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ABSTRACT

This thesis applies molecular dynamics simulations and statistical mechanics to

study: (i) protein folding; and (ii) protein aggregation.

Most small proteins fold into their native states via a first-order-like phase tran-

sition with a major free energy barrier between the folded and unfolded states. A

set of protein conformations corresponding to the free energy barrier, ∆G>>kBT ,

are the folding transition state ensemble (TSE). Due to their evasive nature, TSE

conformations are hard to capture (probability ∝ exp(−∆G/kBT )) and characterize.

A coarse-grained discrete molecular dynamics model with realistic steric constraints

is constructed to reproduce the experimentally observed two-state folding thermody-

namics. A kinetic approach is proposed to identify the folding TSE. A specific set of

contacts, common to the TSE conformations, is identified as the folding nuclei which

are necessary to be formed in order for the protein to fold. Interestingly, the amino

acids at the site of the identified folding nuclei are highly conserved for homologous

proteins sharing the same structures. Such conservation suggests that amino acids

that are important for folding kinetics are under selective pressure to be preserved

during the course of molecular evolution. In addition, studies of the conformations

close to the transition states uncover the importance of topology in the construction

of order parameter for protein folding transition.

Misfolded proteins often form insoluble aggregates, amyloid fibrils, that deposit

in the extracellular space and lead to a type of disease known as amyloidosis. Due

to its insoluble and non-crystalline nature, the aggregation structure and, thus the

aggregation mechanism, has yet to be uncovered. Discrete molecular dynamics stud-
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ies reveal an aggregate structure with the same structural signatures as in experi-

mental observations and show a nucleation aggregation scenario. The simulations

also suggest a generic aggregation mechanism that globular proteins under a dena-

turing environment partially unfold and aggregate by forming stabilizing hydrogen

bonds between the backbones of the partial folded substructures. Proteins or pep-

tides rich in α-helices also aggregate into β-rich amyloid fibrils. Upon aggregation,

the protein or peptide undergoes a conformational transition from α-helices to β-

sheets. The transition of α-helix to β-hairpin (two-stranded β-sheet) is studied in

an all-heavy-atom discrete molecular dynamics model of a polyalanine chain. An

entropical driving scenario for the α-helix to β-hairpin transition is discovered.
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Chapter 1

Introduction

Proteins are among the most important biomolecules. They are the building blocks

of life playing remarkable roles: as structural materials and as machines that operate

on the molecular level. They are responsible for many functions in cell organiza-

tion, reproduction, signal transduction, and cell death (apoptosis). Proteins carry

out transport and storage in living cells, e.g. Myoglobin & Hemoglobin. Proteins

inhibit or catalyze chemical reactions in the form of enzyme. Therefore, proteins are

ubiquitous and essential for life! The functional properties of proteins depend upon

their three-dimensional structures (see Fig 1.1d,e).

Proteins are linear heteropolymers composed of twenty different amino acids and

jointed by peptide bonds (see Fig 1.2). The sequence of amino acids for the proteins is

the primary structure of proteins (see Fig 1.1a). Due to the complicated interactions

among amino acids and between amino acids and the solvents, the heteropolymer

with particular sequence of amino acids folds to generate, from linear chains, com-

pact domains with specific three-dimensional structure (see Fig 1.1b,c). The 3D

structures of proteins — tertiary structure — are composed of several segment of

regular secondary structures, α-helices and β-sheets (see Fig 1.1d,e), connected by

some short unstructured segments—random coil.

To understand the biological function of proteins we would, therefore, like to

be able deduce and predict the three-dimensional structure from the amino acids

sequence, which is encoded in the gene according to the CENTRAL DOGMA. Given
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Figure 1.1: The hierarchical composition of proteins.

(a) The amino acid sequence of a protein’s polypeptide chain is called its primary

structure. Different segments of protein form secondary structures: (b) α-helix and

(c) β-sheet. These secondary structures are stabilized by hydrogen bonds between

peptide backbones. The tertiary structure is formed by packing several secondary

structure elements into the compact globular units. Protein ubiquitin (PDB access

code: 1UBQ) are presented in space-filled (d) and cartoon (e) representations for the

purpose of illustration.



3

a sequence of protein with 100 amino acids, and assuming that each residue can

adopt two possible conformations, namely α-helix or β-sheet1, the number of possible

three-dimensional conformations of such a protein will be 2100 ≈ 1030. The shortest

time need for protein to make a conformational change is picoseconds, therefore the

folding by random search in the conformation space will take 1018 seconds. However,

most proteins fold in the order of milliseconds to seconds. This paradox was first

described by Levinthal [1]. Therefore, there must be a conformational “information”

stored in the primary structure of proteins which drives the protein toward the native

state. Ever since Anifsen [2] first shows that protein can fold in vitro without any

other help such as folders or shapers, the self-assembly property of proteins with

a small amount of atoms have been fascinated scientists for almost half an century.

The protein folding problem — how does a protein with certain amino acids sequence

fold into the specific 3D structure? — have been the subject for extensive theoretical

and experimental studies.

CH

CH C

N

O

H

CH

COOH

N

H

C

O

R3

NH2

R 1

R2Amino Terminus Carboxyl Terminus

Peptide Bonds

Figure 1.2: Schematic representation of the polypeptide chain.

R1, R2, etc. are the side chain groups attached to α-carbons (Cα) of the amino acid.

A natural question upon protein folding problem is “does protein ever fold incor-

rectly?”. The answer is YES. Proteins could fold into some misfolded states usually

under conditions other that physiological conditions. When we boil an egg, the pro-

teins in the white unfold. But when the egg cools, the proteins do not return to

1This number is obviously a big underestimation
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their original shapes. Instead, they form a solid, insoluble (but tasty) mass. This is

misfolding. Similarly, biochemists have always complained the tendency of some pro-

teins to form the insoluble deposits in the bottom of their test tubes. We now know

that these, too, were proteins folded into the wrong shapes. The misfolded proteins

have a strong tendency to form insoluble aggregations. However, it is astonishing

how rarely misfolding occurs in the cell. Nature has devised a host of error-correcting

mechanisms, most of which are barely understood. However, one type of misfolding

and aggregation happens very frequently, causing a process known as amyloidosis

forming long-stretched fibrils (see Fig. 1.3), which is observed in a number of dis-

eases, such as Alzheimer’s disease, prion disease and Amyotrophic Lateral Sclerosis

(Lou Gehrig’s disease). Therefore, the studies of protein misfolding and aggregation

are of both scientific and medical interests.

Figure 1.3: The electron micrography of amyloid fibrils formed by SH3 domain.

The problems of protein folding (phase transition) and protein aggregation is of

particular interest to physicists. There are a set of theories and models developed

in condensed matter physics about phase transition and aggregation in complex
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systems, such as the coil-globular transition theory in polymer physics, the random-

energy model in describing the disordered systems, the university theory of phase

transition near critical point, and various aggregation theories near and/or far way

from equilibrium. Many of these phenomena can be understood by focusing on the

interplay of only a few important processes, or driving forces. The remaining forces

only slightly affect the system and may not be critical to understand the phenomena.

Therefore, by grasping only the driving force and eliminating the unimportant degree

of freedom, the coarse-grained physics models successfully describe the behavior of

large scale system. However, while studying the small systems as proteins, many of

the assumptions in these physics theories and models do not hold. Lacking the exact

knowledge of the driving force governing the protein folding and aggregation, it is a

great challenge for physicists to develop effective models in describing the behavior

of proteins. Therefore, with fast development of computation ability in the past

few decades, computer simulations have become increasingly important in studies of

proteins. This thesis will focus on the application of discrete molecular dynamics

simulations and statistical physics on coarse-grained model proteins to understand

the thermodynamics and kinetics of protein folding as well as the mechanism of

protein aggregation. The structure of this thesis is as following: the second chapter

of this thesis is the discrete molecular dynamics methods. The third chapter presents

the studies of the thermodynamics and kinetics of protein folding. In the fourth

chapter, the attempt to unveil protein aggregation mechanism is described.



Chapter 2

Discrete molecular dynamics

2.1 Introduction

With dramatic increase of computer power in recent decades, it became possible

to study the behavior of relatively large biological molecular systems by computer

simulations, such as Monte Carlo (MC) and molecular dynamics (MD) simulations.

Monte Carlo simulations on the lattices appear to be very useful to study the the-

oretical aspects of protein folding [3–5]. The Monte Carlo algorithm is based on a

set of rules for the transition from one conformation to another. These transitions

are weighted by some transition matrix, which reflects the phenomena under study.

The simplicity of the algorithm and a significantly small conformational space of

the protein models (due to the lattice constraints) make Monte Carlo on-lattice sim-

ulations a powerful tool to study the equilibrium dynamics of the protein models.

However, lattice models impose strong constraints on the angles between the covalent

bonds, thus, greatly restricting the conformational space of the protein-like model.

The additional drawback of this restriction lies in the poor capability of these mod-

els to discern the topological properties of the proteins. The time in Monte Carlo

algorithms is estimated as the average number of moves (over an ensemble of the

folding ⇀↽ unfolding transitions) made by a model protein. It was pointed out that

Monte Carlo simulations are equivalent to the solution of the master equation for

the dynamics and, hence, there is a relation between physical time and computer

6
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time, which is counted as the number of Monte Carlo steps. However, a number of

delicate issues, such as the dependence of the dynamics on Monte Carlo move set,

remain outstanding and hence an independent test of the dynamics using the MD

approach is needed.

The traditional all-atom molecular dynamics with realistic force-field in a physi-

ological solution (which would be ideally used to study protein folding and aggrega-

tion) is not computationally accessible with current technology. The complexity and

vast dimensionality of the protein conformational space make the folding time too

long to be reachable by direct computational approaches. The biological process as

allowed by all-atom molecular dynamics, can only be studied on time scales of up to

10−7s using such advanced technologies as world-wide distributed computing [6, 7].

However, the folding and aggregation process happens at least in milliseconds. There-

fore, simplified models became popular due to their ability to reach reasonable time

scales and to reproduce the basic thermodynamic and kinetic properties of protein

folding such as: (i) unique native state, i.e. there should exist a single conforma-

tion with the lowest potential energy; (ii) cooperative folding transition (resembling

first order transition); (iii) thermodynamic stability of the native state; (iv) kinetic

accessibility, i.e. the native state should be reachable in a biologically reasonable

time.

Recently, a new approach for simulations of model proteins, discrete molecular

dynamics [8, 9], has been implemented to study the dynamics of proteins. This ap-

proach permits the rapid testing of the folding properties of proteins with reasonable

processor time. This MD algorithm has proved to be a powerful tool to study the

thermodynamics and kinetics of the folding ⇀↽ unfolding transition [8–13] as wall as

aggregation of simplified models of proteins [14].

2.2 Discrete Molecular Dynamics

In general, discrete molecular dynamic (DMD) simulations are based on pairwise

spherically symmetrical potentials that are discontinuous functions of an interatomic

distance r. Each atom has a specific type — A, B, C,. . . — that determines its inter-
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action with other atoms. Each type is characterized by its mass m. The interaction

potential between atoms A and B is a step function of their distance r, characterized

by distances 0 < rAB
min < rAB

1 . . . < rAB
max. If the distance r between two atoms A and

B satisfies the inequality rAB
i < r < rAB

i+1, the pair potential has a value of uAB
i . If

r < rAB
min, uAB = ∞ and rAB

min is the hardcore collision distance. If r > rAB
max, u

AB = 0

and rAB
max is the maximal range of interaction. If atoms A and B are linked by a co-

valent bond, they interact according to a different potential characterized by values

r̃AB
i and ũAB

i . In this case, if r > r̃AB
max, ũ

AB = ∞, which indicates that the bond is

permanent and cannot be broken under any conditions.

In DMD all atoms move with a constant velocity unless their distance becomes

equal to rAB
i . At this moment of time their velocities change instantaneously. This

change satisfies the laws of energy, momentum, and angular momentum conservation.

When the kinetic energy of the particles is not sufficient to overcome the potential

barrier εAB
i = uAB

i−1 − uAB
i , the atoms undergo a hardcore reflection with no potential

energy change. The main difficulty of this method is the effective sorting and updat-

ing of the collision times. However, it is possible to make the speed of the algorithm

inversely proportional to N lnN where N is the total number of atoms [15]. For a

sufficiently large number of steps, the method becomes equivalent to a regular MD

based on Newtonian dynamics.

2.2.1 Algorithm

In order to effectively simulate the collisions, the system is divided into cells. The

dimension of the cell is assigned to be the largest interaction range of all the atom

pairs. Thus, all possible interacted atoms of a specific atoms are within the neighbor

cells, ncell = 3d where d is the dimensionality of the simulation system. In addition,

traveling of different atom from one cell into another cell has to be included as an

additional collision events. In order to determined the soonest collision time ti for

atom i, the calculation only need to between taken over the atoms in the neighbor

3d cells. Then the smallest ti will be the soonest collision of the system.

Since each atom moves with constant velocity in between the collisions evolving
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1. Initialize the system, construct the table of all possible collisions

2. Determine the soonest collision, between q and p;

3. Taken away from the collision table the outdated collision related to p and q;

4. Update the state of p and q;

5. Recalculated the new possible collisions of p and q and update them into the collision table; 

6. If time is smaller than maximum time, repeat step 2,3,4,5,6. Otherwise, quit the program.

Figure 2.1: The schematic diagram of DMD algorithm.

itself, it is the state — the position of previous collision, the velocity as well as the

time of previous collision — that has to be kept track of. The DMD simulation

maintains a set of all possible collisions, collision table, and determines the soonest

collision. Once the soonest collision is determined between q and p after time δt. The

states of atoms p and q will be updated accordingly by satisfying the conservation of

energy and momentum. The system time is proceeded by δt. Then all the outdated

collision events related to p and q will be taken out from the collision table. The

new possible collisions of p and q will calculated by taken their neighboring atoms in

account. The new calculated collisions will be inserted into the collision table to find

the next soonest collision. Therefore, during each collision event, only the evolved

atoms pairs need to be updated to keep track of their new state and the rest of the

system is not need to update. The schematic chart diagram of the DMD algorithm

is presented in Fig. 2.1. To facilitate the searching of soonest collision, a priority tree

date structure can be applied [15].

2.2.2 Temperature Control

One of the important issues in molecular dynamics simulations is to control the

temperature. In order to simulate the system in the constant temperature, there

must be a thermostat to keep the temperature around the target temperature, Ttarget.
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The temperature of a system is defined by the kinetic energy of the system,

3

2
kBT ≡

1

N

N
∑

i=1

mv2
i

2
, (2.1)

where N is number of particles in the system. We used two different ways to control

the temperature, “ghost”-particle method and Berendsen thermostat [16].

In the “ghost”-particle method, we introduces a large number of non-interacting

“ghost”-particles in addition to the proteins under simulation. These particles only

experience hard-core interaction among themselves and also with atoms in the pro-

teins under study. Therefore, the additional particles will not contribute to the total

potential energy. The fluctuation of potential energy due to the protein system will

be evenly distributed into the whole system including the “ghost”-particles. Upon

potential energy change δE, the temperature will also change with the amount of

3δE/2N . Once the number of “ghost”-particles are large enough comparing to the

number of atoms in the protein system, the system temperature fluctuation is ne-

glectable. Therefore, by setting the initial temperature to Ttarget, the temperature of

the system will keep around that value.

The Berendsen thermostat algorithm is proposed by Berendsen et al. [16] to

maintain the system temperature for molecular dynamics simulations. By coupling

the system with an external bath with a coupling constant α, the algorithm effectively

keeps the temperature constant. The algorithm is as the following: at every time

step of δt, the velocities of system with temperature T is rescaled such that the new

temperature T ′ becomes,

T ′ = T + (Ttarget − T )(αδt) , (2.2)

with the scaling coefficient χ =
√

T ′/T =
√

1 − (1 − Ttarget/T )αδt. Assuming that

initially the temperature is T0 and there is not other input into the kinetic energy,

then time dependence of the temperature is

T (t) = Ttarget + (T0 − Ttarget) exp(−αt) . (2.3)

Therefore, any fluctuation of temperature away from the target temperature will

decay exponentially.
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However, since the discrete molecular dynamics algorithm is event-driven. Once

the velocities of the whole system is rescaled, all the calculations about the pairwise

collision time needs to be recalculated, which will affect the efficiency of the algo-

rithm. Therefore, instead of rescaling the velocity by coefficient χ, thus the kinetic

energy being rescaled by χ2, we rescale all the pair potential strengths (depth of all

potential wells) by 1/χ2. Therefore, the total energy after rescale becomes

Erescaled =
Epotential

χ2
+ Ekinetic =

1

χ2
(Epotential + Ekineticχ

2) . (2.4)

Also, the Boltzmann factor, exp((Eij/χ
2)/kBT ) = exp(Eij/kBT

′), keeps the same as

in Berendsen’s approach. Therefore, the rescaling of potential energy is equivalent

to the rescaling of the kinetic energy (Berendsen thermostat) in the dynamics except

that the total energy is scaled, which indicates that the time units is also rescaled.

In order to calculate the “real” physics variables such as temperature, time and

potential energy which are equivalent to those in Berendsen’s approach, we need to

take into account of the rescaling factor and accumulates the scaling factors in such

a way that everything is equivalent to Berendsen’s approach

Tmes = T sim
∏

i

χ2
i , (2.5)

tmes =
∑

i

δtsimi

χi

, (2.6)

Emes
potential = Esim

potential

∏

i

χ2
i , (2.7)

where i denotes ith rescaling. Thus, our approach is fully equivalent to Berendsen’s

thermostat.

2.2.3 Discussion

The speed of the algorithm also decays linearly with the number of steps in the

potential, and strongly decays with the density of the system. This method is very

effective in simulating proteins (where the density is small and the majority of the

interactions can be modeled using either a hardcore or a simple square well) and

allows us to observe protein folding transitions and aggregations [9–11,14].
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Discrete molecular dynamics simulation methodology is a step in simplification

of molecular modeling with respect to traditional molecular dynamics simulations.

The principal drawback of the discrete molecular dynamics simulations is its diffi-

culty to represent forces. Instead, system’s dynamics is realized through ballistic

collisions between particles. Interactions between particles are modeled by square-

well potentials. Despite its simplicity, discrete molecular dynamics has been proved

to be a powerful tool not only to study protein folding thermodynamics [8–11] and

kinetics [10–12], but to identify the evasive protein transition state ensembles [10]

and to witness aggregation of multiple proteins into amyloid fibrils [14]. The latter

two goals have yet to be directly approached with traditional molecular dynamics

simulations. In addition, the traditional all-atom molecular dynamics simulations

are also a simplification of the quantum mechanics simulations, in which quantum

interactions are replaced by approximate Newtonian interactions. The latter, in turn,

are approximated by a large number of empirical parameters. The advantage of the

discrete molecular dynamics simulations versus traditional molecular dynamics sim-

ulations is its ability to resolve larger time scales — 106 orders of magnitude. The

traditional molecular mechanics simulations have similar advantage over quantum

mechanics simulations. The traditional molecular dynamics simulations are based

on several decades of improving and testing of model force field, while applications

of discrete molecular dynamics simulations have been limited until recently to col-

loids and hard spheres. Despite of this we believe that modifying and improving

parameters of discrete molecular dynamics simulations for proteins by testing them

on simple systems such as the polyalanine chain studied here will eventually lead to

models with quantitative predictive power.



Chapter 3

Protein Folding Problem

3.1 Introduction

One of the intriguing questions in biophysics is how do protein sequences determine

their unique three-dimensional structure. This question, known as protein folding

problem [2–5, 17–35], is of great importance because understanding protein folding

mechanisms is a key to successful manipulation of a protein structure and, conse-

quently, function. The perspective of manipulation of protein’s function is, in turn,

crucial for effective drug discovery.

Understanding the mechanisms for protein folding is also crucial for deciphering

imprints of the evolution on protein sequence and structural spaces. For example, it

has been shown [36] that some positions along the sequence in a set of homologous

proteins are more conserved in a course of evolution than others. Such conservation

can be attributed to evolutionary pressure to preserve amino acids that play crucial

role in: (i) protein function, (ii) stability, and (iii) folding kinetics — the ability of

proteins to rapidly reach the native state [37]. Interestingly, function is not conserved

among non-homologous proteins that share the same fold, so we can assume that

the functional pressure to preserve functionally important amino acids is “weaker”

than those that are involved in protein stability and folding kinetics. It has been

shown [37] that up to 80% of conservation of amino acids in the course of evolution

can be explain by pressure to preserve protein stability. Thus, in order to understand

13
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the role of evolutionary pressure to preserve rapid folding kinetics we need to be able

to quantify the importance of amino acids for protein folding kinetics.

3.1.1 Nucleation scenario

Two-state proteins are characterized by fast folding and the absence of stable in-

termediates at physiological temperatures. If we follow the folding process for an

ensemble of initially unfolded proteins, both the average potential energy and the

entropy of the ensemble decrease smoothly to their native state values. The absence

of energetic and topological frustrations defines a ”good folder” [38,39]. Various mea-

sures have been proposed to determine if a protein sequence qualifies as a two-state

folder, either relying on kinetic [40] or thermodynamic [41] properties.

The free energy landscape of the two-state proteins at physiological temperatures

is characterized by two deep minima [3, 24, 42–46]. One minimum corresponds to a

unique native state with the lowest potential energy and zero entropy, while the

second minimum corresponds to a set of unfolded or misfolded conformations with

higher values of the potential energy and non-zero entropy (see Fig. 3.1). At the

folding transition temperature TF these minima have equal depth and a protein

coexist in two states with equal probability. The two minima are separated by a free

energy barrier. A set of conformations that belong to the top of this barrier, having

the maximal values of the free energy, are called the transition state ensemble.

At equilibrium, the free energy of a conformation, ∆G, translates to the probabil-

ity of a given conformation to have a state with a given free energy, p ∼ exp(−∆G/kBT ),

where kB is the Boltzmann constant and T is the temperature of the system. Since at

TF free energies of native and unfolded/misfolded ensembles are equal, the probabil-

ity to exist in each of these states is the same. The probability to find a conformation

at the top of the free energy barrier is minimal. Therefore, if we consider any protein

conformation at the top of the free energy barrier, such conformation most likely

unfold or reach its native state with equal probabilities 1/2. So, the transition state

ensemble is characterized by probabilities of the conformations to reach the native

state equal to 1/2 [10,11,30].
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Figure 3.1: Schematic diagram of free energy landscape for the protein at Tf .

The questions then are: “What happens at the top of the free energy barrier?”

“Are there any specific mechanisms that are responsible for the rapid folding transi-

tion?” There have been proposed numerous folding scenarios to answer these ques-

tions [22,23,28,47–52]. The mechanisms that we advocate here is called a nucleation

scenario [3, 27]. According to nucleation scenario, there is a specific obligatory set

of contacts at the transition state ensemble, called a specific nucleus, formation of

which determines the future of a conformation at the transition state ensemble. If the

specific nucleus is formed, a protein rapidly folds to its native conformation. If the

specific nucleus is disrupted in the transition state, the protein rapidly unfolds. Thus

to verify the nucleation scenario we must determine the nucleus and the transition

state ensemble of a protein.
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3.1.2 Protein engineering experiments

Figure 3.2: Illustration of Φ-value analysis

Schematic diagram about the free energies of different states for both wild type and

mutant. U means the unfolded states, ‡ means the transitional states and F means

the folded states.

An elegant approach to examine the transition state ensemble in experiments

was proposed by Fersht el al. [53, 54]. The method, called protein engineering or

Φ-value analysis, is based on the engineering a mutant protein with amino acids

under consideration replaced by other ones. The site-directed mutations from one

amino acid into another one will perturb the contacts formed at this site. The

perturbation by the site-directed mutation changes the free energy landscape of wile-

type protein (see Fig. 3.2). By measuring the equilibrium rate and the kinetic folding

rate for the mutant and for the wild type, the free energy changes in transition

state ∆G‡, folded state ∆GF can be determined by assuming that the unfolded

state has no stable structure and resembles random coil conformations such that the

free energy change for the unfolded states ∆GU (Fig. 3.2) is close to zero [53, 54].
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Under the assumption that the mutation does not vary the protein structure as well

as the folding pathway, i.e. the change of free energy profile is solely due to the

contact changes from mutations in different states, a parameter Φ-values are defined

to character the transition state as

Φ =
∆G‡ − ∆GU

∆GF − ∆GU
. (3.1)

Φ-values are close to 0 if the mutation does not affect the transition state, which

indicates that the site does not have substantial structure in the transition state.

Φ-values are close to 1 if the substitution affect the transition states to the same

extent as the folded states, which indicates that this site have a native-like structure

already in the transition state. Thus, these amino acids are most important for the

protein folding kinetics.

Due to its simple interpretation, protein engineering has become a popular tools

to study protein folding transition state in experiments. However, there are many

subtle issues in the interpretation of the experimental data. One example is that

the perturbation of single mutation might not be able to disturb the important

interaction by the backbone so that the method will not see the importance of these

type interactions in the transition state. Another example is that some proteins

might form some non-native structures in which case protein engineering does not

apply. Moreover, the assumption about the unfolded state is under debate in the

field. More and more evidences show that the unfolded state is far from random

coil with a certain persistent residual structures. Therefore, precautions need to be

taken to interpret the experimental data.

3.1.3 Deriving the folding kinetics from crystal structures

Due to difficulties and cost of actual experimental studies, it is important to develop

rapid tools to identify folding kinetics of a given protein from its crystal structure.

The ultimate goal is to be able to predict protein folding kinetics of a given protein

from its sequence. However, this goal requires the solution of the protein folding

problem, i.e. understanding of how a given amino acid sequence folds into native

protein structure. Since protein crystal structures provide invaluable information
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about amino acid interactions, it is possible to reduce the problem to identifying

protein folding kinetics from its structures. Surprisingly, such an approach has al-

ready yielded promising and robust results.

Developments in the last decade in protein purification and structure-refining

methods [55–58] have led to publication of high resolution proteins’ crystal struc-

tures. This set of data boosted theoretical studies of protein folding beyond the

general heteropolymer models [20, 59–61]. Early studies targeting important amino

acids for protein dynamics applied the available crystal structure data in two differ-

ent approaches: structures were used (i) as reference states (decoys) for theoretical

predictions [62–65], and (ii) as a source of dynamical information [66–68]. Studies

relied in the developed theoretical framework [69] that explained the folding of rel-

atively small proteins as a chemical reaction between two sets of species – folded

and denatured protein states, separated by transition states and by possibly a set

of metastable intermediates. Transition states control the rate of the folding reac-

tion, and solving for the portions of the protein that provide structural coherence to

these transition states became a major effort in determining the kinetically important

amino acids.

Computational power limitation and the inaccuracies in the inter-atomic force-

field [70] forced all-atom folding simulations to be performed under extreme condi-

tions favoring denaturation, typically very high temperatures [62–65, 71]. This ap-

proach assumes that folding of the protein can be described by running the unfolding

simulation backwards in time, and that folding at high temperatures is comparable

to folding at room temperatures. These assumptions are questionable, since fold-

ing experimental studies are performed under conditions favoring the native state.

Furthermore, the low stability of proteins at physiological conditions –only a few

kcal/mol [21], indicates that folding of the protein to its native structure is the result

of a delicate balance between enthalpic and entropic terms. This balance is distorted

at high temperatures, where folding becomes a rare event and the transition state

may change drastically [72,73].

In simulations, Daggett et al. [62, 64, 71] unfolded target proteins starting from

their crystal structures, and monitored the time evolution of a parameter represent-
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ing the structural integrity of proteins during simulations. Abrupt changes in the

parameter pinpointed denaturation of these protein, and analysis of the trajectories

revealed disrupted native amino acid interactions. The amino acids involved in these

key interactions were identified as kinetically important, and the authors found good

correlation to experimental folding results.

The issue of the limited statistical significance of the results [62, 64, 71] due to a

small number of unfolding simulations was addressed by Lazaridis et al. [63], who

performed a larger series of unfolding simulations starting from conformations slightly

different from the initial crystal structure. A wealth of simulations allowed authors

to extract the common set of key interactions and identify the important amino acids

with higher accuracy. Other attempts to circumvent the poor statistics rested on the

discretization of a representative unfolding simulation, followed by long equilibrium

simulations of the protein around each of the discretized steps [65]. This method

assumes that a protein is at equilibrium at every step in the folding process, but

given that at high temperatures folding is a rare event, caution must be taken when

interpreting the results.

Recent all-atom simulations were also used to increase the efficiency of protein

engineering experiments in a self-consistent experimental+computational approach

toward determination of the TSE [74]. This method is most useful for proteins for

which only a small fraction of the residues play a key role. Such method may also

serve as a refining tool of the protein engineering results.

Protein databases [75] of crystal structures have been widely used as a source

of dynamical information with application to folding simulations. In their pioneer

study, Wilson et al. [76] computed effective pairwise amino acid contact potentials

from the frequencies of spatial proximities between pairs of amino acids obtained in

the database of structures. Authors used these potentials to reproduce with modest

success the folding process of a one-atom crambin [77] model on the square lattice.

Skolnick and Kolinski [66, 67] developed a statistical potential using two-atom rep-

resentation of apoplastocyanin [78]. Folding simulations on a finer lattice than that

used in previous studies allowed authors to fold a model protein with a root mean

square deviation (rmsd) of 6Å with respect to the crystal structure. However, the
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propensity of the amino acids to adopt a specific crystal structure prevented authors

from generalizing the applicability of the model to more than one protein at a time.

Since all information necessary to fold a particular protein is precisely encoded

in the protein structure, the crystal structure can be used as the sole source of in-

formation, with no regard to the protein database. This approach was taken by Dill

et al. [68] in their study of the folding mechanisms of crambin and chymotripsin

inhibitor. Dill et al. assigned attractive interactions between all pairs of hydropho-

bic amino acids that were in geometrical proximity from each other in the crystal

structure, neglecting other amino acid interactions. The folding dynamics was im-

plemented through a sequence of folding events in Monte Carlo search. Authors

found that one every 4000 simulations ended in the crystal structure and proposed a

folding pathway for the two proteins. This technique, although able to find a folding

event, cannot reproduce a statistically significant ensemble, since the sequence of

folding events is forced in the simulation. Thus, only when the proposed sequence

of events coincides with the most probable ones, can the results be representative of

the folding of the protein.

We combine effective dynamic algorithm as well as coarse-grained protein mod-

els with crystal structure based interaction potential to study the protein folding

kinetics. Despite the simplicity, the combinatorial approach gives encouraging re-

sults [10,14,79].

3.1.4 Why is it difficult to determine the folding kinetics?

Some other theoretical approaches [45, 52, 80, 81] have been proposed to predict the

transition states in protein folding and obtained significant correlations with experi-

mental φ values for several proteins. However, each of these models involves drastic

assumptions. For example, each amino acids can only adopt two states—native or

denatured, and the ability to be in the native state was considered to be independent

of other residues. Such an assumption is normal for one-dimensional systems, but

may be inappropriate for three-dimensional proteins, because the native state of a

residue depends on its contacts with its neighbors. Moreover, the dynamics is only
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derived from thermodynamics in these works.

The principal difficulty to select TSE conformations is the identification of the

reaction coordinate for protein folding. The fraction of native contacts Q [82,83] has

been proposed as the reaction coordinate to study the TSE. However, the reaction

coordinate for folding is not well defined [24, 30, 84], so in principle it is difficult to

determine the folding TSE from equilibrium sampling. The probability for the protein

conformation to fold into the native states pfold [30], is proposed as the robust criteria

of TSE. Thus, the TSE can be determined from the kinetic simulations as the set

of conformations representing the kinetic separatrix between native and unfolded

basins of attraction [30,84].

Here we propose an approach to identify TSE from molecular dynamics sim-

ulations. Our approach unifies a number of concepts that has been developed in

the protein folding community [5, 85–88]. We test this approach on the folding ki-

netics of the C-Src SH3 domain (PDB access code: 1NLO), within the Gō model

approximation for the amino acid interactions [5,86]. We introduce a coarse-grained

representation of C-Src SH3 domain which includes the Cα and Cβ atoms, and a set

of additional specific constraints that allow us to mimic protein flexibility. Next, we

will describe our model and methods.

3.2 Protein models

3.2.1 Model Geometry

We model the protein by beads representing Cα and Cβ (Fig. 3.3). There are four

types of bonds: (i) covalent bonds between Cαi and Cβi, (ii) peptide bonds between

Cαi and Cα(i±1), (iii) effective bonds between Cβi and Cα(i±1), (iv) effective bonds

between Cαi and Cα(i±2). In order to determine the effective bond length, we calculate

the average and the standard deviation of distances between carbon pairs of types

(iii) and (iv) for 103 representative globular proteins obtained from the PDB. We

find that the average distances are 4.7Å and 6.2Å for type (iii) and type (iv) bonds

respectively. The ratio σ of the standard deviation over the average for bond types
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(iii) and (iv) are, respectively, 0.036 and 0.101. The standard deviation of bond

type (iv) is larger than that of bond type (iii) because it relates to the angle of

two consecutive peptide bonds. Thus, the bond lengths of type (iv) fluctuate less

than the that of type (iii). The effective bonds impose additional constraints on the

protein backbone, so our model mimics closely the stiffness of the protein backbone,

and can give rise to cooperative folding thermodynamics.

In our simulation, the four types of bonds are realized by assigning an infinitely

high potential well barriers [89]:

V bond
ij =











0, Dij(1 − σ) < |ri − rj| < Dij(1 + σ)

+∞, otherwise
, (3.2)

where Dij is the distance between atoms i and j in the native state, σ = 0.0075 for a

bond of type (i), σ = 0.02 for a bond of type (ii), σ = 0.036 for a bond of type (iii)

and σ = 0.101 for a bond of type (iv). The covalent and peptide bonds are given a

smaller width and the effective bonds are given a wider width to mimic the protein

flexibility.

3.2.2 Non-bonded interaction potential: Gō model

To model interaction between non-bonded atoms, we use a modified Gō model similar

to one described in [89], in which interactions are determined by the native structure

of proteins. In our model, only Cβ atoms that are not next to each other along the

chain interact with each other. The cutoff distance between Cβ atoms is chosen to

be 7.5Å. Thus, the total potential energy

E =
1

2

N
∑

i,j=1

Ui,j (3.3)

where i and j denote residue i and j. Ui,j is the matrix of pair interactions

Ui,j =























+∞, |ri − rj| ≤ a0

(1 − 2∆i,j)ε, a0 < |ri − rj| ≤ a1

0, |ri − rj| > a1

, (3.4)
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Figure 3.3: The coarse-grained protein model

(a) Schematic diagram of the protein model. Grey spheres represent alpha carbons,

black ones represent beta carbons (for Gly alpha and beta carbons are the same).

In the present model only the interaction between side chains are counted, so that

the interaction only exists between β carbons, and the α carbon only plays the role

of the backbone. (b,c) The potential of interaction between (b) specific residues; (c)

constrained residues. a0 is the diameter of the hard sphere and a1 is the diameter of

the attractive sphere. [b0, b1] is the interval where residues that are neighbors on the

chain can move freely. ε is negative for native contacts and positive for non-native

ones.
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where, a0 is hard-core distance between the beads and a1 is the interaction distance

used to define a contact. ||∆|| is a matrix of native contacts with values of either 1

forming contact at native state, or 0 without contact at native state. In this model,

only Cβ atoms that are not next to each other along the chain interact with each

other. The matrix ||∆|| is usually termed as contact map. The contact map of C-Src

SH3 domain protein is repent in Fig. 3.4.
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Figure 3.4: The native state of C-Src SH3 domain.

(a) The cartoon representation of C-Src SH3, which is 56 amino acids long protein.

It contains mainly β-sheets. (b) The native contact map of SH3 domain.

Despite the drawback of the Gō model, associated with the prerequisite knowl-

edge of the native structure, it has important advantages. It is the simplest model

that satisfies the principal thermodynamic requirements for a protein-like model: (i)

the unique and stable native state, (ii) a cooperative folding transition resembling

a first-order phase transition. Further, it has been widely applied in the past to

study various aspects of protein folding thermodynamics and kinetics [52,86,87]. In

addition, experimental works [31,32,90] show that transition state ensemble of many

two-state fast folding proteins is primarily determined by native states topologies.
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3.3 Folding Thermodynamics

A successful protein model should reproduce the basic thermodynamic properties [3]

such as: (i) unique native state, i.e. there should exist a single conformation with

the lowest potential energy; (ii) cooperative folding transition (resembling first order

transition); (iii) thermodynamic stability of the native state; (iv) kinetic accessi-

bility, i.e. the native state should be reachable in a biologically reasonable time.

To test whether the model faithfully reproduces the experimentally observed [31,91]

thermodynamic properties of C-Src SH3 domain, we first perform the discrete molec-

ular dynamics simulations of the model C-Src SH3 domain at various temperatures.

At each temperature we calculate the potential energy E, the radius of gyration

Rg, the rms deviation from the native state RMSD [92], and the specific heat

Cv(T ) ≡ < (δE)2 > /T 2.

Definition 3.1 The radius of gyration Rg of a polymer with N monomers is defined

as:

R2
g =

1

2N2

N
∑

i=1

N
∑

j=1

(~ri − ~rj)
2 , (3.5)

where ~ri and ~rj are position of the ith and jth monomers. The value Rg measures

the overall size of the polymer.

Definition 3.2 The RMSD of two structures, Γ = {~ri} and Γ′ = {~r′i}, measures

the difference between these two structures. The definition is as following:

RMSD2 = min
A

∑N
i=1(~ri − A · ~r′i)

2

N
, (3.6)

where A is an arbitrary rotation matrix, and N is total number of atoms in both of

the structures.

At low temperatures, the average potential energy 〈E〉 increases slowly with

temperature, and the RMSD remains below 3Å, indicating that the protein is within

the basin of native state. Near the transition temperature Tf = 0.91, the quantities

E, Rg, and RMSD fluctuate between values characterizing two states, folded and

unfolded, yielding bimodal distribution of potential energy (Fig. 3.5c). Potential
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Figure 3.5: Thermodynamics of C-Src SH3 domain.

(a) The average potential energy and (b) the specific heat dependence on temper-

ature. There is a sharp transition at the folding temperature Tf=0.91. (c) The

probability distribution of the potential energy at Tf . It is bimodal, with a low prob-

ability between the peaks corresponding to folded (F) and unfolded (U) states, which

corresponds to the putative TSE (T). (d) The radius of gyration, (e) RMSD, and (f)

potential energy of the protein at folding temperature Tf respectively. A typical run

is shown. In folded states, the RMSD is around 2Å. The energy difference between

the folded state and unfolded state is about 70 energy units.

energy fluctuations at Tf give rise to a sharp peak in Cv(T ) (see Fig. 3.5b), which is

characteristic of a first order phase transition for a finite system. Our findings are

consistent with experimental observations for C-Src SH3 domain [31,91].

The trajectory at Tf (see Fig. 3.5c,d,e,f) clearly behaves a two-state folding ther-
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modynamics. At this temperature, the protein has equal probability to be seen in

the folded and unfolded states (Fig. 3.5c). In the histogram of potential energy at

Tf , there is a region with low probability between the folded and unfolded state. The

protein conformations in this region are unstable. Then, the question is “whether

this region are the true transition state”? Next, we examine this question.

3.4 Folding Kinetics

3.4.1 Construction of putative TSE

Next we determine for the C-Src SH3 domain the folding TSE, a set of conformations

with pfold equal to 1/2. It is computationally impossible to find pfold for every single

conformation of a protein. Thus, following Ref. [87], we limit the search for TSE

conformations to the energy range {ETS}, defined to be −91 < E < −80, corre-

sponding to the unstable region with the lowest probability in the potential energy

histogram at Tf (Fig. 3.5c). Not all conformations from {ETS} belong to the TSE,

so we partition these conformations into four kinds of fluctuations that bring the

protein to the unstable state within the range of {ETS} (see Fig. 3.6): (i) FF, when

the folded protein unfolds to {ETS} and then rapidly refolds to its native state, (ii)

UU, when the unfolded protein partly folds into {ETS} and then rapidly unfolds, (iii)

FU, when the folded protein unfolds to {ETS}, and then proceeds unfolding further,

and (iv) UF, when the unfolded protein traverses the energy range {ETS} on its way

to folded conformations.

Remark 3.1 As definition, the value pfold measures the probability of a certain con-

formation to fold into the native state. The TSE conformations corresponds to the

free energy barrier separating the folded and unfolded states so that has %50 prob-

ability to convert into native state. However, (i) the free energy landscape are very

sensitive to temperature, for example slightly deviate Tf the free energy landscape will

have only one basin either folded or unfolded. Therefore, the pfold analysis should be

performed at temperature Tf . (ii) At Tf , each unfolded conformation could have high

probability fold into folded basin by thermo-fluctuations if the observation time is
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Figure 3.6: Schematic diagram of four types of fluctuations to the putative transition

state region

FF (a), UU (b), FU(c) and UF(d). The upper line corresponds to the average energy

of unfold states (U), and the lower line corresponds to the average energy of folded

states (F). The cyan shaded region indicates the putative transition state (T) energy

range {ETS}, −91 < E < −80. All the fluctuations are selected along the trajectory

and are partitioned according their history and their future.

comparable of typical folding time. Therefore, the observation time should be much

less than the typical folding time.

We determine pfold from 100 simulation runs for conformations out of these four

UU, FF, FU and UF ensembles. For each ensemble, we randomly select 10 conforma-

tions to calculate the corresponding pfold values. In each run, we reassign the initial

velocities of each residue keeping the temperature unchanged at Tf . Because the ini-

tial state is unstable, it rapidly evolves to a stable folded or unfolded state. Indeed,

pfold varies greatly between starting conformations, despite the fact that their ener-

gies are similar: FF (Fig. 3.7b) conformations have pfold ≈ 1, while UU (Fig. 3.7c)

conformations have low pfold, UF (Fig. 3.7d) and FU (data not shown) conformations

exhibit pfold ≈ 1/2, and thus belong to the TSE. UU and FF conformations represent
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Figure 3.7: Relaxation trajectory for different fluctuations extended to putative tran-

sition region.

(a) A schematic representation of TSE conformations. TSE conformations belong

to the top of the free energy barrier between folded and unfolded states, and have

50% probability to descend to the folded state and 50% probability to descend to

unfolded states. (b) The evolution of potential energy for simulations starting from

a conformation from the native state basin of attraction (FF conformations). Most

simulations fold (see histogram). (c) The evolution of potential energy of the protein

for simulations starting from a conformation that belongs to an unfolded basin of

attraction (UU conformations). Most simulations unfold (see histogram). (d) The

fluctuations of potential energy starting at time zero from a conformation belonging

to the TSE: there is ≈ 50% probability to fold, and ≈ 50% to unfold. All three classes

of fluctuations shown in (b)–(d) start from conformations of the same potential

energy, and only 10 out of the 100 energy trajectories are shown.



30

basins of attraction of unfolded and native states respectively, so the energy and also

the fraction of native contacts Q, which is related to energy in the Gō models, are

not appropriate reaction coordinates for folding. For simplicity, we construct our

TSE only of UF conformations from the energy window {ETS}, i.e., conformations

that are collected only along trajectories that traverse this energy range on the way

from the unfolded state to the folded state. We analyze 200 independent folding

transitions to create the TSE. For a control, we randomly select 10 of them, and

for each we determine pfold. For all 10 conformations, pfold is approximately 1/2,

verifying our selection of conformations representing the TSE.

Remark 3.2 It is important, that even though we perform thermodynamic simula-

tions, we study the protein folding kinetics because we select UU, FF and UF confor-

mations based on their past and future states. It is due to kinetic selection of the UU,

FF, and UF conformations we observe difference in pfold values, even though their

energetic (potential energy) and structural (RMSD, Rg) characteristics are close to

each other.

3.4.2 Characterization of TSE

“Virtual screening” method

We use a technique similar to experimental φ-value analysis to predict the TSE via

computer simulations. We assume that the mutation does not give rise to significant

variation of the three-dimensional structures of folded state and transition state

ensembles, the same assumption that is made in protein engineering experiments. In

our simulations, the free energy shifts due to mutation can be computed separately

in the unfolded, transition, and folded state ensembles:

∆Gx = −kT ln〈exp(−∆E/kT )〉x . (3.7)

Here x denotes a state ensemble: folded, F, unfolded, U, and transition, T, ∆E is the

change of potential energy due to the mutation, and the average 〈. . .〉x is taken over
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Figure 3.8: Φ-values for C-Src SH3 domain.

(a) The values of ∆G for folded (F), transitional (T), and unfolded (U) conformations

determined in simulations at Tc. (b) φ-values determined from simulations by the

virtual screening method (•) and by experiment (2) [31,90]. Only residues for which

experimental φ-values are known are shown. The statistical errors of ∆G values are

estimated as the standard deviations. The errors of φ-values are derived from that

of ∆G by the error propagation. Below the x axis, the linear structure of C-Src

SH3 domain is shown. The arrows denote the β strands, the spaces between the

arrows are RT loop, n-src loop and distal β hairpin, respectively, and the short spiral

denotes the 310 helix.
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all conformations of unfolded, transition, and folded state ensembles. We compute

φ ≡
∆GT − ∆GU

∆GF − ∆GU

=
ln〈exp(−∆E/kT )〉T − ln〈exp(−∆E/kT )〉U
ln〈exp(−∆E/kT )〉F − ln〈exp(−∆E/kT )〉U

. (3.8)

The same equation has been applied to calculate φ values in Ref. [83]. Interestingly, if

one adopts a simplified definition of φ-value used in recent work [93] as proportional

to the number of contacts a residue makes in the TSE, the correlation coefficient

between theoretical and experimental φ-values is reduced to 0.27. An approximation

to the φ-value, the difference between the average number of contacts residues form

in the TSE and in unfolded states, φ ≈ (〈Ni〉T − 〈Ni〉U)/(〈Ni〉F − 〈Ni〉U), provides a

better correlation coefficient between predicted and experimentally observed φ-values

(0.48) than does the approximation of Ref. [93]. The reason why a thermodynamic

definition of the φ-value yields better agreement with experiments can be inferred

from the ∆G plot (Fig. 3.8a), which shows that ∆GF − ∆GU for most of the amino

acids is not negligible. Indeed, there are several amino acids that make persistent

short-range contacts in the unfolded states.

Next, we determine the φ-values for each residue using the “virtual screening”

method. The correlation coefficient between experimental [31, 90] and simulated φ-

values is 0.58 (Fig. 3.8b). In Fig. 3.8b, there are regions that our determined φ-values

apparently mismatch the experimental ones, such as residues 10-20, residues around

24, residues 43-46 and residue 54. One of the main reasons is that the mutations

can not probe all the surrounding interactions, especially the backbone interactions,

as what we do by “virtual screening” method. For example, residues 10-20 belong

to the N-terminal strand of RT-loop, which is mostly stabilized by backbone inter-

actions and persistent [94] in the partially unfolded states, and thus the mutations

in this region produce low φ values. For residues 43-46, we predict all intermediated

φ-values around 0.6 so that the corresponding β strand adopts the native-like struc-

ture in TSE, which is consistent with that fact that residue A45 having the highest

experimental φ-value. The reason why we can not capture the fluctuations of ex-

perimental values is because our simplified Gō model does not consider the specific

nature of different amino acids. In addition, the mutation on the same site to dif-
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ferent amino acids may yield different φ-values while the “virtual screening” method

does not consider the specificity of mutations. For residues L24 and G54, which we

found to be crucial for the folding kinetics, will be discussed later in this paper. For

comparison, we have also calculated the φ-values by using potential energy as the

reaction coordinate, i.e., selecting all the UU, FF, FU and UF conformations as tran-

sition states. The correlation coefficient between thus calculated and experimental

φ-values reduces to 0.49 (data not shown). Our results allow us to directly evaluate

the relative importance of various interactions in the TSE — an insight difficult to

obtain solely from experiments, which report on the structure of TSE only implicitly,

via φ-values, the interpretation of which is too complex in some cases [95,96].

By comparing the number of contacts NC that an amino acid makes in the TSE

with that number in the unfolded state (Fig. 3.9a), we select amino acids that are

most important for the formation of the TSE by setting the cutoff as 2 (Fig. 3.9b):

A12, N23, L24, F26, L32, V35, W43, A45, H47, G54, Y55 and I56. These amino

acids have high calculated φ-values except A12. The low calculated as well as ex-

perimentally derived φ-value for A12 indicates that it still need to form many more

contacts to be native like by noticing that it forms 13 contacts in the native states

(Fig. 3.10a). In general, the majority of the residues from that list have also high

experimental φ-values; remarkably, residue A45 which has the highest number of

contacts in the TSE with respect to the unfolded states has the highest experimental

φ-value — 1.2. Notable exceptions are N23, L24, W43 and G54, which have φ-values

that are either small or negative as in the case of G54. For residue G54, mutation

destabilizes the protein while accelerating folding, strongly suggesting that it indeed

participates in the TSE [95,97].

3.4.3 Folding Nuclei

A method to identify protein folding nucleus from equilibrium trajectories was pro-

posed in Ref. [89]. The idea is to study ensembles of conformations that have specific

history and the future. For example, conformations that originate in the unfolded

state, reach a putative transition state, and later unfold, must differ from the confor-
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Figure 3.9: Formation of contacts in TSE.

(a) The number of extra contacts that each residue forms in the TSE, compared to

the unfolded ensemble. (b) The histogram of the extra contact numbers for each

amino acids. There is a second peak at contact number 2. We set the cutoff as 2 for

the selection of amino acids that contribute most to the folding TSE. (c) Structure of

the native state of C-Src SH3 domain. The color code (from red to white) represents

the relative contribution of individual amino acids to the TSE. The brighter colors

of red represent the kinetically most important structures.
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Figure 3.10: Frequency maps of different protein ensemble

(a) Above the diagonal is the contact map of the native C-Src SH3 conformation,

while below the diagonal is the map of frequencies of contacts between residues ob-

tained from the averaging over 200 conformations of TSE. (b) Above the diagonal

is the map of frequencies of contacts between residues obtained from the averaging

over 200 conformations of FF conformations, while below the diagonal is the map of

frequencies of contacts between residues obtained from the averaging over 200 con-

formations of UU conformations. (c) The contact map of putative TSE is calculated

by using fraction of native contacts Q to select the TSE conformations [82, 83]. (d)

The difference of the frequency maps for FF and UU conformations shows that the

key contacts distinguishing FF and UU basins are between L24 and G54-I56 (dashed

ellipse). A long range contact L24-G54 occurs with high probability in all confor-

mations that belong to the basin of attraction of the native state. The gray scale

represents the frequency scale.
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mations that originate in the folded state, reach putative transition region and later

fold. Both sets of conformations, which we denote UU and FF correspondingly, are

characterized by the same potential energy and similar overall structural character-

istics. Nevertheless, there is a crucial kinetic difference between them. According

to nucleation scenario, UU conformations lack the folding nucleus. It is not created

at the transition state, which leads to the protein unfolding. FF conformation have

the nucleus intact at the transition state, so that the protein does not unfold. Thus,

in order to determine the nucleus, we propose to compare the average frequencies

of contacts between amino acids in UU and FF ensembles of conformations. Amino

acid contacts that have the largest frequency difference form the folding nucleus.

In Fig. 3.10 we present the contact map of the native state and maps of frequencies

of the relative participation of contacts in TSE, FF and UU conformations and the

difference of the frequency maps for FF and UU conformations. For comparison we

also show the contact map of the putative TSE (Fig. 3.10c) derived from using the

fraction of native contacts Q as the method to select TSE conformations [82, 83].

We find that the three-strand beta-sheet (residues 28–56) forms first — it is already

present in the majority of UU conformations (Fig. 3.10b). This is not surprising

since the three-strand beta-sheet is just a combination of distal hairpin (residues 44–

56) and the n-src loop [90] (Fig. 3.9c). It is a substructure of relatively short range

contacts which form fast in accord with general observations [98] and experimental

data on the rate of beta-hairpin formation [99]. However, formation of the three-

strand beta-sheet is necessary but not sufficient for a conformation to enter the

basin of attraction of the native state. Comparison of FF and TSE contact maps

with UU contact map in Fig.3.10d reveals a crucial structural element that needs to

be formed in order to rapidly fold into the native conformation: specific long-range

contact between L24 from RT loop and/or G54 and/or I56 from the distal hairpin

(dashed oval in Fig. 3.10d). Interestingly, we do not find any specific role the contact

L24 and G54 (Fig. 3.10c) by using the equilibrium sampling method to select TSE

by Q [82,83].
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3.4.4 Discussion

Figure 3.11: Fig. 2. SH3 domain alignment.

An alignment of the sequences of the 18 SH3 domains with solved structures. The

PDB accession and parent protein are shown for each sequence. Conserved hydropho-

bic core positions are shaded, and the most conserved positions involved in peptide

binding are boxed. Courtesy of Larson [100].

Remarkably, L24 and especially G54 are two of the most conserved structural

residues in SH3 fold family [100] (see Fig. 3.11 in which case, they are residue 18 and

residue 48 respectively). Furthermore, Baker and coworkers [31] showed that L24

cannot be diversified in phage-selection experiments, along with other kinetically

important residues. The fact that φ-values of these two particular residues are not

close to unity — despite strong evidence of their participation in the folding nucleus

— is similar to the case of I76 in chymotrypsin inhibitor 2 (CI2) protein which
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also has a low φ-value but appears to participate in the folding nucleus [95]. Such

apparent contradiction was explained for CI2 by Fersht and coworkers who showed

that the strain in the native structure may account for this anomalous behavior of

a residue. This explanation is likely to be also valid for C-Src SH3 domain given

the extremely tight packing of Cα of G54 against Cβ of L24 in the native structure

of C-Src SH3. The site mutation of G54 destabilizes the native state, but may

not destroy the backbone interaction and thus can not probe the transition states

properly. Importantly, residues that are sequence neighbors of G54 have all large

φ-values while sequence neighbors of L24 have low φ-values, fully consistent with our

findings (Figs. 3.8b and 3.10).

We further verify the crucial role of contact between L24 from the RT loop and

the C-terminal strand of the distal hairpin by “cross-linking” L24 and G54. As

shown in Fig. 3.12, the cross-linking dramatically changes the cooperativity of the

folding transition by essentially eliminating the free energy barrier between folded

and unfolded states, and shifting equilibrium toward the manifold of folded states.

To see if this change can be attributed to non-specific stabilization due to the entropy

reduction of the unfolded state caused by cross-link [87, 88], we perform a control

simulation with N- and C-termini cross-linked [101] and rule out this possibility

(Fig. 3.12). We find that the NC cross-linked protein is indeed more stable (Tf

increases) than the wild type, but the barrier between the native and unfolded states

remains intact, in sharp contrast to the L24–G54 cross-linked protein.

Thus we reconstruct a comprehensive picture of the C-Src SH3 folding mechanism

derived directly from folding kinetics simulations. The three-stranded beta-sheet and

diverging turn is present in the TSE, in accord with previous analysis. However,

while this structural feature is present in the TSE, it is not sufficient for folding. A

key long-range contact between L24 and the distal hairpin (residues 54-56) must be

formed in order to enter the basin of attraction of the native state, causing direct and

fast descent to the native state. These kinetically relevant amino acid interactions

can not be obtained from the thermodynamic approach [82,83] to study the TSE by

using some global reaction coordinate (such as Q). We predict that cross-linking these

residues (by mutating them to cysteines) [102] would dramatically change the free
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Figure 3.12:

(e) The probability distribution of potential energy E for cross-linked L24 and G54

shows suppressed bimodality. The distribution for NC cross-linked protein (T9 and

S64) is as bimodal as for the wild type of Fig. 3.3d.

energy landscape, and it would be interesting to test this prediction experimentally.

The crucial kinetic roles of these amino acids, especially G54 may contribute to

the high conservatism in SH3 fold family [100]. This model and discrete molecular

dynamics simulations used to analyze it represent a combination of structural and

dynamic realism with computational efficiency needed to gain statistically significant

insights into structural features of the main milestones along the protein folding

pathway.
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3.5 Dissect the transition state ensemble

The concept of the protein transition state ensemble (TSE) [103, 104] is the foun-

dation of modern views on protein folding. Conformations of proteins belonging to

the TSE are unstable and by definition have a 50% probability to fold to the protein

native state, and a 50% probability to unfold or misfold. The TSE conformations be-

long to the free energy barrier separating native and unfolded or misfolded domains

for two-state proteins. The principle difficulty to find the evasive TSE conformation

is that the reaction coordinate of folding transition is not well defined. For example,

it has been shown from our kinetics studies of C-Src SH3 that potential energy as

well as fraction of native contact Q is not a good candidate. The conformations

of events extended into the putative transition region defined by potential energy

— UU, FF, UF, and FU — are not all true TSE conformations. The UU or “pre-

transition” conformations are en route to the native domain from the unfolded state

but the transition barrier has not been crossed. While the FF or “post-transition”

conformations are en route to the unfolded domain from the native state but the

transition barrier has not been crossed. To understand the structure of the TSE

conformations we must determine the difference between “pre-transition” states and

“post-transition” states.

The distinguishing kinetic feature between pre- and post-transition conformations

is their probability to reach the native state domain, pFOLD [30]. Since in the post-

transition conformations the nucleus [87] is not disrupted, these conformations are

more probable to fold than pre-transition conformations in which the nucleus is not

formed. If both pre- and post-transition states are structurally and energetically

close to the TSE, the question is then what global properties distinguish these states

from each other?

To answer this question, we systematically the pre- and post-transition states. For

C-Src SH3 domain we use the UU and FF conformations. In order to generalize our

study, the same calculations are done in parallel for another protein chymotrypsin

inhibitor 2 (CI2) by our collaborators in Harvard University. The simulation on

CI2 is done by an all-atom Monte Carlo simulations [105] and the pre- and post-
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transition states are sample using the method of Vendruscolo et al. [93]. We verify

that the pFOLD of the selected pre- and post-transition conformations is ≈ 0 and 1

correspondingly for both proteins (Table 3.1).

We find that such structural properties of protein conformations as radius of gyra-

tion (RG), rms displacement (RMSD) from the native state, solvent accessible surface

area, and contact order [98] can not distinguish the pre- and post-transition confor-

mations (Table 3.1). Correspondingly, the entropy of the pre- and post-transition

conformations cannot account for the difference between these conformations. We

also find that the potential energies (E) and the total number of contacts between

amino acids are within error bars from each other in the pre- and post-transition con-

formations. If the pre- and post-transition conformations are similar to each other

structurally, we hypothesize that there may be a difference in the topology of the

network of amino acid interactions in these conformations.
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Protein Relation Number pFOLD RG, RMSD, SASA, Contact Number of E L

to TSE of conf. Å Å ×103 Å2 order, % contacts

CI2 post- 20 0.89 ± 0.07 13.0 ± 0.5 5.2 ± 0.9 6.5 ± 0.2 19 ± 1 183 ± 5 −102 ± 13 3.5 ± 0.1

pre- 6 0.02 ± 0.04 13.0 ± 0.2 5.9 ± 0.3 7.1 ± 0.3 19 ± 2 171 ± 4 −130 ± 19 4.4 ± 0.4

C-Src post- 10 0.96 ± 0.01 11.2 ± 0.3 4.9 ± 0.3 4.5 ± 0.1 22 ± 3 110 ± 4 −85 ± 2 2.73 ± 0.03

SH3 pre- 10 0.26 ± 0.08 11.8 ± 0.3 4.7 ± 0.1 4.4 ± 0.1 16 ± 2 102 ± 7 −84 ± 3 3.31 ± 0.06

Table 3.1: List of different parameters of pre- and post-transition state ensemble.

The structural (RG, RMSD, solvent accessible surface area (SASA), contact order, number of contacts), energetic (E),

and topological properties (L) of pre- and post-transition states of CI2 and C-Src SH3 domain proteins. The values of

pFOLD correlate only with L-values: the post-transition states are characterized by pFOLD ≈ 1 and their L-values are

smaller than for the pre-transition states, that are characterized by pFOLD ≈ 0.



43

To study the topology of pre- and post-transition conformations, we construct

graphs corresponding to these conformations in which nodes represent amino acids

and edges represent those pairs of amino acids that are geometrically located within

interaction distance from each other. Vendruscolo et al. [106] have shown recently

that the “small-world” feature [107–109] of proteins can be used to identify the key

residues that stabilize the structure of the transition state. Our hypothesis is that the

network of amino acid interactions in post-transition conformations is more “small-

world” like [107–109] than that in pre-transition conformations. The small-world

graphs are a special class of random graphs that are as strongly connected as regular

graphs (the clusters have a similar structure to regular graphs), but the average

path that spans two nodes via a minimal set of graph edges is as low as for random

graphs [106,110] (Fig. 2 of Ref. [107]). The difference between regular, small-world,

and random graphs is the “wiring” of these graphs: regular graphs are strongly

locally connected with no long-range edges, random graphs are locally disconnected

but have many long-range edges, while small-world graphs are the blend of the high

local connectivity with a number of the long-range contacts. Small-world graphs are

characterized by small separation of nodes from each other, which for proteins means

a higher degree of interaction cooperativity. Thus, we hypothesize that the wiring of

the post-transitional conformation graphs is “tighter” than that of the pre-transition

conformation graphs, resulting in a cooperative folding to the native state domain.

Definition 3.3 The protein graphs are constructed based on the Cα representation of

proteins. Each graph node represents an amino acid. Each graph edge connects pairs

of nodes that correspond to pairs of amino acids that are geometrically located within

an interaction threshold radius, which we set to Rc = 8.5 Å. We test graph connec-

tivity properties for various definitions of contacts and find that these properties are

qualitatively invariant under contact definitions.

A simple measure of topological properties of the graph is an average minimal

path along the edges between any two nodes of the graph, L, proposed recently by

Dokholyan et. al. [106,111]:

L =
1

N(N − 1)

N
∑

i>j

`ij , (3.9)



44

Figure 3.13: The protein graph of the typical pre- and post-transition state.

The three-dimensional structure of the CI2 protein in (a) post- and (b) pre-transition

states. The protein graphs are constructed based on the structure of (c) post- and

(d) pre-transition states. Each node of protein graphs corresponds to an amino acid,

while each edge between a pair of nodes corresponds to that pair of amino acids that

are geometrically in contact with each other. For both CI2 and C-Src SH3 domain

proteins’ graph constructions, the contact between two amino acids is considered to

be present if the distance between corresponding Cα atoms is less than 8.5 Å. In

(a) and (b), residues A16, L49, and I57 belonging to the specific nucleus of CI2 [95]

are denoted by red spheres. A16, L49, and I57 form a triad of contacts in post-

transition conformations (a), while such contacts are missing in the pre-transition

conformations. In both pre- and post-transition states the number of edges (contacts)

are approximately the same.
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where N is the number of amino acids, `ij is the minimal path between nodes i and

j. L-values characterize the “tightness” of the network by computing the average

separation of elements from each other.

We compute the average minimal distance L between any pair of nodes of a graph

by counting the minimal set of edges that connect these nodes [107]. We find that the

L-values for post-transition conformation graphs are distinctly smaller than those for

the pre-transition conformation graphs, thus fully supporting our hypothesis (Table

3.1). We also observe that the post-transition conformation graphs have more edges

that are of intermediate- and long-range than pre-transition ones (Fig. 3.13), which

shortens the minimal path for each node k, L(k), (Fig. 3.14), thus creating a more

cooperative network for the former graphs. A similar mechanism was observed by

Watts and Strogatz [107], who, by re-wiring circular graphs by removing local edges

and creating a few long-range edges, were changing the graph properties from the

regular to the small-world. Interestingly, some CI2 pre-transition conformations have

N- and C-termini in contact, in contrast to post-transition conformations (Figs. 3.13

and 3.14). Although the contact between the N- and C-termini is of longest-range,

the lack of intermediate-range contacts nevertheless makes pre-transition conforma-

tion networks less “cooperative” than post-transition ones. The difference between

the numbers of long-range contacts in pre- and post-transition conformations is not

statistically significant, so that the average contact orders for both conformation

ensembles cannot discriminate between pre- and post-transition ensembles.

An important property of the L-values of protein conformations is that they

can serve as a structurally reliable determinant of the pre- (pFOLD ≈ 0) and post-

transition (pFOLD ≈ 1) states. The principal difficulty to select TSE conformations —

the basis of the protein engineering experiments — is the identification of the reaction

coordinate for protein folding. The reaction coordinate for folding is not well defined

[24, 30, 84], and has yet to be identified. The fact that average graph connectivity

distinguishes the protein pre- and post-transition states, which can be close along the

reaction coordinate to the TSE, tells us that any future constructions of the reaction

coordinate should strongly depend on the structure of protein interaction networks.

Interestingly, in experimental studies of CI2, the cleavage between amino acids
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Figure 3.14: The L(k) values of pre- and post-transition states for CI2 and C-Src

SH3 domain.

The dependence of the average minimal distance L(k) between a node k and the

rest of the nodes on (a) CI2 and (b) C-Src SH3 domain proteins’ graphs for post-

(•) and pre-transition ( ) states. The error bars represent the standard deviation

from the average values of L(k) over all post- and pre-transition states. In (a) by the

open circles (©) we denote amino acids M40 and E41 that do not affect the protein

three-dimensional structure after cleavage of 40-41 bond [112]. In (a) by the open

boxes (2) we denote the folding nucleus of CI2 [95], A16, L49, and I57.
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M40 and E41 is the only one that does not destroy the protein’s three-dimensional

structure [112]. Neira et al. cut CI2 at M40–E41 (without circular permutation) to

separate fragments 1–40 and 41–64 and found that these fragments re-associate into

CI2 [112]. We find that amino acids M40 and E41 have the largest values of L(k) in

the pre-transition states and among the largest values in the post-transition states

(Fig. 3.14a), indicating that these amino acids are the most separated on interaction

network from the rest of the amino acids. Weak participation of amino acids in

the protein interaction network in pre- and post-transition states means that these

amino acids have weak impact on protein folding kinetics and on the final native

state of the protein (since the folding pathway is not altered). Thus, our findings are

in agreement with [112].

A crucial factor that distinguishes pre- and post-transition states is the protein

folding nucleus, the formation of which in the TSE results in the rapid folding tran-

sition to the native state, and the disruption of which results in the global unfold-

ing [87]. Pre-transition states lack the folding nucleus, while post-transition states

have it intact (Fig. 3.13a,b). Thus, the difference of L(k) between the pre- and post-

transition states, ∆L(k), is most pronounced for those amino acids that are part of

the protein folding nucleus. We find that for C-Src SH3 domain (Fig. 3.14b) ∆L(k)

is most pronounced for two fragments, RT-loop (16–26) and β4 (54–61), suggesting

a crucial role of the connectivity between these fragments in the TSE. This observa-

tion is in agreement with our finding of nucleus, where nucleus of C-Src SH3 domain

is identified on the RT-loop and β4. We also find that for CI2 (Fig. 3.14a), the

experimentally identified folding nucleus [95] — A16, L49, and I57 — has one of the

largest ∆L(k) values.

We presented a new structure-based topological criterion that appears to be a

good predictor of kinetic ability to fold for a given conformation. The fact that

this criterion performed equally well for two different proteins, simulated within

different models using different techniques suggests its generality. Moreover, the

recent all-atom Monte Carlo analysis of TSE of protein G done by our collaborators

(J. Shimada and E.I. Shakhnovich, unpublished) also shows consistency with the

proposed criterion. Further theoretical understanding of deep connection between
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topological properties of protein conformations and their kinetic ability to fold is a

challenging task for future studies.



Chapter 4

Protein Aggregation Problem

4.1 Introduction

Proteins carry out various functions in the body because of their specific three-

dimensional structures. Nascent proteins can assembly into the their unique native

states themselves (sometimes in the help of chaperones). What will happen if this

process goes wrong? Of course, the protein can never perform their usual functions.

However, the worst thing is that the misfolded proteins will aggregate and condensate

into insolvable fibrils or plaques, which will result into the malfunctioning of the

cellular machinery [113]. Some of these aggregates are extremely toxic, for example

the aggregates in the case of Alzheimer’s disease will lead to the neuron cell death.

The final forms of these aggregates often have a well-defined fibrillar nature (see

Fig. 4.1), and are known as amyloid, hence the term amyloidosis is used to describe

many of the clinical conditions with which they are associated.

This group of diseases, of which nearly 20 have been described, includes Alzheimer’s

and Parkinson’s diseases, the spongiform encephalopathies such as Creutzfeldt-Jakob

disease, type II diabetes and a range of less well-known but often equally serious

conditions such as fatal familial insomnia [115,116]. These diseases can be sporadic,

inherited or even infectious, and are often manifest only late in life. Each disease is

associated with a particular protein and aggregates of these proteins are thought to

be the direct or indirect origin of the pathological conditions associated with the dis-

49
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Figure 4.1: The electron micrograph of amyloid fibrils formed by SH3 domain.

The electron micrograph of amyloid fibrils formed by SH3 domain, a protein known

to have no relationship to any aggregation diseases. Courtesy of Guijarro [114]

ease in question. In some cases, the quantity of material involved is enormous, with

several kilograms of protein being deposited in certain manifestations of systemic

amyloidosis. Remarkably, despite the range of proteins involved in these diseases,

including several well-known proteins such as lysozyme, transthyretin and the prions,

all of which have unique and characteristic the fibrils in which they are found in the

disease states are extremely similar in their overall appearance [117].

Amyloid fibrils are straight, unbranched, usually 70-120Å in diameter, and several

thousand Å in length. Observed types of amyloid fibrils consist of different precursor

proteins which share no sequence or structure similarity. However, different types

of amyloid fibrils explored by x-ray diffraction [118–120] show some common core

structural features (see Fig. 4.2a): the presence of a 4.7Å inter-strand spacing along

the fibril axis and a 9-10Å inter-sheet spacing perpendicular to the axis. The com-

bination of Cryo-electron microscopy technique and x-ray study [121] has applied to

reconstruct the three dimensional structure of amyloid fibrils formed by SH3 domain

(Fig. 4.2b).
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Figure 4.2: X-ray pattern and cartoon of amyloid fibril.

(a) The typical fibril x-ray diffraction pattern. The axis of fibrils is along the merid-

ional (M) direction. There are two peaks observed: the first one is along the meridian

corresponding to 4.7Å, the second one is along the equatorial direction corresponding

to 7-10Å. (b) The 3D reconstruction of amyloid core structure from Cryo-electron

microscopy. Courtesy of Dobson [121].

Studies of the mechanism of the conversion of the normally soluble proteins into

amyloid fibrils have benefited from the fact that, in many cases, the structural tran-

sitions of the disease-associated molecules can be reproduced under laboratory con-

ditions [116]. In order to achieve this, a common procedure has been to expose the

folded proteins to mildly denaturing conditions, such as low pH or elevated tempera-

tures. There are accumulating evidences that the formation of amyloid accounts for

the partially unfolded states of globular proteins, some soluble intermediates with

a predominantly β structure, while the totally unfolded proteins lead to amorphous

aggregation [122]. Interestingly, it has been reported [117] that some proteins with

α rich native states can have this amyloid conversion, giving rise to the well-known

α-helix-to-β-sheet transition in protein folding.

Recently, a group of proteins unrelated to any human disease were found to be
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able to form amyloid fibril structures in vitro under denaturing conditions [114,123].

The ability of proteins with different sequences and native structures to form similar

amyloid fibrils suggests that amyloidogenesis is a common feature of proteins in

denaturing conditions [124].

Figure 4.3: The schematic diagram of protein aggregation hypothesis.

The deterioration of condition lead to the destabilization of native states and the

protein has high probability to stay in the unfolded states.

The in vitro study of protein aggregations on many systems under conditions such

as low pH value, high temperature and mutants are consistent with an aggregation

hypothesis that the destabilization of native states will lead to the aggregation of

proteins. The schematics free energy landscape diagram in Fig. 4.3 demonstrate

this aggregation scenario. The protein under normal condition has two minima

in the landscape (1D projection is shown) corresponding to folded and unfolded

states respectively. The barrier in between keeps the protein stable in the folded
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states. With deterioration of conditions, the native state becomes unstable such

that the protein has high probability to stay in the unfolded states. With exposure

of hydrophobic core and the opening of backbone (the hydrogen bond donor and

receptor), the aggregation becomes favorable.

The aggregation of proteins with no sequential and structural similarity into

the overall similar β-rich amyloid structure suggests that the non-specific backbone

hydrogen interaction is important in this process. The possible scenario is that at first

stage of aggregation partially folded (still unfolded) meet each other by hydrophobic

interactions and the exposure of backbone from different protein in the unfolded

states will pack together by forming the hydrogen bonds networks. However, which

part of the protein lead to the core structure of amyloid structure remain unknown.

The main problem comes from the difficulty to crystallize the amyloid fibril and thus

the fine x-ray diffraction has yet to produce the intrinsic structure of amyloid fibrils.

Lack of knowledge of the detailed structure of amyloid fibril makes it difficult to

understand aggregation mechanisms.

Although many advances have been made in structural characterization of amy-

loid fibrils and the mechanism of their formation, many aspects of this process re-

main unclear. Due to difficulties in crystallizing amyloid fibrils, the detailed intrinsic

structure has yet to be determined from x-ray diffraction. Lack of knowledge of

the detailed structure of amyloid fibril makes it difficult to understand aggregation

mechanisms. Some alternative experimental techniques have been applied [125,126]

to understand the structure of amyloid fibril core. H/D exchange of amide protons

combined with NMR analysis [125] shows that the β2-microglobulin amyloid fibril

β-sheet core is composed the middle region of the protein, including the loop regions

in the native structure, while the N- and C-termini are excluded. Designing different

fragments of amyloid β-peptide (Aβ) [126] that can aggregate into fibrils similar to

those formed by wild type peptides shows that residues 14-23 are the basic “bricks”

composing the Aβ amyloid fibrils. However, no direct observations of the amyloid

fibril core structures have been reported.

Recent studies of some protein dimer structure propose that “Domain swap-

ping” [127], can explain the prolongation of amyloid fibrils. The domain swapping
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mechanism [127] posits that two or more protein chains exchange identical domains

including a helix, a loop, a single β-strand or an entire domain to form a strongly

bound oligomer. In a propagational instead of reciprocal manner, the domain swap-

ping mechanism explains the elongation of amyloid fibrils [128–131]. However, the

domain swapping hypothesis is based on the aggregation of only two proteins into

dimers, so the mechanism for fibril formation from more than two identical proteins

is still unclear.

Figure 4.4: Domain swap scenario to form amyloid fibril

The schematic diagram of domain swapping mechanism to form the elongated amy-

loid fibrils.

4.2 Aggregation of SH3

Due to limitations in computation power to study large protein systems in molecular

dynamics simulations, we employ the discrete molecular dynamics algorithm [8, 9]

— a computationally fast and dynamically realistic simulation technique for inves-

tigations of the protein folding thermodynamics [9] and kinetics [12,132]. We study

the aggregation of Src SH3 domain (Protein Databank entry 1NLO), a globular

protein, consisting of 56 amino acids, extensively explored in experiments [31, 32]

and computer simulations [10]. The longer SH3 fold family homologue PI3-SH3

has been experimentally shown to aggregate into amyloid fibrils under acidic condi-
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tions [114, 122]. PI3-SH3, a 84 residue protein with the insertion of a long helical

loop between β2 and β3, shares the same fold as Src SH3 domain. The rmsd between

the structure of Src SH3 and PI3 SH3 is 1.04Å with 48 amino acids used for align-

ment [133]. Experimental study of PI3-SH3 [134] shows a slow refolding with the

time constant 2.8 seconds in water, while the folding kinetics still follows a two-state

folding scenario. It is a challenge to simulation such a slow folding protein. With a

modified Gō model, we find the 84 residue SH3 domain follows a two-state folding

transition and our simulation of two PI3-SH3 proteins shows the same aggregation

scenario as Src SH3 domain (data not shown). However, the requirement to simulate

more than two proteins in the aggregation study is extremely time-consuming for

PI3-SH3. Thus, we use Src SH3 domain as the model system to study the amyloido-

genesis process.

The ability of proteins with different sequences to aggregate into common amyloid

fibrils suggests that non-specific hydrogen bonding between the main chain carbonyl

oxygen and the amide nitrogen may play an important role in amyloid formation. In

the present study we use the the coarse-grained protein model as in Ref. [10], with a

native state specific Gō interaction potential between Cβ atoms representing the side

chains, and non-specific interactions between Cα atoms representing the hydrogen

bonding interactions between the backbones of proteins.

The folding kinetics of our Src SH3 domain model, a Cα – Cβ model with a Gō

interaction between side chains, has been studied by discrete molecular dynamics

and has shown agreement with experimental observations [10]. We simulate the

model proteins near the folding transition temperature, Tf , where the protein has

a high probability to be found in the partially folded states. It is most likely to

observe amyloid fibril formation under these conditions because complete unfolding

was shown to lead mostly to amorphous aggregation [122] while highly stable proteins

do not aggregate at all.

The Src SH3 domain under study consists of five β-strands and a long RT-loop

(see Fig. 4.6a). It was observed that the RT-loop plays a critical role in the folding

kinetics of Src SH3 domain despite the low experimental φ values [10]. Experiments

and simulations reveal that the RT-loop is flexible. However, the RT-loop itself
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is stable and persists in the partially folded states. The unfolding/folding events

correspond to the opening/closing of the RT-loop with respect to the rest of the

protein [10, 94]. Accordingly, we expect that the RT-loop may play an important

role in the amyloid formation of Src SH3 domain.

4.2.1 Two-bead model with hydrogen bond interaction

The principal difficulty to study the protein folding ab initio is the lack of knowledge

about the energetics between amino acids. The native state specific Gō [8, 17, 83]

potential has been successfully used to model amino acid interactions. It has been

shown [10] that our coarse-grained model with a Gō interaction potential for the Src

SH3 domain can faithfully reproduce the thermodynamic and kinetic properties ob-

served in experiments. Thus, we use the Gō potential to model interactions between

Cβ atoms for a single protein. In order to reproduce the process of aggregation,

we need to simulate more than one protein and to model the interaction between

different proteins. For simplicity, we apply the Gō potential for Cβ atoms between

different proteins by assuming that two amino acids that attract to each other in a

single protein will also have attraction in different proteins. The cutoff distance to

define a contact is set as 7.5Å.

The ability of proteins with no sequence similarity to aggregate into the same

amyloid structure indicates that the non-specific backbone hydrogen bonding inter-

action may play an important role in the process of amyloidogenesis process. It

has been shown [135] that only backbone hydrogen bonds can lead to a cooperative

formation of two-dimensional β-sheet. We add to our model a non-specific interac-

tion between any two Cα atoms to model the hydrogen bonding interaction between

protein backbones. We add to two-beads model a type of non-specific interaction be-

tween any two Cα atoms to model the hydrogen bonding interaction between protein

backbones. It has been observed in many globular proteins that the number of back-

bone hydrogen bonds for the each residue does not exceed two (bifurcated hydrogen

bonding is very rare and is not considered here). Another important property of

the two hydrogen bonds formed by one peptide block is that they are approximately
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parallel to each other. This is a reason for the formation of two-dimensional planar

β-sheet. In the present study, (i) one Cα atom can not make more than two effective

hydrogen bonds, and (ii) the two hydrogen bonds must be aligned linearly.

B 1

Auxiliary bond

A 1

To be formed

Already formed HBond

A B 

Figure 4.5: Model of a hydrogen bond.

Existing hydrogen bonds AA1 and BB1 are shown in dashed lines. When the beads

A and B come to a distance 5Å, a new hydrogen bond (dotted line) may form

if the distances A1B and B1A satisfy inequalities 8.7Å≤ A1B≤ 10.0Å and 8.7Å≤

B1A ≤10.0Å. If the bond AB is formed, the auxiliary bonds A1B and B1A (dashed

lines) are formed simultaneously. These bonds can fluctuate within the interval

8.7–10Å and cannot be broken unless beads A and B move away from each other

to a distance 5Å. If the beads A and B have enough kinetic energy to leave the

hydrogen bond attraction well, their velocities are changed in order to conserve

energy and momentum, and the hydrogen bond AB is destroyed simultaneously with

the auxiliary bonds A1B and B1A. The velocities of A1 and B1 do not change at the

moment of forming or destroying of hydrogen bond AB. Analogously, if one of the

hydrogen bonds, A1A or B1B, breaks before hydrogen bond AB, the corresponding

auxiliary bonds A1B or B1A also breaks.

We set the hydrogen bond interaction range between two C beads to DHB =

5.0Å, and their hard-core distance to DHB
HC = 4.0Å. We use the following procedure

in order to satisfy the criteria for the hydrogen bond formation: when two C beads,
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A and B, come to a distance DHB, we check for any existing hydrogen-bond partners

of A and B. If both beads A and B have no existing hydrogen partners they can form

a hydrogen bond automatically. If one of the beads, for example A, already has one

partner, A1, and the distance between the bead A1 and the bead B is within the

range of 8.7–10Å (i.e. the angle between vectors ~AA1 and ~AB is within the range

of 120o − 180o), the bead A can form another hydrogen bond with bead B provided

that either the bead B has no existing hydrogen bonds or its single hydrogen bond

partner, B1, has a distance with bead A in the range of 8.7–10Å (see Fig. 4.5). If one

of beads A and B or both already have two hydrogen bond partners, the pair will

proceed with a hard-core collision without forming a new hydrogen bond. When a

new hydrogen bond is formed between beads A and B, new hydrogen bond partners

are recorded for these two beads, and whenever a bead gets two hydrogen bond

partners an auxiliary bond is formed between these two partners. Every auxiliary

bond can fluctuate within the range of 8.7–10Å to keep two hydrogen bonds within

the angle 120o − 180o and it cannot be broken unless one of the two hydrogen bonds

is broken. A hydrogen bond between beads A and B can be broken when these two

beads move away from each other to a distance of DHB and their kinetic energies are

higher than εHB . When a hydrogen bond is formed or broken, the velocities of the

beads A and B change in order to conserve energy and momentum, such that their

kinetic energy increases or decreases by the value εHB .

We perform discrete molecular dynamics simulation to model the protein system.

We set εHB = 3 and εGō=1 so that we favor the formation of non-specific backbone-

backbone hydrogen bonding formation. Since the formation of backbone hydrogen

bonds comes with a large reduce of entropy comparing to the formation of a Gō

contact, therefore we need to assign a larger potential energy gain. We also study the

thermodynamics for a monomer SH3 domain and find that the additional hydrogen

bonding interaction does not affect the two-state folding transition and the folding

transition temperature Tf is slightly increased to Tf = 0.95 comparing the model

without hydrogen bonds (Tf=0.91).

The number of proteins we studied varies from 2 to 8. The concentration of

proteins in our simulation system is usually higher than in vivo and in vitro condi-
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tions, so that the condensation process is much faster and enables us to access the

amyloidogenesis process by discrete molecular dynamics. First, we heat the system

to high temperatures so that all the proteins are fully unfolded and moving freely

inside the system box. Then, we quench the system to the temperature around Tf

and wait for the system to equilibrate. The final equilibrium states result in possible

amyloid fibril structures of Src SH3 domain.

4.2.2 Dimerization

First, we study the dimerization of two identical Src SH3 domains. The two pro-

teins are confined to a cubic cell with length of 150Å. Starting from fully unfolded

states, we quench the system to different temperatures. We observe an aggregation

temperature threshold, Ta, below which we find aggregation, and Ta ≈ 1.03 is only

slightly higher than folding transition temperature Tf ≈ 0.95. Ordered aggregations

only occur near Tf . At Tf , the time needed for aggregation, τa, is of the order of

104 time units. This time is significantly smaller that the time needed for a single

protein to fold into native state, τf , which is in the order of 105 time units, indicating

that the kinetic barrier for the two-protein system to aggregate is much smaller than

the folding barrier of each individual protein. As temperature decreases, τa increases

and τf decreases. Below a certain temperature threshold Tc = 0.85 we observe the

separate folding of the two proteins without dimerization.

For ordered aggregation, we observe a closed form dimer structure by domain

swapping (see Fig. 4.6b), where the two proteins exchange their RT-loops. We also

observe an open aggregation state (Fig. 4.6c), which relates to the packing of RT-

loops. Unlike the usual domain swapping where the swapped part interacts with

the complementary domain from a different protein, in our open aggregation state

the first/second strand of the RT-loop from one protein forms contacts with the sec-

ond/first strand of the RT-loop from another protein. During this process, amino

acids in the RT-loops reorient their side chains. The original interactions that stabi-

lize the RT loop are replaced by similar contacts between the complementary strands

of RT-loops from different proteins. Stabilized by hydrogen bonds along the back-
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RT-loop

(a) (b) (c)

Figure 4.6: Dimerization of Src SH3 domain.

(a) The native state of Src SH3 domain. Molecular dynamics simulations yield two

types of aggregates: (b) the closed dimer formed by exchanging RT-loops and (c)

an open aggregation state formed by swapping two parts of RT-loop from different

proteins. In (b) and (c) the first protein is red and its RT-loop is yellow, while

the second protein is blue and its RT-loop is cyan. The pictures are produced by

molscript [136].

bone, RT-loops form a β-sheet structure (Fig. 4.6c).

The closed dimer has a stable structure with lower potential energy than the

more flexible open structure. However, the probability to observe the closed form

is lower than the open aggregation state because the entropy of the open structure

is higher than that of the closed form. As temperature decreases, the probability

to form closed dimers increases. We observe that when the quenching temperature

drops below Tc = 0.85, the two proteins fold separately, avoiding aggregation. This

process depends on the diffusion coefficient D, and the density of the proteins ρ:

as D and/or ρ increase, Tc decreases, and, therefore the aggregation becomes more

likely.

The closed dimer has a well-defined 3D structure with the hydrophobic core buried

inside, so the closed dimer can not further aggregate into elongated amyloid fibril.

However, according to amyloidogenesis hypothesis proposed in Refs. [128, 129], do-

main swapping may lead to elongated amyloid fibrils if the swapping is not reciprocal

but propagational. The open aggregation state is more flexible and has the hydropho-
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bic core exposed. The closely packed RT-loops form a β-sheet structure stabilized

by hydrogen bonding interactions and the two exposed ends can accept further con-

densation to form the fibril structure. In order to test which process leads to the

amyloid fibril formation for Src SH3, we study aggregation of more than two proteins

in molecular dynamics simulations.

4.2.3 Amyloidogenesis

From the simulation of two proteins, we find that the optimal temperature to observe

aggregation is Tf . Next, we perform the molecular dynamic simulations of eight Src

SH3 domains in a cubic cell with the length of 300Å at Tf . All simulations from

different initial configurations show similar equilibrium structures of SH3 aggregates

(Fig. 4.8). Snapshots during the aggregation (Fig. 4.7) demonstrate that the initial

step of aggregation is the dimerization and the formation of the open states which

are the nuclei of aggregation process (Fig. 4.7a). Other partially unfolded proteins

grow on these open states. Usually there are more than one nucleus; they merge with

each other forming fibrils (Fig. 4.7b,c). Finally all eight proteins form one aggregate.

However, the initial aggregate has only short range order (Fig. 4.7c). As system

equilibrates, proteins rearrange themselves so that the equilibrium structure shows

distinct long range order (Fig. 4.7d and Fig. 4.8).

At equilibrium, all eight proteins exhibit a tendency to form aggregates with

a preferred direction of condensation (Fig. 4.8a), which can be identified as the

amyloid fibril axis. In the aggregated state, proteins pack their RT-loops on the

top of each other by swapping the two parts of the RT-loops. We do not observe

the aggregation states formed by propagational domain swapping as proposed in

Refs. [128, 129]. Packed RT-loops form a double β-sheet structure (Fig. 4.8b). As

discussed above, the aggregation process involves the reorientation of amino acids

along the RT-loop. Thus, the side chains (usually the hydrophobic residues) from

the two parts of one RT-loop directed to each other and the separation of the two

β-sheets is around 10Å(Fig. 4.8b). Due to the saturation and angular dependence

property of the backbone hydrogen bonds, only the exposed proteins on the two
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(a) t=105 t.u.

(b) t=2× 105 t.u.

(c) t=3× 105 t.u.

(d) t=106 t.u.

Figure 4.7: Snapshots during the aggregation of eight SH3 domains at Tf .

The simulations start from fully unfolded conformations. The snapshots are taken

at different times (a) 105, (b) 2 × 105, (c) 3 × 105, and (d) 106 time units (t.u.).

ends can allow further aggregation by making backbone hydrogen bonds to form an

extended β-sheet structure. Thus, by adding more proteins to the two ends of the

aggregate, it continues growth to form an elongated fibril structure — amyloid fibril.

Remark 4.1 The domain swap scenario of amyloid fibril formation implicates that

(1) the β-rich core is composed of the hinge region of the monomeric protein; (2) the

two complimentary “domains” keep their native structures such that the final fibril
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contain a large number of native-like structures. However, in most of the cases the

hinge region of a monomer is usually short which can not explain the participation

of a large portion of the sequence into the fibrillar core. Analysis of the mature fibril

indicates the lost of their function and structure of original protein. Therefore, the

domain swapping, which might be the possible mechanism of protein oligomerization,

could not lead to amyloid fibrils.
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Figure 4.8: The typical equilibrium aggregation state for eight proteins

(a) XY and (b) ZY projections of the aggregate. The preferred aggregation direction

is along the X-axis.

4.2.4 Characterization of the aggregates

Definition 4.1 X-ray Calculation:

In order to compare with experimental x-ray diffraction patterns, we calculate the

intensity of diffraction using the elastic diffraction formula

I( ~kf ) = |
∑

j

exp(i( ~kf − ~ki) · ~rj)|
2 , (4.1)

where ~ki is the wave vector of the incoming x-ray, ~kf is the wave vector of the

diffracted x-ray, ~rj is the position vector of jth atom, and the summation is over



64

all the atoms in the structure. We align the aggregation structure along the x axis

as in Fig. 4.8 and choose the incoming x-ray with wavelength of 1Å along the y axis.

The diffraction intensity is collected in projection of the y − z plane varying the de-

flecting angle, θ = cos−1(~kf · ~ki/k
2), from 0.05 to 0.25 in radian. As in the x-ray

diffraction experiments, the amyloid fibril has no preferred orientation in the y − z

plane. We rotate the aggregation structure around the x axis n times by angle 2π/n

and add all the diffraction intensities. In the current study, we use n=20.
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Figure 4.9: Characterization of Aggregates of Src SH3.

(a) Computed x-ray diffraction pattern of the aggregation structure formed by eight

Src SH3 domains from the molecular dynamics simulations. (b) The correlation

function of the native state of the Src SH3 domain (4) and the aggregate of eight

Src SH3 domains (©) from Fig. 4.8.

In order to characterize the structure of in vivo or in vitro amyloid fibrils, ex-

perimental x-ray scattering analysis has been widely applied [118–120]. The x-ray

scattering patterns of different amyloid fibrils share the same features: (i) a relatively

sharp and intense 4.7Å meridional reflection, and (ii) a weaker and more diffuse 7-

10Å equatorial reflection. The first peak corresponds to the β-strands spacing along

the direction of the fibril axis, and the second, much weaker peak, is understood as

the spacing between β-sheets. In order to compare our aggregates to experiments,
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we compute the x-ray diffraction pattern (Methods) for the aggregation structure ob-

tained from molecular dynamics simulations (Fig. 4.9a). We observe a distinguished

peak corresponding to 4.7Å along the meridional direction, which is related to β-

strand spacing (Fig. 4.8b). We also find a peak along the same direction with the

spacing, 9.4Å, which is due to the doubling of the β-strand spacing. In the equatorial

direction, we observe a weak peak of 9.6Å which is related to the separation of the

two β-sheets (Fig. 4.8b). Therefore, the structure of the aggregates derived from the

molecular dynamics simulations fully agrees with the experimental observations.

Definition 4.2 The pair correlation function g(r) function measures the average

density of atoms in the shell of radius r surrounding an atom,

g(r) =
1

N

∑

i

∑

j

< δ(r − (Ri −Rj)) > . (4.2)

The pair correlation function g(r) is important for many reasons. It tells us about

the structure of complex, isotropic systems, and it can be measured in neutron and

X-ray diffraction experiments.

We calculate the correlation function of the structure of our aggregate (Fig. 4.9b)

and compare it with that of the native structure. Because the native structure of Src

SH3 contains five β-strands already, the correlation functions for the aggregation and

native state has similar, although weaker, peak at inter β-strand spacing distance,

4.7Å. However, the aggregation state has a weak long range peak corresponding to

the inter β-sheet spacing, ∼10Å, which is not present in the native state.

4.2.5 Discussion

We perform molecular dynamics simulations to study the aggregation of Src SH3

domain. We find that the proteins start to aggregate at the threshold temperature

Ta. Simulations at high temperature usually produce amorphous aggregates. Near

the folding transition temperature Tf = 0.95, protein conformations in the unfolded

states are partially folded and there are two competing processes: folding and aggre-

gation. When the kinetic barrier for aggregation is smaller than that for folding, we

observe ordered aggregation. As temperature decreases, the folding kinetic barrier
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decreases, so that τf decreases. Below some temperature threshold Tc, the partially

folded protein states are near transition states at first and then rapidly descend into

the native state, bypassing aggregation.

For two proteins, we observe two possible ordered aggregation conformations:

a stable closed form dimer and an open aggregation state. The dimer is formed

by domain swapping, where the two proteins exchange their RT-loops. We do not

find any experimental evidence of the existence of this type of dimer for Src SH3

domain. However, our simulations suggest that it is a possible candidate oligomer

state that may be found in future experiments. For the open form structure, the two

proteins have their RT-loops packed together by swapping their two stands of the

RT-loop. The open dimer structure allows further protein aggregation into fibrils.

In our stimulations, we do not observe the aggregation scenario by propagational

domain swapping [128,129]. The closely packed RT-loops are stabilized by hydrogen

bonds forming double β-sheets that face each other. From the molecular dynamics

simulations we conclude that the core structure of Src SH3 amyloid fibrils is composed

of RT-loop. Such a scenario may further be tested by experiments.

Our study reveals a general amyloidogenesis mechanism. Proteins, containing

unstable β hairpins or loops, may be vulnerable to aggregation, and these unstable

secondary structure elements can serve as the “building block” of amyloid fibrils

[130, 137]. In the partially unfolded states, “building blocks” break apart from the

rest a single protein. Then, these “building blocks” pack on top of one another by

exchanging two complementary strands. During the aggregation process, amino acids

in building blocks may reorient to make a stable connection, mainly by hydrogen

bonding interactions. Due to the saturation and angular dependence of hydrogen

bonds, only the exposed two ends can accept further deposition of building blocks

from unbounded proteins and form an elongated double β-sheet structure. Thus,

the resulting structure has the β-sheets parallel to the fibril axis and the β-strand

perpendicular to the direction of fibril.

The presented model is similar in spirit to the β-nucleation model [138] to explain

prion propagation. An important difference of our model from prion aggregation

models is that in the case of prions aggregation, β structure is formed in the fragments
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of the chain that are α-helical in the monomeric state of the protein, PrP C , i.e.

amyloid formation is accompanied by secondary structure transformations. However,

in both cases the phenomenon of infectivity may be observed whereby existing fibrils

may lower the kinetic barriers for monomeric proteins to join them forming larger

fibrils.

Finally we note that our model may shed light on the observation that com-

plex β-topologies are more often found in genomes than more simple meander-like

ones [139, 140]. The former are unlikely to have contiguous fragments that are sta-

ble by themselves, while the latter, being simple topologies, do have such fragments.

They are, therefore, more prone to aggregation/amyloid formation placing organisms

that carry such proteins at evolutionary disadvantage.

4.3 Toward aggregation of α-helix-rich polypep-

tides: transition from α-helix to β-hairpin

A number of misfolded proteins and peptides aggregate into insoluble fibrils. The

aggregation of some of these proteins into amyloid fibrils—amyloidosis—is related to

fatal diseases [115, 116]. Recently, proteins not implicated in amyloid diseases have

been found to form fibril structures in vitro under denaturing conditions [114, 123],

suggesting that the fibril formation is a common feature of destabilized proteins [124].

Regardless of sequences and structures of proteins, the fibrils have similar core struc-

tures, mainly composed of β-sheets [117–119]. For example, the native Aβ peptide in

Alzheimer’s diseases [141,142] and prion proteins (PrP C) in prion diseases [143,144]

are α-helix-rich. The aggregation from α-rich proteins or peptides involves a con-

formational transition from α-helices to β-sheets. A similar transition has also been

observed in vitro in some α-helical peptides [145–149] that aggregate into amyloid

fibrils by means of changing the environment, such as varying the organic solvent

condition [147], altering the pH [148], and controlling the redox state [149]. Moreover,

similar α-β transitions also occur through the correct folding pathway in proteins

with a nonhierarchical folding mechanism [150]. For example, β-Lactoglobulin, a
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predominantly β-sheet protein [150], is observed to form non-native α-helical inter-

mediates upon folding. Thus, understanding the α-β transition is important for both

protein folding and protein aggregation.

The secondary structures of proteins, mainly α-helices and β-sheets, are deter-

mined by the amino acid sequence and stabilized by hydrogen bonds. However,

under denaturing conditions, proteins with various organization of the secondary

structure elements can aggregate into similar β-rich amyloid fibrils. We propose that

the α-helix to β-hairpin transition is governed by sequence non-specific properties of

proteins and peptides, i.e. the hydrogen bond network formed between backbones. It

has been suggested that sequence non-specific hydrogen bond interaction among the

backbones of proteins is an important factor for aggregation [14]. We hypothesize

that the same type of interaction is also the driving force for the α-helix to β-sheet

transition.

An overwhelming amount of computational simulations [151–159], and experi-

mental [160–164] and theoretical [165–168] studies have been devoted to α-helix sta-

bility and the helix-coil transition. However, the possibility of β-hairpin formation in

the folding pathway of peptides/proteins has not been addressed. The self-assembly

of β-sheets by polyalanine segments, which usually form α-helices [152, 158], has

been observed in silk-like multiblock copolymers [169]. Thus, we aim to identify the

presence of metastable β-hairpin intermediate in the folding pathway of a simple

polyalanine peptide, an α-helix in its native state [152, 158]. Due to the limitations

of traditional molecular dynamics simulations, simplified models become crucial in

studying protein folding and aggregation [8–11,14,158,159,170]. Discrete molecular

dynamics [8, 9, 158], the combination of simple models and efficient dynamic simu-

lation algorithms, can access the physical processes in the scale of milliseconds with

a single simulation [171]. In contrast, the traditional all-atom molecular dynamics

simulations can only resolve the time scale of several nanoseconds in one run or reach

several microseconds combining a large number of runs [151]. In order to observe

multiple transitions in a single simulation, we therefore employ the discrete molecular

dynamics algorithm to study a polyalanine peptide.
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4.3.1 Four-bead Model

The protein model, using three backbone beads and one side-chain bead to represent

each residue [158, 170], has been developed to mimic protein backbone structure.

Molecular dynamics studies in such a polypeptide system have shown a sharp helix-

coil transition [158], which suggests that it is possible to study the transition from

an α-helix to β-sheet in this model system. Thus, we use the four-bead model [158,

159, 170] to represent amino acids in the peptide. The amino acids are numbered

from k = 1 (N-terminal) to k = N (C-terminal), where N is the total number of

residues. The kth amino acid is composed of nitrogen (Nk), prime carbon (Ck),

alpha carbon (Cαk), and beta carbon (Cβk) atoms (Fig. 4.10a). In Fig. 4.10a, the

thick lines represent the covalent bonds and the thin lines denote effective bonds,

mimicking the tetrahedral constraint of each amino acid and the planar constraint of

the peptide bond. In our simulations, bonds are characterized by r̃AB
min = DAB(1−σ)

and r̃AB
max = DAB(1 + σ), where DAB is the average distance between atoms A and B

(listed in Table 4.1) and σ is chosen as 0.02.

Table 4.1: The parameters of bonds and hardcore radii used in our simulations.

Covalent bond, DAB (Å) Effective bond, DAB (Å) hardcore radius, R (Å)

Ni, Cαi 1.455 Ni, Cβi 2.442 C 1.50

Cαi, Cβi 1.533 Ni, Ci 2.444 N 1.30

Cαi, Ci 1.510 Cβi, Ci 2.494 Cα 1.85

Ci, Ni+1 1.325 Cαi, Ni+1 2.406 Cβ 2.20

Cαi, Cαi+1 3.784

Ci, Cαi+1 2.432

First, we study the peptide with only backbone hydrogen bond interaction. The

non-bonded atom pairs have either hardcore collision or hydrogen bond interactions.

The hardcore radius RA of four different types of atoms are listed in Table 4.1

(rAB
min = RA + RB). The protein backbone hydrogen bonds are formed between the
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Figure 4.10: Schematic diagram of four-bead model

(a) A schematic diagram of the four-bead peptide model. The solid thick lines

represent the covalent and the peptide bonds. The dashed thin lines denote the

effective bonds which are assigned to mimic the tetrahedral constraint of each amino

acid and the planar constraint of the peptide bond. (b) The schematic diagram of

the hydrogen bond. The four thin dot-dashed lines connect the auxiliary pairs and

the dashed line represents the hydrogen bond.

carbonyl oxygen and amide hydrogen. In the four-bead model, there is no carbonyl

oxygen and amide hydrogen, but, the position of O and H can be determined by their
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neighboring N , C, and Cα atoms. We model the hydrogen bond formed between the

nitrogen Ni of the ith amino acid and the prime carbon Cj of the jth amino acid.

Following the same notation as applied in Ref. [158, 159, 170], the separation along

the sequence must satisfy the condition |i−j| ≥ 4 to form a backbone hydrogen bond

between Ni and Cj. It is well known that the hydrogen bond interaction has strong

angular dependence i.e., the hydrogen bonded CO and NH groups are collinear

with each other. The usual pairwise interaction can hardly model this multi-body

interaction.

4.3.2 Hydrogen Bond Interaction: Reaction Algorithm

We introduce the reaction algorithm to model the hydrogen bond interaction between

Ni and Cj. OnceNi and Cj form a hydrogen bond, they change their type intoN ′
i and

C ′
j respectively and cannot form any other hydrogen bonds. Whether the “reaction”

Ni + Cj ⇀↽ N ′
i + C ′

j takes place or not is assessed when the distance between these

atoms becomes equal to the hydrogen bond cutoff distance DHB = 4.2Å. The total

potential energy change includes the potential energy gain εHB between N ′
i and C ′

j,

and the potential energy changes between the two atoms and their surrounding atoms

due to the type changes. Once the kinetic energy is enough to overcome the total

potential energy change, the forward reaction happens. Otherwise, the two atoms

Ni and Cj do not change their types and undergo original hardcore collision. If the

reaction is successful, the atoms change their atom types and interact with other

atoms according to the interaction parameters related to their new types.

We implement the angular dependence of hydrogen bonds by assigning an auxil-

iary interaction between the atom pairs N ′
i −Cαj, N

′
i −N

[′]
j+1, C

′
j −Cαi, and C ′

j −C
[′]
i−1

(these four pairs are connected by thin lines in Fig. 4.10b; the bracket in the super-

script indicates that the atom may or may not have its type changed due to hydrogen
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bond formation) as

V =



































εHB, dmin < d < d0

εHB/2, d0 < d < d1

0, d1 < d < dmax

+∞, otherwise

, (4.3)

where εHB is the potential energy gain between Ni and Cj, and the parameters d0, d1,

dmin, and dmax are chosen to implement the hydrogen bond angular constraints (see

Table 4.2). The other interactions involving the Ni and Cj atoms remain unchanged

before and after the reaction. The new hardcore collision distance between N ′
i and

C ′
j is assigned at 4.0Å. Thus, at the lowest energy state of a hydrogen bond, the

distance of the four auxiliary pairs is within the distance range of [d1, dmax] and

distance of Ni and Cj is within the hydrogen bond range [4.0Å, 4.2Å]: the CO and

NH groups are aligned as approximately linear. Parameters dmin and d0 are chosen

to allow angular distortion with energy penalizations.

Table 4.2: The parameters of the auxiliary interactions

Pairs dmin(Å) d0(Å) d1(Å) dmax(Å)

N ′
i , Cαj 4.46 4.66 4.82 5.56

N ′
i , N

[′]
j+1 4.47 4.62 4.78 5.41

C ′
j, Cαi 4.40 4.56 4.72 5.39

C ′
j, C

[′]
i−1 4.44 4.62 4.79 5.39

When two atoms Ni and Cj approach each other at the hydrogen bond inter-

action cutoff distance DHB = 4.2Å, we evaluate the total potential energy change

by checking the four auxiliary interactions. The potential energy change can be

−εHB,−εHB/2, 0, εHB/2, . . . 3εHB and ∞, depending on the orientation of the Ni,

Cj, and their neighbors. The larger the angular distortion, the higher the potential

energy change. Once formed, the four auxiliary pairs will have a high probability of

staying in the range of [d1, dmax] with the lowest energy, and thus the orientation of

the hydrogen bond is maintained. The thermal fluctuations distort the orientation of
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the hydrogen bond and large fluctuations may break the hydrogen bond. Once the

two atoms N ′
i and C ′

j come again to the exact distance of DHB, a reverse reaction

may happen. We check the potential energy change due to the possible changes of

types. The total potential energy change ranges between −3εHB to εHB, correspond-

ing to different conformations of the hydrogen bond due to thermal fluctuations.

Thus, a distorted hydrogen bond will be easier to break. A more realistic modeling

of the angular dependence of the hydrogen bond is to increase the number of steps

in Eq. 4.3 to make the interaction potential more continuous. However, the increase

of the number of steps decreases the efficiency of the discrete molecular dynamics.

4.3.3 Polyalanine with hydrogen bond interaction only

We study the refolding thermodynamics of the 16-residue polyalanine with only back-

bone hydrogen bond interactions. We perform discrete molecular dynamics simula-

tions at different temperatures T = 0.09, 0.10, 0.11, 0.12, 0.125, 0.13, 0.14, and

0.15 in units of εHB/kB
1. For each temperature, we perform ten separate molecular

dynamics simulations starting from different random coil conformations (Fig. 4.11).

At high temperatures, the polyalanine remains at the random coil state and its

average potential energy is close to zero. As we decrease the temperature, the peptide

adopts a β-hairpin state (Fig. 4.11d). For a β-hairpin structure, the lowest poten-

tial energy conformations have the β-turn located near the center of the peptide

(Fig. 4.12b), and the potential energy is equal to −6εHB. If the turn is positioned

differently along the peptide (Fig. 4.12c), the potential energy is higher than −6εHB

due to the smaller number of hydrogen bonds that can be formed. Thus, the oc-

currence of additional β-hairpin types (Fig. 4.12c) is less probable. At temperature

T = 0.13 (Fig. 4.11e), we observe a reversible random coil to β-hairpin transition

and the probabilities of finding a random coil and a β-hairpin state are approxi-

mately equal (Fig. 4.11a,e), so the β-hairpin to random coil transition temperature

is Tβ−coil ≈ 0.13. At temperature T = 0.13, we also detect rare fluctuations with

potential energy lower than −6εHB, corresponding to partially formed α-helix states.

1e.g. for εHB = 5kcal/mol [172], the temperature T=0.12 corresponds to 302K.
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Figure 4.11: Thermodynamics of the polyalanine chain with backbone hydrogen bond

interaction only.

(a) The probability distribution of potential energies, (b) the average energy, and (c)

the specific heat at the temperatures where the peptide is not dynamically trapped.

The typical energy trajectory at temperatures (d) 0.140, (e) 0.130 and (f) 0.125. At

lower temperatures (g) 0.120, (h) 0.110, and (i) 0.100, the protein is easily trapped

and each simulation results in either α-helix or β-hairpin states. For each temper-

ature, the ten different potential energy trajectories of 106 time unites (t.u.) are

separated by dashed lines and colored differently. At temperature T = 0.120, we

observe transitions from the β-hairpin to the α-helix states (the 8th run) and from

the α-helix to the β-hairpin states (the 9th run).

As we lower the temperature to T = 0.125, we observe the occurrence of α-helical

states (Fig. 4.11g and Fig. 4.12a). For the 16-residue polyalanine, the complete α-

helix has four helix turns and the lowest energy is −12εHB. At T = 0.125, the peptide

can either adopt a random coil, an α-helix, or a β-hairpin state. The interconversion

between an α-helix and a β-hairpin only takes place if the peptide first unfolds to

a random coil state. This is mainly due to the drastic structural difference between
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these two kinds of conformations and there is no direct pathway between them ex-

cept via a random coil state. Thus, the α-helix to β-hairpin transition is coupled to

the transition between the α-helix to random coil transition. The probability of an

α-helix is smaller than that of a β-hairpin at temperature T = 0.125. We expect to

observe more α-helix states at lower temperatures. However, at low temperatures the

dynamics of hydrogen bond formation and disruption become slow and the polyala-

nine is easily trapped in the local minima of the free energy landscape, dominated by

a metastable β-hairpin state. We find that the peptide remains in either an α-helix

or a β-hairpin state during the simulation time of 106 time units [9] after a quick

collapse from the random coil state (Fig. 4.11g,h,i).

We present the distribution of the torsion angles φ and ψ for different states in

Fig. 4.12e,f,g. The distributions are in agreement with the Ramachandran plot [173]

for secondary structures. We find that the distributions of the β-hairpin and random

coil are similar. However, for the random coil state, the torsion angles for each

amino acid are fully uncorrelated, while for the β-hairpin state, the torsion angles

between the hydrogen bonded amino acids are highly correlated. For an α-helix, each

residue forms two hydrogen bonds except those near the termini (Fig. 4.13a), thus,

our peptide does not have excessive torsional freedom. On the other hand, for a β-

hairpin strand approximately half of all amino acids do not form any hydrogen bonds

(Fig. 4.13b), the peptide chain has a larger value of backbone entropy. Therefore,

the β-hairpin has larger hydrogen bond energy and also a larger entropy than the

α-helix. In order to illustrate the backbone flexibility for different states (α-helix, β-

hairpin, random coil), we align various conformations with respect to a characteristic

structure using Cα atoms for each of these states (Fig. 4.12h,i,j). We find that the

β-hairpin (Fig. 4.12i) is more flexible than the α-helix (Fig. 4.12h) and, therefore,

the β-hairpin has a higher backbone entropy 2. Interestingly, the alignment for the

random coil state exhibits a persistent overall topology (Fig. 4.12j), which is possibly

due to the excluded volume effect of the residues and is consistent with the finding

in Ref. [174]. The interplay between energy and entropy allows for the existence of

2We provide movies for the dynamic motions of an α-helix and a β-hairpin, and one instance of

the α-helix to β-hairpin transition: http://www.unc.edu/∼dokh/research/AB/home.html
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Figure 4.12: Characterization of different secondary structures.

Typical conformations of (a) an α-helix, (b) the β-hairpin with the β-turn located

near the center, (c) an additional β-hairpin conformation with the β-turn positioned

differently, and (d) a random coil. The distributions of torsion angles for (e) the α-

helix, (f) the β-hairpin, and (g) the random coil states over equilibrated simulations.

We align for each of the three states — (h) α-helix, (i) β-hairpin, and (j) random coil

— various conformations with respect to a reference conformation using Cα atoms

. The reference conformations are shown in backbone representation and the other

conformations are displayed as wire-frames with the residues colored in the rainbow

order from blue (N-terminal) to red (C-terminal).

the metastable intermediate state — the β-hairpin.

Due to the slow dynamics at low temperatures, we cannot accurately identify the
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α-helix to β-hairpin transition temperature Tα−β. The coexistence of these two states

with the random coil state at T = 0.125 suggests that the transition temperature

Tα−β is close to 0.125, which is in the vicinity of the β-hairpin to coil transition

temperature Tβ−coil = 0.130. Each of the four amino acids near the N- or C- termini

of an α-helix has one free hydrogen bond donor or acceptor (Fig. 4.13a), similar to

the β-hairpin strand where each amino acid on average has one free hydrogen bond

donor or acceptor (Fig. 4.13b). Thus, the potential energy per residue of the α-helix

terminal is equal to that of a β-hairpin strand. According to the similar constraints

imposed by the hydrogen bonds, we hypothesize that the conformational entropy per

residue for the β-hairpin strands and α-helix termini is also similar. Thus, the α-helix

termini and β-hairpin strands have similar free energy per residue. Furthermore, the

amino acids near the termini have larger free energies than those of the amino acids

within the helix, which is consistent with the observation of large fluctuations of the

termini even at low temperature. We observe that the polyalanine melting (i.e. the

transition into random coil) always starts from the termini. The melting temperature

of an α-helix Tα−coil is determined by the free energy per residue between the α-helix

termini and the random coil, and the transition temperature from a β-hairpin to

random coil Tβ−coil is determined by the free energy per residue between β-hairpin

strands and the random coil. So, Tα−coil is close to Tβ−coil. Since the α-helix to

β-hairpin transition is coupled with the α-helix to coil transition (α-helix melting),

Tα−β ≈ Tβ−coil.

To further understand the contribution of backbone entropy to the α-helix to β-

hairpin transition, we estimate the backbone entropy for different states. From the

alignment of conformations in Fig. 4.12h,i,j, we find that all conformations fluctuate

around the reference structure characteristic to the corresponding state. Assum-

ing that (a) the fluctuations of the structures around the reference structure are

Gaussian; and (b) the fluctuations of residues are uncorrelated, the conformational

entropy can be approximated as Sx=3N ln〈rmsdr〉x + S0, where rmsdr is the root

mean square deviation from the reference structure. The average 〈〉x is taken over

conformations out of the corresponding state {x}: α-helix, β-hairpin, and random

coil. S0 is a constant which can be determined by setting the α-helix as the reference
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Figure 4.13: Free energy dependence of different secondary structures.

The schematic diagram of the hydrogen bond pattern for (a) the α-helix and (b)

the β-hairpin conformations, where the black beads represent each amino acid, the

solid lines denote the backbone hydrogen bonds, and the dotted lines denote the free

backbone hydrogen bond donor or acceptor. (c) The free energies for different states

versus temperature using the estimated values of the backbone entropies.
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state with Sα=0. Since the four atoms in each residue are constrained to fluctuate

as one object, N represents the number of amino acids. To calculate the entropy

we perform equilibrium simulations with hydrogen bonds intact (the α-helix and β-

hairpin states) or without forming any hydrogen bonds (the random coil state). We

calculate 〈rmsdr〉x with respect to a selected conformation typical to the correspond-

ing state. The values of estimated entropy for different states are listed in Table 4.3.

The transition temperatures can be determined as Tβ−coil = 0.162, Tα−coil = 0.133,

and Tα−β = 0.115. These estimated transition temperatures agree with the values

determined from simulations. The above assumptions might lead to underestimation

of the backbone entropy for the random coil state, therefore, the estimated tran-

sition temperatures Tβ−coil and Tα−coil are higher than the determined values from

simulations.

Table 4.3: The estimated values of the conformational entropy for different states.

S0=−3N ln〈rmsdr〉α=34.9 (N=16). The transition temperature between two dif-

ferent states can be obtained from the differences of potential energy and entropy,

∆E/∆S (see Fig. 4.13c).

x 〈rmsdr〉x(Å) Entropy, Sx(kB) potential energy, E(εHB)

α-helix (reference state) 0.483 0 -12

β-hairpin 1.460 53.0 -6

random coil 3.143 89.9 0

The existence of the metastable β-hairpin state has important implications for

aggregation. A β-hairpin conformation that has the exposed hydrogen bond donors

or acceptors is capable of further aggregation and can form amyloid fibrils [175]. Most

real proteins do not aggregate by folding into the native state without long lifetime

intermediates. Proper folding may be enforced by side-chain interactions in the

evolutionarily selected sequence. We study a minimal model with hydrophobic side-

chain interactions to uncover the propensities of the α-helix to β-hairpin transition

for a hydrophobic-polar (HP) sequence which is designed to be an α-helix in the
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native state.

4.3.4 Model peptide with hydrophobic-polar sequence

We also study the effect of side-chain interactions in a 16-residue model peptide chain,

designed to be an α-helix in its native state. The peptide has the following sequence

of hydrophobic (H) and polar (P) residues: PPHPPHHPPHPPHHPP [159, 176].

This sequence is derived from a peptide which is designed to be an α-helix in the

experiment [177]. In our simulations, the interaction between hydrophobic side-

chains (Cβ atoms) is modeled as an attractive square well with the cutoff distance

DHP = 6.5Å and the interaction strength εHP ; the remaining side-chain interactions

are hardcore collisions. The relative strength of the hydrophobic interactions with

respect to the hydrogen bond interactions ρ = εHP/εHB is the free parameter that

can be tuned.

We perform molecular dynamics simulations of the HP peptide with various in-

teraction ratios ρ = εHP/εHB, from 0.05 to 0.50 with a step of 0.05. For each ratio,

we perform simulations at various temperatures. We find that the β-hairpin state

becomes less stable as we increase ρ. For small ρ, the thermodynamic property of

our HP peptide resembles that of the peptide without specific side-chain interactions.

At a characteristic range of ρ values (0.20 ≤ ρ ≤ 0.35), the intermediate β-hairpin

state disappears and the peptide folds cooperatively into the native α-helix state

(Fig. 4.14).

For ρ = 0.25, the specific heat has a pronounced peak around TF = 0.128

(Fig. 4.14), indicating a sharp transition specific to a two-state protein. At low

temperatures, the peptide adopts the native α-helix structure (Fig. 4.14d,e). At

temperature T = 0.120, we also observe some potential energy fluctuations corre-

sponding to the partially unfolded α-helix with the unfolded N- and C-termini. In

the vicinity of the transition temperature, the peptide adopts both the α-helix and

the unfolded states. The hydrophobic interactions are formed with a higher prob-

ability even at high temperatures than the hydrogen bonds because of the larger

interaction range (DHP = 6.5Å > DHB = 4.2Å) and the absence of angular depen-
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Figure 4.14: Thermodynamics of HP sequence.

(a) The specific heat for the hydrophobic polar peptide with ρ = 0.25, having a

pronounced peak at TF = 0.128. The typical potential energy trajectories at (b)

T = 0.135, (c) T = 0.128, and (d) T = 0.120. The transition is between (e) the

native state and (f) the molten globular states, where the space-filled amino acids

are the hydrophobic atoms.

dence of the HP interactions. Snapshots of these unfolded states indicate that the

HP peptide adopts “molten globular” [178] conformations (Fig. 4.14f) which have

contacts formed between the hydrophobic residues. The average radius of gyration

Rg for the molten globular state at temperature T = 0.135 is 7.35Å, compared to

the unfolded state Rg = 10.3Å for ρ = 0 at the same temperature. We find that
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the HP peptide first collapses into the “molten globular” state from the random coil

state, which is similar to the coil-globular transition [178], at a higher temperature

than TF .

Within the characteristic range of ρ values, the difference of the average poten-

tial energy between the β-hairpin state and the unfolded state is small, which is not

enough to stabilize the β-hairpin state. For example, for ρ = 0.25 (Fig. 4.14) the av-

erage potential energy of the unfolded state is −4εHB at TF , and the potential energy

of the β-hairpin state ≈ −6εHB is within the range of potential energy fluctuation

of the unfolded state (Fig. 4.14c). However, the potential energy gap between the

α-helix state and the unfolded state is 8εHB (Fig. 4.14c), which is large enough to

stabilize the α-helix state [28].

As we increase ρ, we rarely observe the helix-coil transition (e.g. for ρ = 0.50 the

α-helix state is never reached from the unfolded state during the simulation of 107

time units). At low temperatures, our HP peptide is frozen in the molten globular

states because of the strong hydrophobic interactions.

4.3.5 Discussion

A missing link in understanding the amyloidogenesis of α-helix-rich proteins to β-

sheet-rich fibrils is the possible presence of a metastable β-hairpin intermediate state,

prone to aggregation [175]. Our results suggest a generic framework that explains

why this β-hairpin intermediate is favorable in terms of free energy. Although the

potential energy of the β-hairpin state is higher than that of the α-helix state, the

entropy of a β-hairpin is significantly larger than that of an α-helix due to fewer

constraints imposed by hydrogen bonds. At high temperatures, the free energy of a

β-hairpin can be smaller than that of an α-helix. Even though our simulations and

discussions are focused on the β-hairpin (an anti-parallel two-stranded β-sheet) our

analysis is appropriate for both parallel and anti-parallel two-stranded β-sheets that

are entropicaly favorable with respect to α-helices.

Our simulations of temperature-driven α-helix to β-hairpin transition are consis-

tent with recent experiments on the solvent-driven conformational transitions [179,
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180]. By changing the solvents from one type that has a low ability to interact with

the backbone peptide groups to another type that has a higher ability [179], the

designed peptides are found to convert from α-helices to β-hairpins. Increasing the

ability of the solvent to interact with the backbone, the energy gain to form a back-

bone hydrogen bond is effectively decreased. Instead of increasing the temperature,

the decrease of the hydrogen bond’s energy gain drives the conformational transition

from α-helix to β-hairpin because of the dominating effect of backbone entropy.

Most proteins in physiological conditions do not aggregate. Proteins with evolu-

tionarily selected sequences avoid aggregation by folding into the native state with-

out metastable intermediate states. In vitro and in vivo experiments show that

changes in environmental conditions lead to aggregation [124,148]. The environmen-

tal change has a different effect on different types of interactions. Our simulations

of HP sequences with various hydrophobic interaction strengths demonstrate that

if the environmental changes effectively lead to the weakening of the relative side-

chain interactions, the peptide or protein may misfold into a metastable β-hairpin

intermediate.

Discrete molecular dynamics simulation methodology is a step in simplification

of molecular modeling with respect to traditional molecular dynamics simulations.

The principal drawback of the discrete molecular dynamics simulations is its diffi-

culty to represent forces. Instead, system’s dynamics is realized through ballistic

collisions between particles. Interactions between particles are modeled by square-

well potentials. Despite its simplicity, discrete molecular dynamics has been proved

to be a powerful tool not only to study protein folding thermodynamics [8–11] and

kinetics [10–12], but to identify the evasive protein transition state ensembles [10]

and to witness aggregation of multiple proteins into amyloid fibrils [14]. The latter

two goals have yet to be directly approached with traditional molecular dynamics

simulations. In addition, the traditional all-atom molecular dynamics simulations

are also a simplification of the quantum mechanics simulations, in which quantum

interactions are replaced by approximate Newtonian interactions. The latter, in turn,

are approximated by a large number of empirical parameters. The advantage of the

discrete molecular dynamics simulations versus traditional molecular dynamics sim-
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ulations is its ability to resolve larger time scales — 106 orders of magnitude. The

traditional molecular mechanics simulations have similar advantage over quantum

mechanics simulations. The traditional molecular dynamics simulations are based

on several decades of improving and testing of model force field, while applications

of discrete molecular dynamics simulations have been limited until recently to col-

loids and hard spheres. Despite of this we believe that modifying and improving

parameters of discrete molecular dynamics simulations for proteins by testing them

on simple systems such as the polyalanine chain studied here will eventually lead to

models with quantitative predictive power.
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