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There is evidence that spiral waves and their breakup underlie mechanisms related to a wide
spectrum of phenomena ranging from spatially extended chemical reactions to fatal cardiac arrhyth-
mias �A. T. Winfree, The Geometry of Biological Time �Springer-Verlag, New York, 2001�; J.
Schutze, O. Steinbock, and S. C. Muller, Nature 356, 45 �1992�; S. Sawai, P. A. Thomason, and E.
C. Cox, Nature 433, 323 �2005�; L. Glass and M. C. Mackey, From Clocks to Chaos: The Rhythms
of Life �Princeton University Press, Princeton, 1988�; R. A. Gray et al., Science 270, 1222 �1995�;
F. X. Witkowski et al., Nature 392, 78 �1998��. Once initiated, spiral waves cannot be suppressed
by periodic planar fronts, since the domains of the spiral waves grow at the expense of the fronts
�A. N. Zaikin and A. M. Zhabotinsky, Nature 225, 535 �1970�; A. T. Stamp, G. V. Osipov, and J.
J. Collins, Chaos 12, 931 �2002�; I. Aranson, H. Levine, and L. Tsimring, Phys. Rev. Lett. 76, 1170
�1996�; K. J. Lee, Phys. Rev. Lett. 79, 2907 �1997�; F. Xie, Z. Qu, J. N. Weiss, and A. Garfinkel,
Phys. Rev. E 59, 2203 �1999��. Here, we show that introducing periodic planar waves with long
excitation duration and a period longer than the rotational period of the spiral can lead to spiral
attenuation. The attenuation is not due to spiral drift and occurs periodically over cycles of several
fronts, forming a variety of complex spatiotemporal patterns, which fall into two distinct general
classes. Further, we find that these attenuation patterns only occur at specific phases of the descend-
ing fronts relative to the rotational phase of the spiral. We demonstrate these dynamics of phase-
dependent spiral attenuation by performing numerical simulations of wave propagation in the ex-
citable medium of myocardial cells. The effect of phase-dependent spiral attenuation we observe
can lead to a general approach to spiral control in physical and biological systems with relevance
for medical applications.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2404640�

The dynamics of waves in excitable media1–11 have been
studied in physical, chemical, and biological systems un-
der a variety of conditions including noise and inhomo-
geneities in the medium12–14 and mechanical
deformation.15 Of particular interest is the problem of
nonlinear wave interaction in the excitable medium of the
heart muscle, as loss of wave stability and spiral wave
breakup lead to spatiotemporal patterns associated with
adverse cardiac events such as ventricular fibrillation
and sudden cardiac death.5,6,16,17 While different ap-
proaches to prevent spiral breakup have been
proposed,18–22 it is widely accepted that stable spiral
waves cannot be suppressed by periodic planar wave
fronts, since the frequency of the spiral is higher than the
frequency of the fronts, and thus the domains of the spi-
ral waves grow at the expense of the slower wave
fronts.7–11 Here, we focus on the attenuation of a single
stable spiral wave. We show that it is possible to attenu-
ate spiral waves by planar wave fronts with period longer
than the rotational period of the spiral, and we address
the problem of how to control spiral attenuation in excit-
able media. We find that when the fronts have long exci-

tation duration, and are delivered at a specific phase rela-
tive to the rotational phase of the spiral, the spiral-front
interaction is characterized by periodic patterns of spiral
attenuation, which remain stable in time and over a
broad range of physiologically meaningful parameter val-
ues. While spiral drift has been shown under similar
conditions,23 we do not aim to achieve spiral drift but to
attenuate a stable spiral, i.e., to reduce the area covered
by the spiral and the number of cells involved in the
propagation of the spiral wave.

I. PHYSIOLOGICAL CONSIDERATIONS
AND MODELING

We perform numerical simulations on a two-dimensional
�2D� square lattice by considering interactions between the
cells of the lattice, based on physiologically motivated rules
representing the excitation dynamics of myocardial cells in
the heart muscle �Fig. 1�. The transmembrane potential of a
myocardial cell represents the state of excitation of that cell.
We model the state of the cell in position �i , j� in the lattice
by an integer number Eij as follows: �i� Resting �equilibrium�
state: this state is represented in our model by Eij =0, which
corresponds to the experimentally observed transmembranea�Electronic address: plamen@buphy.bu.edu

CHAOS 17, 015109 �2007�

1054-1500/2007/17�1�/015109/8/$23.00 © 2007 American Institute of Physics17, 015109-1

Downloaded 05 Nov 2009 to 128.197.27.9. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp

http://dx.doi.org/10.1063/1.2404640
http://dx.doi.org/10.1063/1.2404640


potential �−90 mV.24 A cell remains in the resting state for
an unlimited time until a superthreshold perturbation occurs
in the medium, which brings the cell to the excited state.
This threshold for ventricular cells in guinea pigs was experi-
mentally found to be �4–8 V/cm,25 and is represented in
our model by the parameter Threst �Fig. 2�a��. �ii� Excited
state: when a cell enters the excited state, it takes a value in
the interval Emin�Eij �Emax, where Emin�1. For an excited

cell, in every time step �, Eij decreases by 1. Thus, in our
simulations Eij represents not only the transmembrane poten-
tial but also has a meaning of excitation duration �Fig. 2�b��,
where at the beginning of the excitation the lowest excitation
level a cell can assume is Emin, corresponding to the shortest
possible action potential duration �APD�, while the highest
excitation level is Emax, which corresponds to the longest
APD. At the end of the excitation period, Eij =1 before the
cell becomes absolute refractory. �iii� Absolute refractory
state: when a cell enters this state, Ei,j falls to −Ra−Rr, where
Ra is the duration of the absolute refractory state when a cell
cannot be excited. For an absolute refractory cell, in every
time step �, Eij increases by 1. After Ra time steps, the cell
becomes relative refractory �at Eij =−Rr� before it reaches the
resting state. �iv� Relative refractory state: this state is repre-
sented by −Rr�Eij �−1, where Rr is the duration of the
relative refractory state. A cell in this state can be excited
with an excitation threshold experimentally observed to de-
crease in time as the cell approaches the resting state.26 This
threshold remains higher than the excitation threshold of
cells in the resting state,26 and in our model, it decreases
linearly in time from the value Thref, when Eij =−Rr, to the
value Threst in the resting state �Fig. 2�a��. For every time
step � in which a relative refractory cell does not become
excited, Eij is increased by 1, until the cell reaches the rest-
ing state Eij =0.

We define the excitation stimulus received by a cell in
position �i , j� from the neighboring cells as Sij =�k,lWkl�kl,
where k� �i−� , i+��, l� �j−� , j+��, and � defines the range
of interaction. Wkl is a rotationally symmetric interaction
kernel,27 and �kl=1 if the cell in position �k , l� is excited and
�kl=0 otherwise. To preserve a proper relation between the
speed of propagation and the curvature of the wave front,28

we set �=5. To account for the weaker effects of more dis-
tant neighbors, we choose values of the kernel elements Wkl

decreasing with increasing distance from the center of the
kernel.27 A cell in position �i , j� that is excitable at time t will
become excited in the next time step t+1 if it receives a
stimulus Sij larger than the excitation threshold of the cell. In
this case, the new excited state of the cell is given by Eij

t+1

=Eij
t +Rr+Emin �Fig. 2�b��, so that a cell at the beginning of

the relative refractory state, with Eij
t =−Rr, will reach an ex-

citation level Eij
t+1=Emin. This is in accordance with the ex-

perimentally observed behavior of the restitution curve.29 To
account for the ion leakage from excited neighboring cells,
we allow for an excitable cell to reach the longest APD,
Eij

t+1=Emax, if �i� there is a cell �k , l� included in the kernel
that is in the state Ekl

t =Emax, and �ii� at the same time the
perturbation Sij is larger than the excitation threshold.

We consider a square lattice of N�N cells. To avoid
effects of the lattice edge on the dynamics of wave propaga-
tion, and to account for experimental settings30 we introduce
no-flux boundary conditions, i.e., the lattice is surrounded by
a strip of cells of width � where the cells mirror the state of
the cells neighboring the edge of the lattice.

The values of the parameters and the rules in our model
match well the excitation dynamics in the ventricular cells of
the guinea pig, traditionally used in experimental settings
and theoretical studies:29 �a� The experimentally observed

FIG. 1. Time evolution of the transmembrane potential of a ventricular
myocite. After a superthreshold perturbation, the potential sharply increases
from the resting state, of �−90 mV, to the excited state, with a plateau of
positive potential of �30 mV. The duration of the excitation ranges from
Emin to Emax. The excited state is followed by a smooth decrease of the
potential during the absolute refractory period, Ra. The decrease in the trans-
membrane potential continues during the relative refractory period, Rr, when
a cell can be excited again but to a lower potential, and for shorter excitation
duration compared to an excitation started during the resting state �dashed
line�.

FIG. 2. Schematic presentation of the model. �a� Excitation threshold vs
time past after the last excitation of a cell �also called diastolic interval
�DI��. For short DI, during the absolute refractory period, the cell cannot be
excited and the excitation threshold is infinite. When the cell enters the
relative refractory period, the excitation threshold is Thref, and with increas-
ing DI the threshold decreases linearly in agreement with experimental ob-
servations �Ref. 29� until it reaches the value Threst at the end of the relative
refractory period. For long DI, during the resting state, the threshold remains
constant and equal to Threst �Ref. 27� We choose Threst=20 and Thref=48 to
maintain the movement of the spiral tip in our simulations within a small
area in agreement with experimental observations �Ref. 29�. �b� Restitution
curve—relation between the excitation duration �action potential duration
�APD�� vs DI. There are no action potentials in the absolute refractory
period. During the relative refractory period, the APD increases linearly
with time, and in the resting state the APD is constant. We use the experi-
mental restitution curve �denoted by �� and the conduction speed for guinea
pig ventricular myocites �Ref. 29� to calibrate the parameter values, so that
the restitution curve in our simulations reproduces the experimental one.
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excitable gap �time between the end of the absolute refrac-
tory period and the next excitation� is G=12±4 ms,29 which
corresponds to one time step � in our simulations, so we have
�=12 ms; �b� comparing the experimental propagation speed
of v�75 cm/s �Ref. 29� with the wave propagation of three
lattice cells per time unit � in our model, we have that our
spatial unit is �=0.3 cm ��100 myocite cells�; �c� the ex-
perimentally found refractory period, Rexp=Ra

exp+Rr
exp

�200 ms, and relative refractory period Rr
exp�120 ms,29 are

approximated in our simulation by the parameter values R
=Ra+Rr� �18,30� and Rr� �7,10�, in units of the time step
�; �d� the minimum and maximum APD experimentally ob-
served are Emin

exp �40 ms and Emax
exp �160 ms,29 which corre-

spond to our parameters Emin� �2,4� and Emax� �10,20�, in
units of the time step �; �e� the prolongation of the APD due
to ion leakage has been physiologically estimated as
��APD�exp�D�APD��xx�APD�, where D�1 cm2/s is a dif-
fusion constant.31 Since typically APD��Emax

exp +Emin
exp� /2 and

�xx�APD���Emax
exp −Emin

exp� /�2, we find ��APD�exp�130 ms,
which compares to the maximum prolongation in our model
��APD�model=Emax−Emin� �6,18� in units of �. The shape
of the model restitution curve shown in Fig. 2�b� mimics the
experimental data.29 Thus, our model is based on experimen-
tally relevant parameter values.

We generate the spiral according to a standard proce-
dure, by propagating a planar front with one end close to the
center of the lattice and the other end on the lattice edge.32

We wait for 300 time steps � ��15 spiral rotations� until the
spiral reaches a stable rotation with the tip moving only
within a small approximately linear area of �30 cells near
the center of the lattice, as observed in experimental
settings.33 We next introduce planar fronts with a period T,
starting from the edge of the lattice. Each front is generated
as a line of excited cells with maximum APD, E1j =Emax, for
j=1, . . . ,N. To test whether it is possible to attenuate spiral
waves with slow fronts, we choose the period T of the fronts
to be longer than the rotational period of the spiral. We re-
lease the first front at time T0 �in units �� after the stabiliza-
tion period of the spiral. The width of the front is propor-
tional to the parameter Emax and to the speed of propagation,
which depends on the excitation thresholds Threst and Thref.
Under these conditions, the position of the spiral tip remains
stable and localized within a small area, and thus the patterns
of spiral attenuation we find are not the result of spiral drift.
To track if the spiral is attenuated, we follow the time evo-
lution of every individual cell in the lattice. To survey the
system, we also measure the total number of excited cells in
the lattice as a function of time.

II. RESULTS

In contrast to previous studies showing that spiral waves
cannot be attenuated by fronts of lower frequency,7–11 we
hypothesize that the interaction of a stable spiral wave and
lower-frequency periodic planar fronts with sufficiently long
excitation duration and with period T larger than the rota-
tional period of the spiral can lead to spiral attenuation. Spe-
cifically, we hypothesize that spiral attenuation can only oc-
cur for an appropriate timing of the descending fronts �as

measured by T0� relative to the rotational phase of the spiral.
We find that the interaction between the fronts and the spiral
leads to complex patterns where, after several passing fronts,
the spiral is attenuated �Fig. 3�. These patterns repeat in time
and remain stable for a broad range of physiologically mean-
ingful parameter values �Fig. 7�. Further, we find that the
system exhibits a variety of different patterns that fall into
two general classes: �i� Class I, where there is one spiral
attenuation within a cycle of several passing fronts �Figs.
3�a�–3�c��, and �ii� Class II, where there are two nonconsecu-
tive spiral attenuations within a cycle of several passing
fronts �Figs. 3�d�–3�f��. Repeating our simulations for N
=60,80,100, . . . ,200, and for N�N and N�2N lattices, we
find identical dynamics with the same periodic patterns of
spiral attenuation. This also allows us to study the effect of
the distance from the area where the fronts are introduced to
the spiral core. In Fig. 4, we provide a color-coded represen-
tation of the spiral-front interaction on the lattice for the
Class I and Class II patterns shown in Fig. 3.

The spatiotemporal patterns of spiral attenuation we
present in Fig. 3 are a result of a complex nonlinear interac-
tion between the spiral and the descending fronts. Without
the fronts, the rotational period of the spiral is uniform in
both space and time, i.e., the excitation of every cell in the
lattice has a period equal to the rotational period of the spi-
ral. In our simulations, the APD of a cell that becomes ex-
cited is Eij

t+1=Eij
t +Rr+Emin. Since the excitable gap in ex-

perimental settings is G�12 ms,29 which corresponds to one
time step � in our simulations, a cell in the relative refractory
state Eij

t =−Rr is excited within a single time step to Eij
t+1

=Emin. Thus, the APD of a cell in the isolated spiral is always
Emin. The period of the spiral equals the sum of the duration
of all states a cell undergoes during a single spiral rotation,
Tsp

− =Emin+Ra+G. In the presence of fronts, where the ex-
cited cells have maximum APD given by Eij =Emax, after a
collision of a front with the spiral, a thin layer of maximum
APD excitations propagates from the front along the advanc-
ing contour of the spiral �as shown in Fig. 5, frames 2–4�.
When these excitations reach the tip of the spiral before the
next spiral rotation, the period of the spiral increases to Tsp

+

=Emax+Ra+G, which is also the period of the cells with
maximum APD. In this situation, the spiral survives �Fig. 5,
frame 6�, and we observe a peak in the total number of
excited cells in the lattice �Fig. 3�. When the layer of cells
with maximum APD excitations that propagates from the
front to the spiral does not reach the tip of the spiral before
the next spiral rotation �i.e., it does not cover the entire con-
tour of the spiral�, the period of the spiral remains Tsp

− . In this
case, the cells at the tip of the spiral continue to have short
APD given by Eij =Emin �Fig. 5, frame 11�. Due to the short
APD, the spiral cannot propagate through the absolute re-
fractory areas left by the layer of cells with long APD �given
by Eij =Emax� formed between the front and the spiral, and
the spiral is attenuated �Fig. 5, frame 12�. This spiral attenu-
ation corresponds to a reduced or absent peak in the total
number of excited cells in the lattice �Fig. 3�. In our simula-
tions, the period of the fronts is T=Tsp

+ +2. Thus, the spiral
attenuation we observe in Figs. 3 and 4 is achieved for planar
fronts with a period longer than the period of the spiral.
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We find that this mechanism of nonlinear interaction be-
tween the spiral and planar fronts comprised of cells with
long APD and with frequency lower than the spiral rotation
leads to the attenuation patterns in Figs. 3 and 4. We dem-
onstrate that these patterns cannot be matched by a linear
superposition of the number of excited cells of the isolated
spiral and the number of excited cells in the isolated fronts,
as we show in Fig. 6. Such a linear superposition exhibits
periodic pulses with a higher number of excited cells, and
cannot account for the missing peaks associated with spiral
attenuation. Moreover, the pulses observed in the linear su-
perposition of spiral and front form a cycle that repeats with
a different duration compared to the duration of the cycle of
spiral attenuation �Fig. 6�.

Further, we observe that these complex front-spiral inter-
actions lead to rich dynamics characterized by a variety of
temporal patterns. We find that all patterns belong to two
general classes. For Class I �n :n−1� patterns, we observe
that within a cycle of n fronts, we have n−1 slow spiral
rotations with period Tsp

+ , followed by two fast rotations with
period Tsp

− :

Class I: nT = �n − 1�Tsp
+ + 2Tsp

− , �2.1�

where the two fast rotations correspond to a single episode of
spiral attenuation �Figs. 3�a�–3�c��.

For Class II �2n+1:2n−1� patterns, we observe that
within a cycle of 2n+1 fronts, we have 2n−1 slow spiral
rotations, with period Tsp

+ , and four fast rotations, with period
Tsp

− :

Class II: �2n + 1�T = �2n − 1�Tsp
+ + 4Tsp

− , �2.2�

where the four fast rotations correspond to two separate non-
consecutive episodes of spiral attenuation �Figs. 3�d�–3�f��.

Solving for n in Eqs. �2.1� and �2.2�, we obtain

Class I: n =
4Tsp

− − 2Tsp
+

2�T − Tsp
+ �

=
1

2
�2Emin − Emax + Ra + G� ,

�2.3�

Class II: n =
4Tsp

− − Tsp
+ − T

2�T − Tsp
+ �

=
1

2
�2Emin − Emax + Ra + G − 1� . �2.4�

Based on the choice of parameter values for the system, the
above expressions allow us to predict �i� the specific attenu-
ation pattern, and �ii� the class to which a given pattern be-
longs. Parameter values for which we do not obtain integer n
in either Eq. �2.3� or �2.4� cannot lead to spiral attenuation
patterns. Thus, we can control the dynamical behavior of the

FIG. 3. Time evolution of the total number of excited cells from simulations on a square lattice of size N=100. Time is presented in units of the simulation
time step �. Data show a variety of robust patterns of spiral attenuation that remain stable in time. Absent and reduced peaks correspond to attenuation of the
spiral. We find that these patterns belong to two general classes. �i� Class I �n :n−1�, where within a cycle of n fronts we have n−1 consecutive spiral rotations
followed by one spiral attenuation. Examples of Class I patterns are presented in �a� pattern 2:1—out of the collision of the spiral with two consecutive fronts
there is first a spiral attenuation �denoted by B� followed by one surviving spiral �denoted by C�; �b� pattern 3:2—for each cycle of three consecutive fronts
there is first a spiral attenuation �B� followed by two surviving spirals �C and D�; �c� pattern 4:3—for each cycle of four consecutive fronts there is a spiral
attenuation �B� and three surviving spirals �C, D, and E�. The Class I patterns in �a�, �b�, and �c� are obtained for the following parameter values: Ra=16, Rr=8,
Emin=2, Emax=17,15,13, T0=73,39,64, respectively. �ii� Class II �2n+1:2n−1�, where within a cycle of 2n+1 fronts there are 2n−1 spiral rotations and two
spiral attenuations. Examples of Class II patterns are presented in �d� pattern 3:1—for each cycle of three fronts there are two spiral attenuations �B and D�
and one surviving spiral �C�; �e� pattern 5:3—for each cycle of five fronts there are two spiral attenuations �B and E� and three surviving spirals �C, D, and
F�; �f� pattern 7:5—for each cycle of seven fronts we have two attenuations �B and F� and five surviving spirals �C, D, E, G, and H�. The Class II patterns
in �d�, �e�, and �f� are obtained for the following parameter values: Ra=15,16,17, Rr=8, Emin=2, Emax=17,16,15, T0=65,70,70, respectively. In all panels,
the instant in which a spiral attenuation is initiated is denoted by A, and the beginning of the next cycle is denoted by B�, repeating the spiral attenuation in
B. We find the same attenuation patterns independently of the size of the lattice and for a broad range of parameter values �Fig. 7�.
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system in generating desired patterns of spiral attenuation.
Our simulations of up to 105 time steps � �corresponding

to �1500 seconds in experimental settings� show no change
in the dynamics, which indicates that the spiral attenuation
patterns remain stable in time. Further, we find that both
Class I and Class II patterns can be obtained for a broad
range of parameter values showing a robust effect of spiral
attenuation. Specifically, we observe a particular structure in

parameter space where individual patterns are organized
along parallel straight lines, with every even line correspond-
ing to a Class I pattern and every odd line corresponding to
a Class II pattern �Fig. 7�. This regular structure in parameter
space is also predicted by Eqs. �2.3� and �2.4�. In the upper
left corner of the parameter diagram, for increasing values of
Ra and decreasing values of Emax, an attenuation becomes
less frequent for increasing n, since we have only one attenu-

FIG. 4. �Color� Color-coded representation of the spiral-front interaction corresponding to the Class I and Class II patterns shown in Fig. 3. For increasing
values of Eij we have absolute refractory cells in red, relative refractory cells in orange and yellow, and excited cells in cyan, blue, and violet �highest values
of Eij�. Snapshots for each pattern represent the same stages of the dynamics in time, as indicated by the corresponding capital letters in the panels of Fig. 3.
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ation per cycle of n fronts for Class I patterns, and two at-
tenuations per cycle for 2n+1 fronts for Class II. In the
upper right �large Ra and Emax� and lower left �small Ra and
Emax� corners of the diagram, we find alternating patterns in
a broad range of parameter values extending beyond the
physiologically meaningful region �not shown in the diagram
in Fig. 7�. Finally, in the lower right corner of the diagram
�small Ra and large Emax� we do not observe patterns. This is

in agreement with Eqs. �2.3� and �2.4�, which do not allow
n	2 for Class I �a cycle of at least two fronts is needed to
have one attenuation within the cycle�, and n	1 for Class II
�a cycle of at least three fronts is needed to have two attenu-
ations within the cycle�.

FIG. 5. �Color� Color-coded represen-
tation of the time evolution for the
Class I 4:3 pattern obtained for the
same parameter values as in Fig. 3�c�.
Snapshots represent the state of the
lattice in intervals of five time steps �.
Snapshots 1, 7, and 12 correspond to
D, E, and A in Fig. 3�c�. For increasing
values of Eij we have absolute refrac-
tory cells in red, relative refractory
cells in orange and yellow, and excited
cells in cyan, blue, and violet �highest
values of Eij�.

FIG. 6. Time evolution of the total number of excited cells in a square
lattice of size N=100 for isolated fronts �without a spiral�, isolated spiral
�without fronts�, linear superposition of fronts and spiral, and the Class II
pattern 7:5, generated for the same parameter values as in Fig. 3�f� �arrows
inclined to the right indicate one cycle of the 7:5 pattern�. It is apparent that
the 7:5 attenuation pattern cannot be a result of the linear superposition of
periodic fronts and the spiral wave. This linear superposition is character-
ized by absence of attenuation, much higher average value of the number of
excited cells, different profile of the periodic peaks, and shorter cycle �indi-
cated by vertical arrows� compared to the 7:5 attenuation pattern, generated
by the nonlinear interaction of the spiral wave and lower frequency fronts
with maximum APD.

FIG. 7. Diagram of spiral attenuation patterns in parameter space Ra vs
Emax, for a square lattice of N=100 and fixed parameter values Rr=8 and
Emin=2. We observe attenuation patterns for a broad range of parameter
values where each pattern can be found along a single straight line, in
accordance with Eqs. �2.3� and �2.4�. Patterns of Class I �n :n−1� and Class
II �2n+1:2n−1� alternate in a series of parallel lines, where n increases
with increasing Ra. To assess the intensity of the attenuation effect in dif-
ferent regions of the parameter diagram, we estimate for each cycle the ratio
between the average number of excited cells when there is no spiral attenu-
ation �large peaks in Fig. 3� and during spiral attenuation �reduced or absent
peaks in Fig. 3�. We find that this ratio is �i� characterized by a broad
maximum in the central region of the parameter diagram and �ii� it exhibits
a monotonic decrease in all directions of the parameter space for both
classes of patterns, indicating a common behavior in the intensity of spiral
attenuation.
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We finally investigate how the front-spiral interaction
depends on the relative phase between the spiral and the
fronts. To answer this question, we perform several tests by
releasing the first front at a time T0 after the stabilization
period of the spiral �which is 300 time steps ��, followed by
a train of fronts with period T. We repeat the simulations for
every value of T0� �0,T�, for every point in the parameter
space shown in Fig. 7. Surprisingly, we find that the patterns
we observe in the parameter diagram of Fig. 7 occur only for
specific values of T0 �Fig. 8�. For example, the Class I, 2 :1
pattern generated for Emax=15 and Ra=14 occurs only for
phase 2
 /4, corresponding to T0=T /4, while the same pat-
tern, for Emax=18 and Ra=17, occurs for several values of T0

�Fig. 8�. Thus, the observed dynamical patterns of spiral at-
tenuation shown in Figs. 3 and 4 depend not only on the
parameter values, but also on the relative phase between the
spiral wave and the first released front. These findings indi-
cate the presence of particular “vulnerable” phases during the
spiral rotation when planar fronts can lead to spiral attenua-
tion patterns.

III. SUMMARY

In summary, we find that the interaction of a spiral wave
with planar fronts of sufficiently long excitation duration and
a period longer than the period of the spiral can lead to spiral
attenuation. The spiral attenuation only occurs for an appro-
priate timing of the descending fronts relative to the rota-
tional phase of the spiral. This phase-dependent spiral attenu-
ation is not a result of spiral drift and is characterized by
different spatiotemporal patterns, each of them observed for
a broad range of physiologically meaningful parameter val-
ues. Further, we find that these hitherto unknown patterns of
phase-dependent spiral attenuation fall into two general
classes, where each class is defined by a specific mathemati-
cal relation, and is represented by a structured diagram in
parameter space. The spiral attenuation patterns we observe

remain stable in time and do not change during the evolution
of the system. These dynamics of phase-dependent spiral at-
tenuation could be utilized for practical applications, and in
the context of cardiac dynamics may lead to general ap-
proaches for controlling and preventing fatal arrhythmias.
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