
A. L. Goldberger, ‘‘Aging and the complexity of cardiovascular dynamics,’’ Bio-
phys. J., vol. 59, no. 4, pp. 945–949, Apr 1991.
[11] N. Iyengar, C.-K. Peng, R. Morin, A. L. Goldberger, and L. A. Lipsitz,
‘‘Age-related alterations in the fractal scaling of cardiac interbeat interval dynam-
ics,’’ Am. J. Physiol., vol. 271, no. 4, pp. R1078–R1084, Oct 1996.
[12] A. L. Goldberger, L. A. N. Amaral, J. M. Hausdorff, P. Ch. Ivanov,
C.-K. Peng, and H. E. Stanley, ‘‘Fractal dynamics in physiology: Alterations with
disease and aging,’’ Proc. Natl. Acad. Sci. USA, vol. 99, no. Suppl 1, pp. 2466–
2472, Feb 19, 2002.
[13] R. M. Berne and M. N. Levy, Cardiovascular Physiology, 6th ed. St. Louis,
MO: Mosby, 1996.
[14] M. Malik and A. J. Camm, Eds., Heart Rate Variability. Armonk, NY:
Futura, 1995.
[15] H. Molgaard, K. E. Sorensen, and P. Bjerregaard, ‘‘Circadian variation and
influence of risk factors on heart rate variability in healthy subjects,’’ Am. J. Car-
diol., vol. 68, no. 8, pp. 777–784, Sep 15, 1991.
[16] A. Grossmann and J. Morlet, Mathematics and Physics, Lectures on Recent
Results. Singapore: World Scientific, 1985.
[17] D. Gabor, ‘‘Theory of communication,’’ J. Inst. Elect. Eng., vol. 93,
pp. 429–457, 1946.
[18] M. Meyer, A. Rahmel, C. Marconi, B. Grassi, P. Cerretelli, and J. E. Skinner,
‘‘Stability of heartbeat interval distributions in chronic high altitude hypoxia,’’
Integr. Physiol. Behav. Sci., vol. 33, no. 4, pp. 344–362, Oct–Dec 1998.
[19] J. Bhattacharya, P. P. Kanjilal, and S. H. Nizamie, ‘‘Decomposition of poste-
rior alpha rhythm,’’ IEEE Trans. Biomed. Eng., vol. 47, no. 6, p. 738, 2000.
[20] J. Bhattacharya and H. Petsche, ‘‘Universality in the brain while listening to
music,’’ Proc. R. Soc. Lond. B Biol. Sci., vol. 268, no. 1484, p. 2423, 2001.
[21] P. A. Ritto, J. J. Alvarado-Gil, and J. G. Contreras, ‘‘Scaling and wavelet-
based analyses of the longterm heart rate variability of the Eastern Oyster,’’ Physica
A, vol. 349, no. 1-2, pp. 291–301, Apr 1, 2005.

[22] P. Ch. Ivanov, M. G. Rosenblum, C.-K. Peng, J. E. Mietus, S. Havlin,
H. E. Stanley, and A. L. Goldberger, ‘‘Scaling and universality in heart rate varia-
bility distributions,’’ Physica A, vol. 249, no. 1-4, pp. 587–593, Feb 1, 1998.
[23] K. Kiyono, Z. R. Struzik, N. Aoyagi, S. Sakata, J. Hayano, and
Y. Yamamoto, ‘‘Critical scale invariance in a healthy human heart rate,’’ Phys.
Rev. Lett., vol. 93, no. 17, p. 178103, Oct 22, 2004.
[24] H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena.
London: Oxford University Press, 1971.
[25] T. Vicsek, Fractal Growth Phenomena, 2nd ed. Singapore: World Scientific,
1992.
[26] P. Ch. Ivanov, A. L. Goldberger, S. Havlin, C.-K. Peng, M. G. Rosenblum,
and H. E. Stanley, ‘‘Wavelets in medicine and physiology,’’ in Wavelets in
Physics, H. van der Berg, Ed. Cambridge: Cambridge University Press, 1998.
[27] P. Ch. Ivanov, L. A. N. Amaral, A. L. Goldberger, and H. E. Stanley, ‘‘Sto-
chastic feedback and the regulation of biological rhythms,’’ Europhys. Lett.,
vol. 43, no. 4, pp. 363–368, Aug 15, 1998.
[28] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A.
L. Goldberger, ‘‘On the mosaic organization of DNA sequences,’’ Phys. Rev. E,
Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 49, no. 2, pp. 1691–1689,
Feb 1994.
[29] K. Hu, P. Ch. Ivanov, Z. Chen, P. Carpena, and H. E. Stanley, ‘‘Effect of trends on
detrended fluctuation analysis,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Inter-
discip. Top., vol. 64, no. 1, Art. No. 011114 Part 1, July 2001.
[30] Z. Chen, P. Ch. Ivanov, K. Hu, and H. E. Stanley, ‘‘Effect of nonstationar-
ities on detrended fluctuation analysis,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 65, no. 4, Art. No. 041107 Part 1, Apr 2002.
[31] Z. Chen, K. Hu, P. Carpena, P. Bernaola-Galvan, H. E. Stanley, and P.
Ch. Ivanov, ‘‘Effect of nonlinear filters on detrended fluctuation analysis,’’ Phys.
Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 71, no. 1, Art.
No. 011104 Part 1, Jan 2005.
[32] L. M. Xu, P. Ch. Ivanov, K. Hu, Z. Chen, A. Carbone, and H. E. Stanley,
‘‘Quantifying signals with power-law correlations: A comparative study of
detrended fluctuation analysis and detrended moving average techniques,’’ Phys.
Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 71, no. 5, Art.
No. 051101 Part 1, May 2005.
[33] P. Ch. Ivanov, A. Bunde, L. A. N. Amaral, S. Havlin, J. Fritsch-Yelle, R.
M. Baevsky, H. E. Stanley, and A. L. Goldberger, ‘‘Sleep-wake differences in
scaling behavior of the human heartbeat: Analysis of terrestrial and long-term
space flight data,’’ Europhys. Lett., vol. 48, no. 5, pp. 594–600, Dec 1999.
[34] R. W. Peters, L. B. Mitchell, M. M. Brooks, D. S. Echt, A. H. Barker,
R. Capone, P. R. Liebson, and H. L. Greene, ‘‘Circadian pattern of arrhythmic
death in patients receiving encainide, flecainide or moricizine in the cardiac-
arrhythmia suppression trail (CAST),’’ J. Am. Coll. Cardiol., vol. 23, no. 2,
pp. 283–289, Feb 1994.
[35] S. Behrens, G. Ney, S. G. Fisher, R. D. Fletcher, M. R. Franz, and
S. N. Singh, ‘‘Effects of amiodarone on the circadian pattern of sudden cardiac
death (department of veterans affairs congestive heart failure-survival trial of anti-
arrhythmic therapy),’’ Am. J. Cardiol., vol. 80, no. 1, pp. 45–48, Jul 1, 1997.
[36] K. Kiyono, Z. R. Struzik, N. Aoyagi, F. Togo, and Y. Yamamoto, ‘‘Phase
transition in a healthy human heart rate,’’ Phys. Rev. Lett., vol. 95, no. 5, Art.
No. 058101, July 29, 2005.
[37] R. Karasik, N. Sapir, Y. Ashkenazy, P. Ch. Ivanov, I. Dvir, P. Lavie, and
S. Havlin, ‘‘Correlation differences in heartbeat fluctuations during rest and exer-
cise,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 66,
no. 6, Art. No. 062902 Part 1, Dec 2002.
[38] M. Martinis, A. Knezevic, G. Krstacic, and E. Vargovic, ‘‘Changes in the
Hurst exponent of heartbeat intervals during physical activity,’’ Phys. Rev. E,
Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 70, no. 1, Art. No.
012903 Part 1, July 2004.
[39] M. A. Carskadon and W. C. Dement, Principles and Practice of Sleep Medi-
cine, M. H. Kryger, T. Roth, and W. C. Dement, Eds. Philadelphia: Saunders,
1994, pp. 16–25.
[40] A. Bunde, S. Havlin, J. W. Kantelhardt, T. Penzel, J. H. Peter, and K. Voigt,
‘‘Correlated and uncorrelated regions in heart-rate fluctuations during sleep,’’
Phys. Rev. Lett., vol. 85, no. 17, pp. 3736–3739, Oct 23, 2000.
[41] Y. Ashkenazy, P. Ch. Ivanov, S. Havlin, C.-K. Peng, A. L. Goldberger, and
H. E. Stanley, ‘‘Magnitude and sign correlations in heartbeat fluctuations,’’ Phys.
Rev. Lett., vol. 86, no. 9, pp. 1900–1903, Feb 26, 2001.
[42] Y. Ashkenazy, S. Havlin, P. Ch. Ivanov, C.-K. Peng, V. Schulte-Frohlinde,
and H. E. Stanley, ‘‘Magnitude and sign scaling in power-law correlated time
series,’’ Physica A, vol. 323, pp. 19–41, May 15, 2003.
[43] J. W. Kantelhardt, Y. Ashkenazy, P. Ch. Ivanov, A. Bunde, S. Havlin, T. Penzel,
J. H. Peter, and H. E. Stanley, ‘‘Characterization of sleep stages by correlations in the
magnitude and sign of heartbeat increments,’’ Phys. Rev. E, Stat. Phys. Plasmas Flu-
ids Relat. Interdiscip. Top., vol. 65, no. 5, Art. No. 051908 Part 1, May 2002.
[44] J. W. Kantelhardt, S. Havlin, and P. Ch. Ivanov, ‘‘Modeling transient correlations
in heartbeat dynamics during sleep,’’ Europhys. Lett., vol. 62, no. 2, p. 147, 2003.
[45] J. E. Muller, P. H. Stone, Z. G. Turi, J. D. Rutherford, C. A. Czeisler, C. Parker,
W. K. Poole, E. Passamani, R. Roberts, T. Robertson, B. E. Sobel, J. T. Willerson,
and E. Braunwald, ‘‘Circadian variation in the frequency of onset of acute myocardial
infarction,’’ N. Eng. J. Med., vol. 313, no. 21, pp. 1315–1322, 1985.
[46] K. Hu, P. Ch. Ivanov, M. F. Hilton, Z. Chen, R. T. Ayers, H. E. Stanley, and
S. A. Shea, ‘‘Endogenous circadian rhythm in an index of cardiac vulnerability
independent of changes in behavior,’’ Proc. Natl. Acad. Sci., vol. 101, no. 52,
pp. 18223–18227, Dec 28, 2004.

IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE NOVEMBER/DECEMBER 2007 37

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on November 5, 2009 at 12:15 from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


