# *In vitro* driven computer simulations of relevance to Alzheimer's disease

#### Brigita Urbanc Boston University Center for Polymer Studies



**H. Eugene Stanley** 

**Collaborators:** 

L. Cruz, A. Lam, S. Peng, S. Yun (BU) F. Ding & N. V. Dokholyan (UNC) J.M. Borreguero (BU & Georgia Tech) G. Bitan, E. Fradinger, N. D. Lazo, D. B. Teplow (UCLA) S. V. Buldyrev (BU & Yeshiva U)



**Q: What are plaques made of? How do they form?** A: Amyoid β-protein (Aβ). Aggregation of Aβ.

#### Aβ40 and Aβ42 amino acid sequence: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV IA



# Two most abundant forms of Aβ in human body are Aβ40 and Aβ42:

- Aβ40 is more abundant in the body (90%), however in amyloid deposits, Aβ42 is the dominant alloform;
- *in vitro* Aβ42 aggregates into fibrils faster than Aβ40;
- *in vitro* Aβ42 fibrils are considerably more toxic to neurons than Aβ40;
- genetic evidence shows that A $\beta$ 42 is associated more strongly with a risk for Alzheimer's disease than is A $\beta$ 40.

## How can a difference of two amino acids (IA) matter?

#### **Aggregation of Ab: Working Hypothesis**

Bitan et al, PNAS (2003); JBC (2003); JACS (2003).

#### **Unstructured:**

- monomers
- pentamers/hexamers (paranuclei)
- large oligomers

β-strand rich:

- protofibrils
- fibrils

#### **OLIGOMERS ARE THE MOST TOXIC!**



# PROBLEM: Experimental methods (X-ray, NMR, light scattering, etc.) to determine the 3D structure of oligomers are limited and do not give atomic detail.

## **OUR PROPOSED SOLUTION: Molecular Dynamics Simulations**

#### **METHOD: Discrete Molecular Dynamics (DMD)**



Zhou et al. PRL, 1996; Zhou & Karplus, PNAS, 1997; Dokholyan et al., Fold. Des., 1998.

#### 8 trajectories of each A $\beta$ 40 and A $\beta$ 42 with 32 peptides in a cubic box of 25 nm

Initially peptides are in unfolded, zero-energy conformations.

Parameters:  

$$E_{HB} = 1$$
  
 $E_{HP} = 0.3$  (I-I)  
 $T = E_{HB} / k_{B}$ 



#### 8 trajectories of each A $\beta$ 40 and A $\beta$ 42 with 32 peptides in a cubic box of 25 nm

After 5-6 million simulation steps, monomers and oligomers are in a quasi-steady state.





In silico predictions of Aβ40 versus Aβ42 folding and assembly

- folding and assembly is driven primarily by effective hydrophobic attraction among hydrophobic regions of Aβ;
- Aβ42 and Aβ40 folded monomer structures DIFFERENT (Aβ42 has an additional turn at G37-G38);
- Aβ40: assembly is dominated by intermolecular attraction between pairs of central hydrophobic clusters (L17-A21);
- Aβ42: assembly is dominated by intermolecular attraction among pairs of C-terminal regions (V39-A42) as well as mid-hydrophobic regions (I31-M35);
- electrostatic interactions promote formation of larger oligomers.

Urbanc et al., PNAS (2004); Yun et al., Biophys. J. (2007).

#### This work was supported by grants from the National Institutes of Health, Alzheimer's Association Zenith Fellows award, and the Petroleum Research Fund.

#### **HIERARCHY OF MODELS: LEVEL 1 APPROACH**

- Discrete Molecular Dynamics (DMD)
- No explicit solvent
- Simplified protein model (four beads per amino acid)



Aggregate of 16 Aβ42

Aβ40 and Aβ42 pentamers



Urbanc et al., Biophys. J. (2004); PNAS (2004).

#### **HIERARCHY OF MODELS: LEVEL 2 APPROACH**

• DMD

- No explicit solvent
- United atom protein model (all atoms except hydrogens)

Borreguero et al., PNAS (2005).

#### **MOTIVATION:**

*In vitro* studies of Aβ(21-30) suggest that this Aβ fragment nucleates folding of full-length Aβ40 and Aβ42.

Lazo et al., Proteins (2005).

Folded conformation of a decapeptide  $A\beta(21-30)$ 



#### **HIERARCHY OF MODELS: LEVEL 3 APPROACH**

- all-atom MD
- explicit solvents: -water
  - -low-density water -water with salt ions

Cruz et al., PNAS (2005).

#### **RESULTS:**

Aβ(21-30) folding sensitive to small changes in solvent. Decapeptide with the Dutch mutation (E22Q) has rare folding events.

#### Folded conformation of a decapeptide $A\beta(21-30)$



Legend: backbone (black), O (red), H (white), Na+ (green), Cl- (yellow), E22-K28 salt bridge (yellow hashed)

#### WHAT DO IN VITRO STUDIES SHOW?

 Aβ42 but not Aβ40 forms paranuclei (pentamers/hexamers) and multiples of paranuclei (~12, ~18-mers)-

Bitan et al., PNAS (2003);

• **C-terminal's Ile41 and Ala42:** a key role in Aβ42 paranuclei formation-

Bitan et al., JBC (2003);

• Oxidation of Met35: Aβ42 paranuclei formation abolished-Bitan et al., JACS (2003).



# **3D** structure of A $\beta$ 40 and A $\beta$ 42 pentamers



VMD Software Package (Humphrey et al, JMG, 1996). STRIDE program for s.s. calculation (Heinig and Frishman, 2004). Four-bead model with hydrogen bonds: planar β-sheet dimers and single-layer β-sheet oligomer structure

#### Planar $\beta$ -sheet dimer in water





Urbanc et al., Biophys. J., 2004.



*In silico* result (L34,M35,V36 strongly connected to V40,I41,A42 in Aβ42, not in Aβ40) provides an explanation of *in vitro* finding (oxidation of M35 blocks Aβ42 paranuclei formation—Bitan et al., JACS, 2003).

#### Four-bead protein model



#### Amino acid-specific side chain interactions

**hydrophobic** residues: Ile, Val, Leu, Phe, Cys, Met, Ala hydrophobic effect --> minimize the ``solvent''exposed surface --> attraction



**hydrophilic** residues: Arg+, Lys+, Asp-, Glu-, Asn, Gln, His hydrophilic effect --> maximize the ``solvent''exposed surface-->repulsion



#### What is the Appropriate Molecular Dynamics (MD) Method?

A need for an *in vitro* → *in silico* approach to reveal mechanisms of Aβ folding, aggregation, and different pathways of assembly:

Teplow et al. "Elucidating Amyloid β-Protein Folding and Assembly: A MultidisciplinaryApproach", *Accounts of Chemical Research* (2006).

• Current all-atom simulations with explicit solvent are limited to study intial folding events of full-length A $\beta$  on time scales < 1  $\mu$ s:

Urbanc et al. "Computer Simulations of Alzheimer's Amyloid β-Protein

Folding and Assembly", Current Alzheimer Research (2006).



• Develop simplified protein models and use faster and more efficient algorithms, such as discrete molecular dynamics:

Urbanc et al. "*Ab initio* Discrete Molecular Dynamics Approach to Protein Folding and Aggregation", *Methods in Enzymology* (2006).