Applications of statistical physics concepts to quantifying neuron location, size, and shape by computer Andrew Inglis

collaborators:

Daniel Roe, Brigita Urbanc, Luis Cruz, H.E.Stanley, Douglas Rosene

Question:

How can we train a computer to automatically identify neurons and determine coordinates, size, and shape?

Motivation:

- We want to improve the knowledge of how the brain works. Specifically, how neurons function together.
 - We want to find patterns in neuron spatial organization.
- Analysis requires large datasets of individual neuron properties (10³ 10¹⁰ neurons).
 - Traditional sampling methods (ie: stereological) only measure average quantities.

Structure of a typical neuron

Input

- slice brain tissue (30 μ m sections) from *postmortem* samples.
- apply staining for neuron cell bodies (ie: Nissl staining).
- digital images obtained by light microscope.
- convert to gray scale (value varies from 0-255 per pixel)

1cm

tissue sample: 500 x 500 x 30 μ m typical neuron diameter: 10 μ m

(image courtesy of Daniel Roe)

gray scale image 2¹⁸ pixels (512x512)

from image, obtain x,y location, size, and shape information for each neuron

Challenges to recognizing and locating neuron bodies

neuronnot neuron

ignoring other cells and artifacts

neuron diversity

neuron overlapping

Finding neurons using clusters

Review: what is a gray scale image? A set of pixels that have values between 0-255.

note: pixels are individual features that are not a priori connected to each other.

Color Cluster: a set of pixels that are connected by color.

255

Different colors distinguish different clusters – like countries on an atlas

Goal: create clusters that overlap the neuron bodies.

Ideal results for a cluster-finding algorithm:

...start with a simple example

1600 pixels (40x40) gray scale values range from 0 <u>to</u> 255

256 pixels (18x18). gray scale values either 0 <u>or</u> 255

Overlay a lattice of random spin states over the image

- for each nearest neighbors i and j, define strength $J_{ij} = 1 \frac{|g_i g_j|}{\theta \langle g_i g_j \rangle}$
- for each spin site *i*, define "color" σ_i
- ullet define Hamiltonian of system $H\!=\!-\!\sum_{\langle i,\,j \rangle} {J}_{ij}\, \delta_{\sigma_i \sigma_j}$

 θ = threshold constant

$$\delta_{\sigma_i \sigma_j} = \begin{cases} 1 & \sigma_i = \sigma_j \\ 0 & \sigma_i \neq \sigma_j \end{cases}$$

• freeze bonds between color sites with probability $(1-e^{-\beta J_{ij}})\delta_{\sigma_i\sigma_i}$ to form frozen bond clusters

• "flip" the **frozen bond cluster** to a new color σ (example: red to yellow).

- calculate the change in energy H due to the cluster color "flip" $\Delta\!H = H_{new} H_{old}$.
- if $\Delta H < 0$, keep new color with probability 1.
- If $\Delta H > 0$, keep new color with probability $e^{-\beta \Delta H}$.

Hence, neighboring spins corresponding to similar pixels tend to align

• 50 iterations. Spin States = 6. Start from random spin ("color") configuration.

• 50 iterations. Spin States = 6. Start from random spin ("color") configuration.

• 50 iterations. Spin States = 6. Start from random spin ("color") configuration.

• other examples...

Neuron recognition using Potts clustering

$$J_{ij} = 1 - \frac{|g_i - g_j|}{\theta \langle g_i - g_j \rangle}$$

$$P_{freeze} = (1 - e^{-\beta J_{ij}}) \delta_{\sigma_i \sigma_j}$$

$$P_{flip} = e^{-\beta \Delta H}$$

Parallelization: create final states of different θ , β parameters (ex: 10 choices)

Cluster selection by computer training

Make image a "gold standard": a tissue sample marked by a neuroanatomist

- use $\{x_i^{}\}_{found}$ to find probability distribution $P_{found}(x)$
- use $\{x_i^{}\}_{fp}$ to find probability distribution $P_{fp}(x)$

Gaussian Mixture Models. (Dempster et al. 1977)

Finding neurons for any image (...that looks like the "gold standard")

- 1. overlay final states from $\theta I\beta$ runs.
- 2. if cluster *i* is very small or very large, then DELETE.
- 3. if $P_{fp}(x_i) > P_{found}(x_i)$ then DELETE cluster i.
- 4. if x_i and x_j ($i \neq j$) overlap by > 0.8, and $P_{found}(x_j) > P_{found}(x_i)$, then DELETE cluster i.

remaining clusters represent neurons.

ex: two clusters compete for the same feature

an example...

initial image

after step 2.

after step 3.

after step 4. (FIN)

Data Set

- prefontal cortex (area 46, layer 3) from Rhesus
 Monkey. 15 subjects of varying age, 8 pictures each
 = 120 total images.
- each image 2^9 x 2^9 (512x512) pixels with resolution 1 μ m per pixel length, ~150 neurons per image.
- previously marked using semiautomated methods.
 Used for neuron-neuron correlation density map analysis (*Cruz. et al 2004.*)
- Randomly select 7 out of 15 subjects for analysis

image courtesy of Daniel Roe

4 (out of 7) examples of variability of images type between subjects:

For each subject:

- randomly select training image and evaluation image from original 8 pictures.
- Neuroanatomist marks both images.
- use training image and marks to create $P_{found}\left(x_{j}\right)$ and $P_{fp}(x_{i})$.
- analyze evaluation image.
- Test *evaluation* image cluster results compared to marks:

neuron found by the computer

false positive found by the computer

Potts: found: $73\pm3\%$ fp: $21\pm5\%$ another neuroanatomist: found: $78\pm4\%$ fp: $11\pm6\%$ semi-automatic method: found: $65\pm4\%$ fp: $11\pm6\%$

Conclusions so far

A combination of using:

- Potts segmentation
- parallelization, and
- a trained network

allows for determination of individual neuron location in diverse tissue samples with the desired accuracy.

Next Steps

- Replace Potts clustering with quicker more efficient clustering method.
- Apply the method to correlative measurements.
- Apply the method to larger samples not possible for manual marking.
- Extend the method to measure neuron size, shape, and location within a 3dimensional framework.
- Explore other trained network models in order to reduce recognition error.

Applications of statistical physics concepts to quantifying neuron location, size, and shape by computer Andrew Inglis

collaborators:

Daniel Roe, Brigita Urbanc, Luis Cruz, H.E.Stanley, Douglas Rosene

Question:

How can we train a computer to automatically identify neurons and determine coordinates, size, and shape?

Motivation:

- We want to improve the knowledge of how the brain works. Specifically, how neurons function together.
 - We want to find patterns in neuron spatial organization.
- Analysis requires large datasets of individual neuron properties (10³ 10¹⁰ neurons).
 - Traditional sampling methods (ie: stereological) only measure average quantities.

Input

- slice brain tissue (30 μ m sections) from *postmortem* samples.
- apply staining for neuron cell bodies (ie: Nissl staining).
- digital images obtained by light microscope.
- convert to gray scale (value varies from 0-255 per pixel)

tissue sample: 500 x 500 x 30 μ m typical neuron diameter: 10 μ m

gray scale image 2¹⁸ pixels (512x512)

from image, obtain x,y location, size, and shape information for each neuron

Challenges to recognizing and locating neuron bodies • neuron • not neuron

ignoring other cells and artifacts

neuron diversity

neuron overlapping

Finding neurons using clusters

Review: what is a gray scale image? A set of pixels that have values between 0-255.

note: pixels are individual features that are not a priori connected to each other.

Color Cluster: a set of pixels that are connected by color.

color cluster example

Different colors distinguish different clusters - like countries on an atlas

5

Goal: create clusters that overlap the neuron bodies.

Ideal results for a cluster-finding algorithm:

...start with a simple example

1600 pixels (40x40) gray scale values either 0 <u>or</u> 255 gray scale values range from 0 to 255 actual neuron

• Overlay a lattice of random spin states over the image

- for each nearest neighbors i and j, define strength $J_{ij} = 1 \frac{|g_i g_j|}{\theta \langle g_i g_j \rangle}$
- for each spin site i, define "color" σ_i
- define Hamiltonian of system $H\!=\!-\sum_{\langle i,j\rangle} J_{ij}\,\delta_{\sigma_i\sigma_j}$

 θ = threshold constant

$$\delta_{\sigma_i \sigma_j} = \begin{bmatrix} 1 & \sigma_i = \sigma_j \\ 0 & \sigma_i \neq \sigma_j \end{bmatrix}$$

Ferber and Worgotter. 1998

• freeze bonds between color sites with probability $(1-e^{-\beta J_{ij}})\delta_{\sigma_i\sigma_j}$ to form frozen bond clusters

• "flip" the **frozen bond cluster** to a new color σ (example: red to yellow).

- calculate the change in energy H due to the cluster color "flip" $\Delta\!H = H_{new}$ H_{old}
- if $\Delta H < 0$, keep new color with probability 1.
- If $\Delta H > 0$, keep new color with probability $\mathbf{e}^{-\beta \Delta H}$.

Hence, neighboring spins corresponding to similar pixels tend to align

Ferber and Worgotter. 1998

• 50 iterations. Spin States = 6. Start from random spin ("color") configuration.

• 50 iterations. Spin States = 6. Start from random spin ("color") configuration.

• 50 iterations. Spin States = 6. Start from random spin ("color") configuration.

• other examples...

Neuron recognition using Potts clustering

Parallelization: create final states of different θ , β parameters (ex: 10 choices)

Peng et al. 2003

Cluster selection by computer training

• Make image a "gold standard": a tissue sample marked by a neuroanatomist

- \bullet use $\left\{ \boldsymbol{x}_{i}\right\} _{found}$ to find probability distribution $P_{found}(\boldsymbol{x})$
- use $\{x_i\}_{fp}$ to find probability distribution $P_{fp}(x)$

Gaussian Mixture Models. (Dempster et al. 1977)

Finding neurons for any image (...that looks like the "gold standard")

- 1. overlay final states from $\theta I\beta$ runs.
- 2. if cluster *i* is very small or very large, then DELETE.
- 3. if $P_{fp}(x_i) > P_{found}(x_i)$ then DELETE cluster i.
- 4. if x_i and x_j ($i \neq j$) overlap by > 0.8, and $P_{found}(x_j) > P_{found}(x_i)$, then DELETE cluster i.

remaining clusters represent neurons.

ex: two clusters compete for the same feature

an example...

initial image

after step 2.

after step 3.

after step 4. (FIN)

Data Set

- prefontal cortex (area 46, layer 3) from Rhesus Monkey. 15 subjects of varying age, 8 pictures each = 120 total images.
- each image 2⁹ x 2⁹ (512x512) pixels with resolution 1
 μm per pixel length, ~150 neurons per image.
- previously marked using semiautomated methods.
 Used for neuron-neuron correlation density map analysis (*Cruz. et al 2004.*)
- Randomly select 7 out of 15 subjects for analysis

image courtesy of Daniel Roe

4 (out of 7) examples of variability of images type between subjects:

subject #1 For each subject: • randomly select *training* image and *evaluation* image from original 8 pictures. • Neuroanatomist marks both images. training image and marks • use training image and marks to create $P_{found}\left(x_{j}\right)$ and $P_{fp}(x_i)$. • analyze evaluation image. • Test evaluation image cluster results compared to marks: found %: no. of neurons found (efficiency %) no. of gold standard neurons no. of false positives fp %: (100- purity %) no. of gold standard neurons

ie: 75% found, 20% fp

Potts: found: $73\pm3\%$ fp: $21\pm5\%$ another neuroanatomist: found: $78\pm4\%$ fp: $11\pm6\%$ semi-automatic method: found: $65\pm4\%$ fp: $11\pm6\%$

Conclusions so far

A combination of using:

- Potts segmentation
- parallelization, and
- a trained network

allows for determination of individual neuron location in diverse tissue samples with the desired accuracy.

Next Steps

- Replace Potts clustering with quicker more efficient clustering method.
- Apply the method to correlative measurements.
- Apply the method to larger samples not possible for manual marking.
- Extend the method to measure neuron size, shape, and location within a 3-dimensional framework .
- Explore other trained network models in order to reduce recognition error.