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Main Questions

Why are neurons and other cells in the brain spatially arranged the way 
they are? Why is this an important question?

How can we quantify spatial arrangement properties of cells in the brain? 
What are the experimental tools and what are the measurements?

What do cell arrangements tell us about how the brain develops, becomes 
diseased, and age?
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- “Focal cortical dysplasias (FDC) represent patterns of aberrant architectural 
organization of the neocortex and adjacent white matter.”
- “All other patients presented with rather subtle but statistically significant neuro-
anatomical abnormalities.”
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Overall Method





Sources: Howard Huges Medical Institute, Prentice Hall, U.Wash. Neuroscience for Kids.

7 days 14 days 20 days

21 days 23 days

~105 cells in 20 days
~108 cells at birth (9 months)
~250,000 cells are generated per minute

Changes in brain during Development
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Suarez-Sol, et al. Frontiers in Neuroanatomy, 3, 2009
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From Biological Psychology by D.P. Kimble
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Changes in brain during Normal Aging
Key

Smith, et al. The Journal of Neuroscience, 24, 2004
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Stereology example



Buldyrev et al. PNAS 97, 5039-5053 (2000)
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Changes in brain during Disease
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Observations

1. Some aberrations in the cortex structure 
are visually apparent, some are not, and 
some cannot be observed using sampling 
theory (stereology).  Such aberrations still 
correspond to meaningful changes in brain 
function. It is possible that there are many 
such aberrations or patterns that are 
unknown.

● No systematic way to measure spatial 
patterns of cellular or other properties. 
This leads to only measuring what can 
be seen by eye or hypothesized and 
measured via stereology.

2. Full breadth of brains are not being utilized in studies.
● Analysis studies, even with the power of stereology, are 

labor intensive and can only be performed in local regions.
● Even when being studied, a brain region is only sampled in 

small amounts (using stereology) due to the overwhelming 
number of cells that exist.

● hypothesis driven research disallows exploratory 
correlative analysis of focused studies in very different 
brain regions.

?
Lewy Body 

Disease



Goal: new experimental tool

1. Acquire and analyze of 
neuroanatomical measurements 
from the entire cortex.

● Allows for exploration of 
unknown and un-hypothesized 
relationships of quantitative 
measurements within the brain 
(more data driven exploration). 

● Can (potentially) reduce the 
amount of tissue and subjects 
tested.

2. Using concepts from statistical physics, 
create measurement tools that measure 
tissue patterns which exist right above 
biological noise.

● Allows for more understanding of the 
role of tissue structure on function of 
the cortex in any neuroanatomical 
study.

● Allows for more data driven research.
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Buldyrev et al. PNAS 97, 5039-5053 (2000)
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Cruz et al. J. Neuro. Meth. 141, 321 (2005)
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Method - recognition

Inglis et al. J. Microscopy 230, 339 (2008)
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Inglis et al. J. Microscopy 230, 339 (2008)
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Method - recognition

Inglis et al. J. Microscopy 230, 339 (2008)



Method - recognition

''

Inglis et al. J. Microscopy 230, 339 (2008)

Peng et al. PNAS 100 (2003)
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Segmentation: Multithresholding/Watershed

Divide grayscale information into ~15 levels. Perform watershed on each 
level. Save white regions as segmentations.







Method - recognition

Inglis et al. J. Microscopy 230, 339 (2008)



From Wikipedia article “Image Moments”

Method - recognition



computer segmentations that 
match the (human) gold 

standard neurons and glial

computer segmentations that 
don't match the (human) gold 

standard neurons or

Gold Standard



Training Methodology

From Wikipedia article “Image Moments”
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Sciaravva et al. J. 
Neuro. Methods 
182, 123 (2009)

ANRA 2009
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Method – validation 1 of 2

Cruz et al. PNAS. 101 (2004)
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Method – validation 2 of 2

N stereology= objects counted  1
section sampling fraction 

1
area sampling fraction 

average thickness of tissue
height of dissector 

N ANRA= objects recognized   1
area sampling fraction  average thickness of tissue

height of dissector  subject-area N
stereology

N
ANRA

T-SG 230 099 130 239 022 080

Z-SG 137 677 540 146 075 136

HH-SG 221 661 580 215 428 224

T-G 126 382 500 120 815 616

Z-G 79 481 250 83 124 480

HH-G 115 740 000 121 409 152

T-IG 83 652 750 88 364 544

Z-IG 51 282 000 61 650 944

HH-IG 86 204 250 85 948 288
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Results – temporal lobe
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Cruz, Urbanc, Inglis, Rosene, Stanley, NeuroImage 40 (2008)
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Results – rat cortex  
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Results – rat cortex
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Results – rat cortex
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Results – rat cortex
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Future Work



Future studies

Investigate mechanisms behind spatial
changes due to aging.
● extracellular matrix outside of cell bodies
● changes in dentritic structure
● changes in glial structure

Measure spatial properties of cells through 
entire monkey and rat cortex in young 
healthy subjects and in aging studies.

Investigate neural network models using 
statistical rules learned from spatial 
arrangement properties of inhibitory, 
excitatory neurons, and glia.



Conclusions

● Some aberrations in the cortex structure are visually apparent, some are not, and 
some cannot be observed using sampling theory (stereology).  Such aberrations still 
correspond to meaningful changes in brain function. It is possible that there are many 
such aberrations or patterns that are unknown.

● We develop a method that acquires and analyzes the entire cortex at cellular 
resolution.

● Allows for exploration of unknown and un-hypothesized relationships of 
quantitative measurements within the brain (more data driven exploration). 

● Can (potentially) reduce the amount of tissue and subjects tested.

● Using concepts from statistical physics, we create measurement tools that analyze 
tissue patterns which may exist right above biological noise.

● Allows for more understanding of the role of tissue structure on function of the 
cortex in any neuroanatomical study.

● Allows for more data driven research.

Thank you
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Difficult to study due to:
● quantitative information about cognitive status is rarely available
● no clear, drastic changes in anatomy
● no clear delineation of experimental vs control groups

What is known so far:
● Excitatory synapsis are lost in the grey matter
● Fibers of the cells are ???
●Loss of white matter volume, from fibers

Don't see pictures comparing issue because it is hard to see these 
changes in a single image – changes must be found statistically

Current directions to study: (we find there are changes in 
microcolumnarity with age. So what can affect that?)
●Cahnges in perineuronal net
●Changes in glial cells
●Changes in dendrites

Changes in brain during Normal Aging



Step 1: pick method.

Step 2: select experiment 
and control based on 
Step 1.

Step 3: vary 
experimental group 
based on Step 2. 
give drugs, make lesions, 
induce thinking, give disease, 
affect development, let get 
older, change environment, 
nurture, teach, allow to sleep, 
disturb patterns etc. 

Step 4: take measurements 
based on Step 1.
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