Application of Discrete Molecular Dynamics
to Protein Folding and Aggregation

S.V. Buldyrev

Abstract With the rapid increase in computational speed and memory, simulations
of proteins and other biological polymers begin to gain predictive power. However,
in order to simulate a folding trajectory of a moderate size protein or an aggrega-
tion process of a large number of peptides, traditional molecular dynamics methods
based on explicit solvent and accurate force field models still must gain several or-
ders of magnitude in speed. Under these circumstances, simplified models which
capture the essential features of the system under study may shed light on the prob-
lem in question. One of these simplified methods is discrete molecular dynamics
(DMD). DMD replaces the interaction potentials between atoms and covalent bonds
by discontinuous step functions. This simplification as well as coarse graining of the
model (replacing groups of atoms by one effective bead) and replacing the effect of
solvent by varying the strength of inter-bead interactions can speed up simulations
sufficiently to generate many folding—unfolding events and to track the aggrega-
tion of many peptides. This increase in speed is gained mainly due to the ballistic
motion of either secondary structures of the protein or individual peptides. This bal-
listic motion is a characteristic feature of the DMD method. This chapter will review
successes and failures of the DMD method in protein folding and aggregation.

1 Introduction

Protein folding and protein aggregation are very important problems in biology and
medicine. In spite of enormous advances in experimental studies of proteins, the
problem of identification of the protein native state given its amino acid sequence
and the inverse problem of designing a protein with a given native state remain
unsolved. Many neurological diseases including prion diseases (such as the notori-
ous Mad Cow disease) and Alzheimer’s disease, as well as various genetic disor-
ders are related to protein missfolding and subsequent polypeptide aggregation into
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insoluble fibrils [1, 2, 3]. Understanding of these processes is extremely important
for prevention and treatment of these diseases. Can molecular dynamic simulations
be of use in this area? All-atom molecular dynamic simulations with accurate force-
fields and explicit solvent are still too slow to simulate complete folding and ag-
gregation trajectories. Therefore, simplified coarse-grained models, which replace
solvent by effective attraction or repulsion of the residues, are needed.

One such approach is discrete molecular dynamics (DMD), which replaces atoms
or groups of atoms by hard spheres interacting by discontinuous stepwise potentials.
DMD has been proven useful for studies of simple liquids [4, 5, 6,7, 8,9, 10, 11, 12],
polymers [13, 14, 15, 16, 17, 18, 19], colloids [20, 21, 22], lipid membranes [23],
and DNA-histone binding [24]. For a recent mini-review of the DMD applications
for protein folding and aggregation, see [25, 26]. Due to its simplicity, DMD is also
an ideal aid in teaching thermodynamics, physical chemistry, and polymer physics
[27, 28]. Here we review recent works which use DMD in the studies of protein
folding and aggregation.

2 Discrete Molecular Dynamics

DMD, also known as discontinuous molecular dynamics or event driven molecular
dynamics, was introduced in 1959 by Alder and Wainwright [4] for simulations of
hard spheres. Later it was used by Rapaport [13, 14, 29] for simulation of polymer
chains, and finally was adopted for simulations of protein-like polymers [15].

Traditional molecular dynamics [30, 31, 32] approximately integrates Newton’s
equations of motion of particles interacting via continuous pair potentials (e.g.,
Lennard-Jones or Coulomb) by updating particles coordinates and velocities at fixed
time steps of the order of a few femtoseconds. DMD [31] approximates these poten-
tials by a discontinuous step-functions of interparticle distance r. Thus in DMD, par-
ticles move along straight lines with constant velocities until a moment of collision,
i.e. a moment of time at which r becomes equal to the point of a discontinuity of the
potential (Fig. 1). This discontinuity may be of an infinite height (hard-sphere, or an
unbreakable chemical bond) or of a finite size (square well or shoulder, Fig. 1b). The
exact time of the next collision can be obtained by finding a minimal positive solu-
tion of the correspondent quadratic equations for all pairs of particles (See Appendix
A for details). Next, the velocities of the pair of colliding particles are updated us-
ing laws of energy, momentum, and angular momentum conservation. These one
scalar and two vector equations are sufficient to find the six unknown components
of the velocities after the collision and can be solved exactly by reduction to a sin-
gle quadratic equation of energy conservation. If this equation has no roots, it means
that particles do not have enough kinetic energy to jump out of the square well and
they recoil back, as in hard-core collision, without change in kinetic energy. Thus,
in contrast to the traditional molecular dynamics, DMD provides an exact solution
of the system interacting via given discontinuous potentials with strict (subject only
to rounding-off errors) conservation of energy and momentum.
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Fig. 1 A collection of DMD potentials used in various studies. (a) Hard spheres introduced by
Alder and Wainwright [4]; (b) square wells and (c¢) covalent bonds were used to study polymer
collapse by Rapaport [14]; (d) repulsive shoulder used to model hydrophilic interactions or non-
native contacts [16, 51]; (e) repulsive ramp with two steps used in [87] for auxiliary interactions
in hydrogen bond algorithm and with multiple steps in [9, 10, 11] to model liquids with negative
thermal expansion coefficient; (f) potential barrier used in [21] for ghost particles which occupies
no volume but serve as a heat bath; (g) soft core is used in all our studies to create an initial con-
figuration of nonoverlapping hard spheres by running at low temperature; (h) long-range potential
used to model electrostatic interactions in Refs. [61, 99, 106]; (i) two-state bond is used to create
auxiliary bonds between the backbone beads if they are also linked by a covalent bond [69, 87];
(j) complex bond potential to simulate rotamers [61]; (k) double-step potential used to simulate
liquid-liquid phase transitions [5, 6, 8]; (1) multi-step potential approximating Jagla model [38] for
water [12, 19]

The distribution of atom velocities after a few collisions converges to the Maxwell
distribution. Thus the chance that a pair of particles will increase its potential en-
ergy by AU is proportional to the flux through the rim of the square well or shoulder
of the particles with the kinetic energy larger than AU. This flux is proportional to
exp(—AU /kpT), where kg is the Boltzmann constant and T is absolute temperature.
On the other hand, the probability of entering the well or descending the shoulder is
always one. Hence the DMD is equivalent to the Metropolis Monte-Carlo in which
the set of moves is not artificial but is equivalent to the ballistic motion of the parti-
cles. Hence DMD is suitable for finding dynamic properties of the system, such as
diffusion coefficient, viscosity, and time correlation function.

A variety of different DMD potential types have been used to solve various
problems in condensed matter physics (Fig. 1). As the sizes of the steps in the
discontinuous approximation of a continuous potential approach zero, the DMD
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trajectory converges to a trajectory of a traditional molecular dynamics for this
continuous potential. Since the coordinates and velocities are updated only at the
moments of collisions, DMD is especially efficient for dilute systems interacting
with very crude potentials such as a hard core plus a single repulsive shoulder or an
attractive well. An example of such a system relevant to protein folding is a model
of heteropolymer in a vacuum. Interestingly, such a crude approximation of a po-
tential (after all, Lennard-Jones potential is also a crude approximation) is often
sufficient to get essential physics and even chemistry right. The ballistic motion of
the particles in the DMD is the main feature which allows to speed up the processes
of folding and aggregation. The distant parts of the protein and different peptides
approach each other ballistically instead of by slow reptation through the surround-
ing solvent. This helps to increase the computational speed by orders of magnitude.
The disadvantage of this speed-up is that one cannot directly predict folding and
aggregation rates.

The step potential for a pair of particles of given types A and B can be encoded
by a string:

ABrory €] ...y €,

where ry is a hard core distance and r, > r,—1 > ... > r|] > rp, are the distances at
which the potential has a discontinuity of step €;. The values of ¢; are positive for
repulsive shoulders and are negative for attractive wells. If the last €, is omitted,
it means that the particles are linked by the permanent bond whose distance can
fluctuate between ry and r;,.

In addition, DMD can be efficiently used to model chemical reactions since it is
possible to change the type of a particle once another particle approaches it within
a certain distance and forms a chemical bond. After the reaction, the members of
a bonded pair may interact differently with each other and with other particles. In
this way, it is possible to model formation of hydrogen bonds and take into account
the maximal valence of a given atom [21, 22]. Moreover, this is an effective way
to model many body interactions, since the particle type may depend on the partic-
ular configuration of its neighbors. Recently, DMD has been applied for modeling
physical gels and strong glass-forming liquids using the maximal valence model
[21, 22].

It is also easy to implement in DMD various macroscopic objects so long as
they are planes or spheres. This can be used for modeling systems in the confined
geometry. It is also possible to implement a gravitational force as well as collisions
with ghost particles to model a perfect canonical thermostat [16, 21]. Very recently,
DMD has been extended to non-spherical objects [33], (ellipsoids [34, 35]) and
patchy surfaces which is potentially a very powerful method for modeling protein
crystallization [36].

The discontinuous pair potentials are suitable for accurate modeling of dihedral
angles by introduction of auxiliary bonds with a small distance between r,,_ and r,
connecting the next to the nearest and third nearest atoms along the chain. However,
these bonds result in a lot of small interval collisions, which significantly slow down
the computation. An alternative approach for efficient modeling of dihedral angles
within the DMD algorithm was proposed in [37].



Discrete Molecular Dynamics 101

As one can see, DMD is well suited for studies of simple crude models with
the goal of understanding the minimal features of the system needed to reproduce a
given phenomenon. The examples of successful application of the DMD are model-
ing fluids with several critical points [5, 6, 7, 8], water-like thermodynamic anoma-
lies [9, 10, 11, 12], anomalous glass transitions in colloids in which the two different
glasses (repulsive and attractive) can exist [20], modeling of physical gels and strong
glass-formers with maximal valence model [21, 22]. Very recently, a simple model
of a non-polar solvent which exhibits the decrease of hydrophobicity upon cooling
has been proposed [19].

Simple geometry of the potentials used in the DMD allows us to understand the
basic mechanisms of a phenomenon under study. For example, anomalous expan-
sion of water as well as its hydrophobic effect can be reproduced by a spherically
symmetric potential with a repulsive ramp (soft core) [38]. The rigid hydrogen-
bond tetrahedron of the nearest neighbor water molecules corresponds in this model
to a hard core, while the more flexible second shell of neighbors represents the
soft core. As the temperature increases, some of the particles from the second shell
may enter the first shell jumping onto the repulsive ramp. Thus the average distance
between the particles reduces and the liquid may shrink upon heating. Analogous
effect explains the increase of hydrophobicity upon heating. Small solute particles
like alkanes can no longer find sufficiently large cages between solvent particles
which become closer to each other as the temperature increases. This effect is the
basis of the cold denaturation of proteins [19].

DMD can also be used for accurate prediction of physical and chemical prop-
erties of a system, such as the native state of the protein given its amino acid se-
quence. But in this case one faces a formidable problem of parameterization of
the potentials akin to the same problem in traditional MD. Often the parameters
of the DMD potential lacks any physical meaning (like auxiliary bonds) and must
be introduced only to mimic the geometry of the peptide backbone or hydrogen
bonds. Also, since using the explicit solvent immediately eliminates all the ad-
vantages of the DMD, one must model the hydrophobic and amphiphylic interac-
tions by the effective attraction or repulsion between amino acids or specific atoms.
Since the hydrophobic effect is produced by water molecules which form cages
around hydrocarbon groups, this effect strongly depends on temperature and other
neighboring groups. Therefore, one needs to introduce different potentials for the
same atoms in different groups and possibly the three-body interactions by the re-
action scheme above discussed. The parameters of these complex interactions can
be obtained by means of statistical analysis of the protein data bases, but this re-
quires huge effort and decades of human-years. While in the last two decades a
lot of groups were involved in developing traditional MD (CHARMM [39, 40],
GROMACS [41], NAMD [42], AMBER [43], LAMMPS [44]), only a handful
of researches work on the development of the DMD. Nevertheless, a substantial
progress has been made (e.g., the development of the PRIME model by Hall and
co-workers [45]).

The bottle-neck of the DMD algorithm is the effective sorting of the collision
times. The computational cost of a naive algorithm which computes all the pair
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collisions and move all the particles after each collision scales as N> where N is the
number of particles. Several ways of solving this problem are developed [17, 31].
Our sorting algorithm is described in Appendix A. It allows to reduce computational
costto NInN.

3 Protein Folding

A polypeptide with a uniquely folded 3d conformation (native state) is called a
protein. For a long time, biophysicists were puzzled by the following questions:
What makes a polypeptide a functional protein? How does an amino acid sequence
define a unique 3d structure of a protein? How can one design a protein with a
given native sate? How a does protein find its native state in the vast configurational
space? If it would proceed by a random search, a simple estimate predicts that the
folding time will be larger than the age of the Universe (Leventhal paradox) [46].
For a recent review of these problems see [47].

What is the minimal set of features of a model that ensures that a heteropolymer
folds into a unique native state? This question was addressed in the 1990s with help
of lattice models (see [47] and references therein). In a sense, this approach was not
unlike the minimalistic studies of Picasso, who created a drawing of a bull with a
minimal set of features, which however still allowed a spectator to recognize it [48].
Biologists usually do not appreciate this approach, and so in order to be helpful, we
must try to move in the opposite direction, from Picasso to Velasquez.

Today it becomes clear [47] that a random heteropolymer does not have a unique
native state. Its potential energy landscape has many deep minima, the difference
between which are just a few kg7'. Thus a random heteropolymer will fold into one
of these deep minima. The studies of the lattice models of heteropolymers show that
in order for the protein to have a unique native state, its energy must be by several
standard deviations lower than the minima of the rest of the basins. It is possible to
implement an artificial mutation process based on the Metropolis algorithm which
maximizes the Z-value, i.e. the ratio of the difference between the energy of the
native state and the energy of a typical basin to the standard deviation of the en-
ergy distribution of the basins. Lattice heteropolymers designed in such a way fold
into the native state given by a contact map, i.e. the matrix of contacts between the
amino acids occupying the adjacent lattice sites in the native state. The success of
lattice models suggests that the biologically active proteins are the result of natu-
ral selection, which has gradually increased the stability of the primitive pre-biotic
proteins [49].

4 The One-Bead Go Model

The next step toward a more realistic picture of a protein would be to design an off-
lattice model which folds to a prescribed globular native state. A natural candidate
for this model would be a bead-on-a-string model which interacts via square well
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potentials [13, 14, 29]. The values of the potentials may be taken from an effective
matrix of interactions derived from the probabilities of amino acids to be close to
each other in the native state of the existing proteins [50]. This model can be very
efficiently studied by the DMD. The initial globule can be created by a collapse of a
homopolymer, interacting via identical attractive square wells. The initial sequence
of the protein is a random sequence of twenty letters and then it is changed by
mutations maximizing the energy gap between the energy of the native state and the
energies of random contact maps representing missfolded states as it has been done
for lattice models. Our studies have shown that this approach does not work. The
bead-on-a-string model has too many degrees of freedom and too many contacts
per amino acid. The number of contacts reaches ten for the beads in the central
core of the bead-on-a-string model while in the lattice model it is only four. So it is
impossible to design a protein-like sequence of sixty beads using only the twenty-
letter code.

We have found [51] that the Go model [52, 53, 54] which uses 60 x 60 matrix
of interactions (Fig. 2) for a sixty-bead polymer works very well. In the Go model,
the beads which are within a certain distance in the native state attract to each other
while those that are further away repel. Thus, the native state is by definition the
ground state of the model. Moreover, its energy gap with a randomly missfolded
globule is of the order of n., where n is the number of native contacts. We find that
the Go model of a small globular heteropolymer always folds into a native state near
the folding temperature, 7;. Moreover, this happens in a reversible way, so that the
polymer folds and unfolds many times during the simulation. At T = T, the folded
and unfolded conformations are equally populated and separated by a significant
energy gap which is about one half of the total number of native contacts (Fig. 3).
This bimodal distribution is a characteristic of the first-order phase transition in
which the two phases (liquid and crystal) may coexist and the potential energy gap
between the two phases is proportional to the number of molecules in the system.
This is in sharp distinction to the behavior of a flexible homo-polymer near the
theta point, which undergoes a second-order phase transition and has a unimodal
distribution of energies.

Interestingly, the models produced by the Go algorithm from a collapsed state of
a homoplymer often have intermediate states in which a tail consisting of a signifi-
cant number of beads is detached from the rest of the folded globule. The partially
folded states comprise an intermediate bump on the potential energy distribution.
Cutting away this tail yields a perfect two-state folder, which represents the major-
ity of the small proteins.

As the temperature of the system is reduced below the folding temperature, the
distribution becomes unimodal, with the probability of being in the folded state
dominating (Fig. 4). However, if the temperature of an unfolded state is reduced be-
low a certain value, which is about 70 % of the folding temperature [51], the polymer
may never find its native state and may be trapped forever in a missfolded state. This
phenomenon is analogous to the glass transition in the supercooled liquids, in which
the nucleation of the crystal can be avoided by fast quenching. For protein A, this
phenomenon is observed at 7 = 0.62, which is about 80% of Ty = 0.765.
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Fig. 2 A Go interaction matrix (contact map) constructed for the B domain of staphylococcal
protein A (1BDD) and barnase (IBNR) using their native states taken from the Protein Data Bank.
The amino acids for which Cy atoms in the native state are separated by less than 7.5 A attract
to each other via a square well interaction (Fig.1b) with ry = 3.459 A,rn=75A,and depth
€] = —e, while other amino acids repel from each other via a square shoulder interaction (Fig. 1d)
with the same rp and r; and height €; = +€. The 1BDD protein has 3 a-helices held together
by 45 long-range contacts. The total number of native contacts is 160 which corresponds to the
ground state potential energy of —160€. A particular structure of the contact map can vary a lot.
For example, SH3 domain has 3 B-hairpins. An artificial globule constructed by the homopolymer
collapse has neither a-helixes nor f-sheets, but usually have about c¢N native contacts where N
is the number of monomers and c¢ varies between 2 and 3. The number of long-range contacts is
about 0.25-0.3 of the total number of contacts. Colors indicate the probabilities of contacts in the
folded (lower triangle) and unfolded (upper triangle) states at T = Tr = 0.765. In the unfolded
state, all long-range contacts have very low probability, while the secondary structure is already
partially formed. In the folded state, many long-range contacts are formed with probability larger
than 0.8. These contacts form putative folding nucleus. The energy gap between the folded and
unfolded state is 54€. The analogous Go model for barnase has 316 native contacts which is two
times larger than for protein A. This Go model also folds cooperatively into the native state but the
energy gap between the folded and unfolded states is two times wider than for protein A (107¢).
So at Ty ~ 0.8 barnase can undergo only few transitions between folded and unfolded states in
107 time units. The upper triangle shows contact probabilities for the unfolded state. The lower
triangle shows the contact probabilities in the folded state. The protein consists of two a-helices
and three f-hairpins. While the o-helices are well formed in the unfolded state the 3-hairpins are
not present. In order for this protein to fold, the B-hairpins must form cooperatively

This model seems to explain the Leventhal paradox: near the folding tempera-
ture, the secondary structure of the unfolded chain is already partially formed with
about 50% of the native contacts (mainly short ranged) in place (Fig. 2). The indi-
vidual elements of the secondary structure are not stable because its potential energy
differs from the unstructured conformations only by few kg7. However, the poly-
mer has already lost an immense number of degrees of freedom and acts like a
collection of a few secondary structural elements. Once the few critical long dis-
tance contacts (the folding nucleus) [55] are formed, the partially folded secondary
structural elements come together and the polymer quickly descends into its native
state. This process is similar to the formation of the critical nucleus in the first-order
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Fig. 3 (a) Potential energy versus time for a two-bead Go model of 1BDD protein near
T = Tr = 0.765. The graphs for the one-bead Go models of two-state proteins look similar. About
60 folding and unfolding events are visible. (b) In addition, there are many unsuccessful attempts
to fold (UU events) or unfold (FF events). (¢) Each folding event takes about 600 time units which
is about 300 times faster than average time spent in the folded or unfolded state. (d) The probability
density of the potential energy is bimodal with equally populated folded and unfolded states. The
average energy of the unfolded state is —73€ which corresponds to the existence of approximately
one half of all native contacts

phase transition. During this stage the remaining 50% of the native contacts are
formed [55, 56]. However, the discussed folding scenario can be an artifact of the
Go model, in which the non-native contacts do not attract to each other and hence
the hydrophobic collapse preceding the formation of the secondary structure cannot
be observed. Adding small hydrophobic attraction between the non-native contacts
to the Go interactions changes the folding scenario [57, 58]. In this case, the protein
first undergoes the hydrophobic collapse into a molten globule state, in which the
secondary structure is only weakly formed. If the attraction of non-native contacts is
significantly weaker than the attraction of native contacts, the molten globule reorga-
nizes itself into the native state in a first-order-like transition, but the folding process
is much slower than in the case when the non-native contacts are assigned zero or
even positive (repulsive) energy. It is clear that in vitro and in vivo both scenarios
can take place depending on the properties of the protein and its environment.
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Fig. 4 (a) Probability density of the potential energy for different temperatures in the vicinity of the
folding transition for the 1BDD protein. The populations of the folded and unfolded states change
dramatically while the temperature changes from 0.7 to 0.78. Outside this temperature interval the
distribution becomes unimodal. Thus the temperature interval of the folding transition corresponds
to about 40 K in the physiological temperature scale. Accordingly, the average potential energy (b)
dramatically change with temperature near folding transition and the heat capacity (c) has a sharp
maximum. All these are features of the first-order phase transition. This behavior is typical for the
one-bead and two-bead Go models

The transition time during which the trajectory descends from an unfolded to a
folded state is by several orders of magnitude smaller than the average folding time,
i.e. the time during which the polymer explores the vast ensemble of the unfolded
states. This feature is also observed in the folding of all-atom models with explicit
solvent. Actually, it is the basis of the Pande’s Folding at Home project [59]. In
this approach, hundreds of thousands participants world-wide run the simulations as
screen-savers on their personal computers. Average folding time of a small protein
is of the order of one hundred microseconds, while a typical simulation time is
about 10 n. In contrast, the descent of the protein from the transition sate in which
the critical nucleus is formed into the native state is within the simulations reach.
Thus in one case out of ten thousand, a lucky participant may observe an actual
folding. Using these results Pande and coworkers can determine the folding rate, an
experimentally verifiable quantity.
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As we see, DMD helps to explain a lot of features of a real protein folding in
simple terms. In summary, the DMD Go model confirms that the protein folding
has many features of the first-order phase transition, in particular nucleation [60].
Of coarse, since it explicitly uses the information on the native state, it does not bring
us closer to the “Holy Grail” of computational biology, which is ab initio folding
of a protein given only its amino acid sequence. Can pair potentials, even with cor-
rect geometry of the peptide backbone and the side chains, but without the explicit
solvent, be successful in this quest? The answer to this question is still unknown.
The success of folding of the trp-cage miniprotein by the DMD [61] and by other
molecular dynamics methods is probably due to a very specific sequence of this pro-
tein with several prolines which make the backbone especially rigid. We will review
this study below. In reality, amino acids interact not only with each other but also
with the surrounding water, which forms cages around the hydrophobic amino acids
and makes hydrogen bonds with polar amino acids. Thus, solvent creates effective
many-body interactions among amino acids, i.e. changes the amino acid properties
by the effects of their neighbors and thus creates many more effective amino acid
types than 20.

5 Transition States of Realistic Proteins

Can the Go model predict certain experimentally verifiable features of real proteins,
such as their transition state ensembles, the folding pathways, and the presence of
intermediates? In order to answer this question, we take [62] a well-studied protein
with a known native state, Src SH3 domain, and create a Go interaction matrix
(Fig. 2), assuming that if Cg atoms of the side chains are less than 7.5 A apart in
the native state, they attract with the square well of diameter 7.5 A and potential
energy —e, while if they are farther apart they repel from each other as hard-cores
at the same distance. The later rule insures that the protein cannot form non-native
contacts at all. For glycines, which do not have side chains, we use C,, instead of Cﬂ.

Interestingly, the bead on the string model with this Go matrix and all equal
bond lengths do not fold into a native state, so we have to specify the bond lengths
as the distances between subsequent Cg atoms in the native state. A version of this
model, in which the distances between C,, atoms in the native state specify the Go
interaction matrix, does not fold into a native state cooperatively. This result indi-
cates that the conformations of the side chains rather than those of the backbone
determine the specific nature of the amino acid interactions. The model shows a
much more cooperative transition than the previously studied model of an artifi-
cially constructed globule [51, 55, 56], although the SH3 domain has similar length,
N = 56, and number of native contacts, N, = 160. The distribution function of po-
tential energy has a wide gap between the sharp maxima corresponding to the native
and unfolded states, separated by a deep minimum. Similar behavior is observed for
many other short proteins (Fig. 3).
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If one assumes that the potential energy (number of native contacts) is a good
reaction coordinate, then the conformation corresponding to the minimum in the
energy histogram must belong to the free-energy barrier separating the native and
unfolded states and thus constitute the transition state ensemble (TSE), which is by
definition a conformation that with 50% chance folds within the typical transition
time and with 50% chance unfolds. In the SH3 domain Go model, the ratio of the
transition time to the time for which protein resides in the native and unfolded states
is even smaller than in the artificial globule studies. We find that the majority of the
conformations near the minimum of the potential energy histogram do not corre-
spond to actual folding or unfolding events but represent the unsuccessful attempts
to fold or unfold. We call these attempts folded-folded (FF) and unfolded-unfolded
(UU) events. A FF event is a part of the trajectory, which originates below the max-
imum of the distribution characterizing the folded states, reaches the minimum of
the distribution and without ever reaching the maximum characterizing the unfolded
states descends below the maximum characterizing the folded states. The UU events
are defined analogously (Fig. 3b). We hypothesize that both FF and UU events have
structural similarities to the TSE. We also hypothesize that the difference between
the UU and FF events is that in FF events the folding nucleus is not destroyed, while
in the UU events the folding nucleus does not form. Thus the contacts which repre-
sent the folding nucleus must be those with the maximum positive difference of their
probabilities to be in FF and UU events. (Note that the average number of contacts
in FF events is smaller than in the UU events, because we sample the UU events
below the minimum of the distribution, while the FF events are sampled above the
minimum of the distribution.)

We find [62] that some contacts are significantly more abundant in FF events
than UU events. In the Go model of the Src SH3 domain, there are about 20 such
contacts and all of them belong to the two distinct clusters of long-distance contacts
in the contact map: one characterizes the contacts between the termini of the protein
while another characterizes the contacts between the distal hairpin and the RT-loop.
However, the absolute values of the probabilities to find contacts between the ter-
mini are not very high in the FF event, so we conclude that these contacts do not
characterize the TSE and thus do not belong to the folding nucleus. On the other
hand, the contacts between the RT-loop and the distal hairpin occur in more than
half of FF events, so we assume that they do belong to TSE and thus form the true
folding nucleus.

We also produce the P-fold analysis as an additional test of the putative folding
nucleus. The P-fold analysis consists of randomly changing velocities of the amino
acids in a certain conformation and then performing a simulation for a time interval
which is significantly longer than a typical transition time but is significantly shorter
than the time of staying in the folded or unfolded states. Then we count the fraction
P of trials in which the protein ends up in the folded state. The P-fold analysis con-
firms our identification of the putative TSE and folding nucleus. The amino acids
belonging to this putative folding nucleus form contacts between the distal hairpin
and the RT loop. This conclusion is however not confirmed in the later studies in
which the putative TSE is identified by the all-atom importance sampling MD [63].
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These contacts are not present in any of the 51,000 conformations sampled in the
vicinity of the free-energy barrier on the two-dimensional map which uses radius of
gyration and potential energy as reaction coordinates. On the other hand, the confor-
mations with termini contacts are abundant in this putative TSE. This discrepancy
questions both the ability of simple Go models to make reasonable predictions of
the true folding kinetics and the validity of the all-atom modeling based on impor-
tance sampling molecular dynamics (in these studies no actual folding trajectories
are obtained). Only experiment can bring the final verdict.

This discrepancy is consistent with the idea of multiple folding pathways which
we found for the SH3 domain at low temperatures and some other short proteins
using the one-bead Go model [62, 64]. At high temperatures, within 20% range
from Tz, the protein can fold via two pathways either forming contacts between
distal hairpin and RT loop or (with smaller probability) forming contacts between
C-N termini. At high temperature both pathways are fast and the folding is optimal
at about 0.857;, which is consistent with experimental observations. However, at
T < 0.60TF, the protein can be trapped in the intermediate state with the contacts
between the termini formed prematurely. In order to proceed to the folded state, the
protein must first break these contacts which requires certain activation energy. That
is why, the time spent in the trap diverges at low T following the Arrhenius law.

In addition, we study unfolding of nine other proteins which are known to have
folding intermediates. In general, our results agree with the experimental findings:
namely for the two-state folding protein like SH3 and Im9 domains, the Go model
predict cooperative folding with no intermediates, while for the proteins with inter-
mediates, including Im7 which is homologous to Im9 but is known to have inter-
mediates, the Go model also predicts intermediates. This remarkable success of Go
models suggests that it is the topology of the native state rather than the amino
acid sequence that determines the kinetics and thermodynamics of the globular
proteins.

A different variant of the one-bead model with Go interactions has also been
used for DMD simulations of various folding pathways in o-helical [57, 58] and
B-stranded proteins [65]. These simulations use a pseudo dihedral angle potential
which creates a chirality bias toward right-handed a-helices [16]. In these models
all the contacts, both native and non-native, can form but the interaction energy
of the native contacts is larger than that of the non-native ones. By varying this
energy gap between native and non-native contacts, various folding scenarios are
observed. For the large energy gap, the protein can quickly not only fold into a
native state, but can also be trapped in the partially missfolded conformations. For
the low energy gap, the protein first collapses into a compact disordered structure
similar to a molten globule [66] and then slowly folds into a native state. Thus, these
studies show that both scenarios are possible for protein folding. In the first scenario,
parts of secondary structural elements form in the unfolded state [67], which then
fold into the native state. During this process missfolded conformations can form
which must unfold for the successful folding into the native state. In the second
scenario, proteins collapse into a disordered globule, which later fold into the native
state either in a cooperative transition or via non-obligatory intermediates.
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However, a third scenario in which the hydrophobic collapse happens simultane-
ously and cooperatively with the formation of the secondary structure is probably
the most likely one. Modern theory of hydrophobic interactions [68] predicts com-
plete dewetting of large polymer globules and formation of the water phase bound-
ary around globules exceeding 1 nm in diameter. The formation of such a globule
is a two-state, first-order-like phase transition even for a flexible homopolymer. Re-
cently, this transition has been demonstrated by the DMD simulations of a hard
sphere polymer in a water-like Jagla solvent [19]. The formation of the relatively
weak hydrogen bonds between the backbone carbonyl and amides which are crucial
for formation of the secondary structure is unlikely if the backbone is surrounded by
water molecules which can form much stronger hydrogen bonds with the backbone
groups. Expulsion of water by the hydrophobic dewetting caused by the hydropho-
bic side chains enhances the formation of the backbone hydrogen bonds which in
its turn serves as positive feedback for the collapse. Unfortunately, this scenario is
impossible to simulate replacing the effect of solvent by effective pair potentials
between protein atoms.

6 The Two-Bead Go Model

We see that the one-bead Go model is too flexible and needs adjustments of the dis-
tances between C atoms in order to take into account the geometry of the backbone
and the side chains. Thus, we take a next step “toward Velasquez” and explicitly add
the side chains (each represented by a single bead Cg) to the backbone, which is still
represented by the chain of Cy [69]. In order to reduce the flexibility of the back-
bone, we add auxiliary bond linking next to the nearest C, atoms along the back-
bone. These bonds make rigid isosceles triangles Cg;—1Cg,iCq ir1 With the angle
at C; of approximately 96° and the distance between C ;1 and C, ; of approxi-
mately 3.8A. The Cp,; is attached to the C,,; bead by a covalent bond of 1.53A and
by two auxiliary bonds linking it with Cy;_1 and Cg ;1 in order to keep the cova-
lent bond approximately orthogonal to the plane of the triangle Cy;—1Ce,iCeriv1-
Thus, the entire protein consists of imperfect tetrahedra connected by their edges
in such a way that Cg; and Cg ;| point in opposite directions. The methods for
determining the Go interaction matrix is the same as in the one-bead model (Fig. 2).
Note that glycines lack Cg and we compute their native contact map using their Co
coordinates. Both covalent and auxiliary bonds can fluctuate by a few percent within
a square well. This flexibility intends to mimic the actual statistics of the backbone
geometry. Thus the model can form approximate 8 sheet conformations as well as
o-helixes.

We use the two-bead model to study the SH3 domain TSE [69] performing
P-fold analysis [70] and FF—UU event analysis as in [62]. As in the one-bead model,
the SH3 domain folds in a highly cooperative two-state transition. The transition
state appears to be the same in both one-bead and two-bead models. In addition,
we simulate @ values using a virtual screening method which we develop for the
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Go model and compare them with the experimental @ values. The virtual screen-
ing method computes the shifts in the Gibbs potentials AGy, AGr, and AGg, of
the unfolded, transitional, and folded states of the protein, produced by a “mu-
tation” of an amino acid which turns off the interaction energies of this amino
acid with its neighbors in the native state. It is assumed that such point muta-
tions usually do not alternate the topology of the native and transition states. The
change in the Gibbs potential of a certain state X due to mutation is defined as
AGx = —kgT In{exp(—AEx /kgT)), where AEx is the change in potential energy
due to the mutation, and {...) determines the average over all the observed confor-
mations in the considered state. Finally, we compute the @ value of the amino acid
as @ = (AGt — AGy)/(AGr — AGy), which compares the increase in the height of
the free energy barrier to the decrease in the protein stability [71].

Note that no additional simulations are made in the virtual screening method but
we use the conformations obtained in the original Go-model. Thus, the @ values
are fully determined by the contact map distributions of the transition state. Amino
acids which have the same number of contacts in the transition state as in the na-
tive state have @ ~ 1. The amino acids which do not form native contacts in the
transition state have @ =~ 0. Note that in the Go model the @ values can be only
within the range [0, 1] while in experiments they can be sometimes larger than one
or even negative; thus, one cannot expect high correlation between the simulated
and the experimental values. Indeed, we found the correlation coefficient r = 0.58.
Particularly disturbing is the high probability of the contact between amino acids
L24 and G54 from the RT loop and distal hairpin in our simulations and their low
experimental @ values. On the other hand, these are the most conserved amino acids
in the SH3 family, so it seems that they should be important for the protein stability.
In fact, the mutation of G54 in experiments destabilizes the native state but reduces
the transition state barrier, thus it has a negative experimental @ which may indi-
cate its participation in the transition state. This may be explained by the presence
of the backbone hydrogen bond between G54 and 124, which is not destroyed in
mutations.

To further test the role of this particular contact in the Go model, we replace
it with a permanent bond. The crosslinking of these amino acids significantly in-
creases the population of the transitional state, while the crosslinking of the termini
does not change it significantly. Nevertheless, the question of the relative impor-
tance of the two folding pathways in SH3 domain remains open. A recent article of
Lam et al. [72] shows that by changing the relative strength of the Go-interactions in
the different segments of the two-bead model of the SH3 domain, one can dramat-
ically increase the probability of the folding pathway via formation of the contacts
between the termini without the change in the stability of the native state and coop-
erativity of the folding transition.

The secondary structure of the SH3 domain consists of only -hairpins and does
not have ¢t-helices. As an example, we test the two-bead model by folding two small
proteins, the B.domain of staphylococcal protein A (PDB access code 1BDD) which
has three o-helices and barnase (PDB access code 1BNR) which has both ¢-helices
and B-hairpins (Fig. 2). It appears that 1BDD folds cooperatively in a two-state
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transition the same way as the SH3 domain (Figs. 3 and 4). At the folding tem-
perature, Ty = 0.765, both folded and unfolded states are equally populated and the
protein undergoes rapid folding and unfolding transition. In the unfolded state, the
o-helices are already well formed but the long-range contacts do not present. Thus
during folding, the o-helices come together and form the tertiary structure. The
folding nucleus belongs to the set of long-range contacts.

Similar situation is observed in barnase, which cooperatively folds at 7y ~ 0.8 in
a two-state process. This result coincides with the conclusions of [64] in which the
absence of the intermediates for barnase has been reported based on a few unfolding
trajectories of the one-bead Go model. We study the structure of folded and unfolded
states at 7 = 0.8. In the unfolded states, the o-helices are well formed but some of
the B-hairpins are not present. This is clear because the ot-helices are formed by the
short-range contacts and thus their formation costs much smaller entropy loss than
the formation of B-hairpins for which the contacts have longer range. Accordingly,
the protein folds simultaneously with the two central B-hairpins which are likely
to be a part of the TSE. There is an experimental evidence that barnase has an on-
pathway folding intermediate [73]. The fact that this intermediate aggregates may
indicate that it has exposed 3-strands. This is consistent with our simulation results.

However, in reality, the formation of the -hairpins may precede the a-helices.
The two-bead Go model does not take into account the entropy of the side chains.
Accordingly, B-hairpins may have larger entropy than o-helices and may form
at higher temperatures. By changing the energy [72] or the range of the Go-
interactions, one can change the folding pathway and reverse the order of formation
of a-helices and B-hairpins.

The two-bead Go model is now publicly available for the P-fold analysis of the
arbitrary protein structures [70]. It can be used for studies of large-scale confor-
mational dynamics of long proteins consisting of thousands of residues and their
binding [74]. It has been employed in the study of the conformations of the denat-
urated proteins [67]. The nature of the Go interactions leads to the high abundance
of the native secondary structural elements in the denaturated states. However, this
result may depend on the relative strength of the native and non-native contacts as
discussed in [57, 58]. Very recently the two-bead Go model has been used for sim-
ulation of histones binding to DNA [24]. Each DNA nucleotide has been modeled
by three effective beads.

7 The Two-Bead Model with Hydrogen Bonds:
Studies of Protein Aggregation

It is well known that many genetic neurological diseases are caused by aggrega-
tion of proteins into insoluble fibrils formed by the B-sheets crosslinked by hydro-
gen bonds [1, 2, 3]. While an isolated protein can still fold into its native state,
the proteins in concentrated solutions can attach to each other by the exposed -
strands, and then find a new deeper free-energy minimum corresponding to the in-
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soluble fibrils with a regular structure. Thus, the fibril formation in many aspects
is similar to crystallization except that in protein crystallization the proteins remain
in the native state and are attached together by relatively weak side chain interac-
tions. The mechanism of this phenomena is of crucial importance in developing
drugs which would prevent protein aggregation and thus stop the development of
such devastating neurological syndromes as Alzheimer’s disease, Parkinson’s dis-
ease, Huntington’s disease, and prion diseases [1, 2, 3, 75, 76].

As a first step in modeling aggregation, we introduce hydrogen bonds into our
two-bead model in addition to the Go interactions [77, 78]. The amino acid in each
peptide is identified by its index i, which is its number starting from the N terminus.
We assume that if a certain pair of amino acids i and j within the same peptide
interacts via an interaction potential, determined by the native state, it interacts with
the same potential even if its members i and j belong to different peptides. Also,
we assume that the hydrogen bonds can form between the amino acids in the same
peptide and between the different peptides, except that the hydrogen bonds between
amino acids i and j from the same peptide are forbidden if |i — j| < 3. This rule is
derived from the extensive studies of the structures in the Protein Data Bank (PDB).

In reality, the backbone hydrogen bonds are formed between nitrogens and oxy-
gens from the carbonyl groups of the backbone. Thus each amino acid can form at
most two backbone hydrogen bonds one by donating a hydrogen by the nitrogen
and another by accepting a hydrogen by the carbonyl. The geometry of the pep-
tide backbone is such that these two bonds must be approximately parallel. In the
two-bead model we do not have carbonyls and nitrogens so we introduce the effec-
tive bonds between C,, beads. Each Cy, is allowed to have two hydrogen bonds. So,
each Cg keeps track of the number of hydrogen bonds and the amino acids linked
by these bonds. If two beads Cq 1 and Cq 2 have no hydrogen bonds then they will
always form a new hydrogen bond as soon as they come to a distance of 5 A. If
Cgq,2 already has a hydrogen bond with Cy 1 and comes to within 5 A of the bead
Co 3, the hydrogen bond between Cy, 2 and Cg 3 can be formed only if the distance
between Cy 1 and Cg 3 is between 8.7 A and 10 A. In addition to this hydrogen
bond, an auxiliary bond is formed between Cq 1 and Cy 3 which is modeled by the
infinite square well of this width (between 8.7 A and 10 A). This auxiliary bond
keeps the angle between the two hydrogen bonds close to 180° during the time of
the existence of these hydrogen bonds. If the beads linked by a hydrogen bond ap-
proach 5 A distance, the hydrogen bond breaks according to the normal rules of
the DMD and the auxiliary bonds which may exist between them and their partners
break simultaneously without any energy loss. We take the energy of the hydrogen
bond eyp = 3€go, because the hydrogen bond interactions are much stronger than
the hydrophobic interactions between the side chains. Of course, the role of water,
which may also form the hydrogen bonds with the backbone, is totally neglected.
Surprisingly, this highly simplified model, while keeping the native structure of a
single protein, produces perfect 3-sheets between different peptides.

We decided to simulate the aggregation of the SH3 domain [77] because we had
already studied its folding and because aggregation does not depend on the amino
acid-specific interactions and thus can in principle involve any protein. We placed
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eight identical proteins in the simulation box and raised the temperature, to com-
pletely unfold them. Then we ran long equilibrium simulations at different tem-
peratures. The proteins moved ballistically around the box, so the chance that they
can soon come in the vicinity of each-other was very high. At first they formed
disordered oligomers which later transformed into -sheet fibrils. The fastest fib-
ril formation happened near folding temperature 7, when the individual proteins
frequently unfolded but retained significant amount of the secondary structural ele-
ments in the unfolded state. Accordingly, the SH3 domain proteins formed parallel
and antiparallel B-sheets between the RT loops which produce a sort of a barrel with
an axis parallel to the direction of the hydrogen bonds. The terminal regions of these
proteins remained highly disorganized. The fact that this model can correctly pre-
dict the domain swapping between two proteins indicate that even this very simple
model can correctly capture some features of protein aggregation [77, 78].

Similar results have been achieved in the simulations of f-amyloid peptides
whose native state has been modeled by the o-helices [79]. Aggregation of the
amyloid-f peptide is believed to be the leading cause of the Alzheimer disease.
Interestingly, the peptides first form unstructured oligomers with high degree of
a-helical structure still present, and only later do they organize themselves in the
perfect multi-layered 3-sheets. This finding is in accordance with the present hy-
pothesis that the death of neurons in the Alzheimer disease is caused not by the
ordered amyloid fibrils accumulated in the plaques, but by short-lived intermedi-
ate oligomers which are precursors for fibrillization [80, 81]. These oligomers are
highly mobile and can attach themselves to the cell membranes and probably punc-
ture them. Similar B-fibrils have been obtained by Hall and coworkers in the aggre-
gation of polyalanine [82, 83] and polyglutamine [84] by an intermediate resolution
protein model similar to the four-bead model discussed next. The polyglutamine
fibril formation is the molecular basis of Huntington disease.

8 The Four-Bead Model: Studies of the o.-Helix-to-f-Hairpin
Transition

The next step toward a realistic protein model that can fold into a native state
without explicitly specifying its topology by the Go interaction matrix is to cre-
ate a model which can reproduce spontaneous formation of the secondary structure,
i.e. o-helices and f3-sheets. The role of secondary structure formation is crucial in
understanding the protein folding and aggregation. In a-helices, all the backbone
hydrogen bonds are used, thus they cannot aggregate into fibrils, while in 3-sheets
only half of the hydrogen bonds are used and thus they can easily aggregate. In or-
der for the peptide with a significant amount of ¢¢-helices to aggregate, the o-helices
must spontaneously transform into -sheets [85].

Go models predict that about 50% of the secondary structure is formed in the
unfolded sate before the cooperative folding takes place. The secondary structure
in the unfolded state is not stable because in the presence of water, backbone
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can form hydrogen bonds with surrounding water molecules which are stronger
than the interpeptide hydrogen bonds. The hydrogen bond C=0"H-O-H between
a carbonyl group and a water molecule is about 21 kJ/mol, while the carbonyl—
nitrogen hydrogen bond —C=0""H-N- is only 8 kJ/mol. Once the folding nucleus
is formed and cooperative folding takes place due to hydrophobic collapse, the wa-
ter molecules are expelled from the interior of the protein and the protein backbone
has no other choice but to form hydrogen bonds between carbonyls and nitrogens.
Thus, the secondary structure becomes stable in the folded state. This argument
suggests that it is impossible to create an accurate protein model without taking
into account the local environment of hydrogen bonds. More advanced models of
hydrogen bonds, which can be turned on and off depending on the conformation
of the protein in the vicinity of the carbonyl and amide groups, are currently being
developed by several research groups.

The four-bead model that we have developed is similar to the PRIME model of
Carol Hall and co-workers [86]. This model correctly reproduces the backbone ge-
ometry. It replaces each amino acid by a rigid tetrahedron of four beads: N, C,, CO,
and Cg (Fig. 5). In glycines Cg is absent. The rigidity is achieved by three covalent
bonds, N-C,, =1.56 A, C,—~CO=1.51 A, and Co—Cp =1.53, and three auxiliary
bonds, N-CO=2.44 A, C3-N=2.44 A, and Cy—CO=2.49 A. The tetrahedra repre-
senting amino acids i and i+ 1 are linked together by the rigid planar quadrilateral
(plate) Cg,;i—CO;—N;1—Cg,i+1 formed by the peptide bond CO;—N;;1 =1.33 A link-
ing two amino acids together, two covalent bonds C,, ;—CO;, and N;; 1—Cg ;1 Which
participate also in the correspondent tetrahedra, auxiliary bonds C ;N1 =2.41 A,
CO—Cqy i1 =243 A, and the diagonal Cg ;=Cg;q1 =3.78 A, which maintains the
quadrilateral rigidity. Note that Cg ; and Cg ;| atoms in the adjacent amino acids
point in the opposite directions. The beads N, C, CO, and CB are modeled by hard
spheres of radii 1.69, 1.76, 1.75, and 1.54 respectively.

The amino acid tetrahedra can freely rotate (like doors around hinges) around
N-C, and C,—CO bonds forming the two Ramachandran dihedral angles @ and 'V,
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Fig. 5 The four-bead model of the protein backbone. Bold lines show covalent bonds, dashed
lines show auxiliary bonds which helps maintain correct backbone geometry, and thick broken
lines show possible hydrogen bonds
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respectively, between the plane N;C,;CO; and the adjacent quadrilaterals
Cy,i—1CO;_1N;Cq; and Cy;CO;N;;1Cgy it 1. The sequence of Ramachandran an-
gles ¥, @2, ', ...V, 1, @, completely determines the backbone conformation. The
absolutely planar -strand conformation corresponds to all ¥ = 0, @; = 0. Mathe-
matically, the Ramachandran angles are determined by the sequence of the four suc-
cessive backbone bond vectors, a;=CO;_1N;, a=N;Cq;, a3=C4;CO;, and
a,=CO;N;1:

& = +acos ([a2 xai] [ar XaS]) )

‘(lz ><d1||(l2 ><d3‘

where the sign coincides with the sign of ([a; X a3]-a») and

¥ = +acos ([a3 Xl a3 ><a4]) ;

|a3 ><a2Ha3 ><a4|

where the sign coincides with the sign of (jaz X a4] -a3).

The hydrogen bonds between N; and CO; are modeled as a thin square well in-
teraction of maximal distance bmgx = 4.2 A and minimal distance by, = 4.0 A with
negative potential energy —eyp. To maintain a correct orientation of the hydrogen
bond, we introduce four auxiliary bonds which appear and disappear together with
the hydrogen bond (Fig. 6a). These bonds are created between the reacting beads and
their neighbors in the opposite backbone: N;Cq j = r1, NiN ;| =r2, CO;Cq; = 13,
and CO;CO,_; = r4. The energy of these bonds is determined as a step function:

oo 1 < dmink
€uB  dmink < 1 < do s
U(ry) = €4B/2 dox <ri <diy, (1)
0 dy g < rg < dmaxks
o ry > dmax,k~

The values of dyink, dok, dik, and dpax are within the range of 4.4 A-5.6 A and
their tables are presented in [87] The total potential energy change when N; and CO;
come to a distance by, is thus AU = —eyp + 2;::1 U (r¢). Obviously, —egp < AU <
3epp. If one of the reacting beads already has a hydrogen bond, or if |i — j| <4, or if
the kinetic energy of N; and CO; is not sufficient to overcome the potential barrier
AU, the hydrogen bond does not form and the beads collide as hard spheres. Other-
wise, the hydrogen bond forms and the kinetic energy of the two beads is changed
by —AU. After the hydrogen bond has formed the molecular dynamics proceeds
according to the general rules taking into account the discontinuities of the auxil-
iary bond potential until the beads N; and CO; again come at the distance bmax. At
this point, the change in potential energy AU’ = eyp — Zzzl U(ry) is computed and
the hydrogen bond breaks if the kinetic energy of N; and CO; is sufficient to over-
come the barrier AU'. Thus during hydrogen-bond formation and breaking the total
energy and momentum are strictly conserved. This algorithm results in a rather flex-
ible hydrogen bond which can form if one of the reacting beads (e.g., CO) comes at
any point on the surface of spherical segments of radius b surrounding another
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Fig. 6 (a) A hydrogen bond in our four-bead model. Thick dashed lines indicate hydrogen bond,
thin dashed lines indicate auxiliary bonds helping to maintain hydrogen bond orientation, and bold
lines show the covalent bonds of the backbone. See explanation in the text. (b) A projection of
the potential energy landscape of the hydrogen bond onto the peptide plate. The arc indicates
the sphere of radius by.x. Whenever a CO; bead touches this sphere within spherical segments
indicated by thin bold lines a hydrogen bond may form. The borders of these segments appear
as straight lines on the projection because they are produced by the intersections of the hydrogen
bond sphere and the auxiliary bond spheres of various radii (dpi, < do < di < dpmax, dotted lines)
with the centers at the neighboring backbone beads CO;_; and C,, ; which all lie in the projection
plane. The numbers show the potential energy change according to (1) upon possible formation
of this bond provided that the backbone of CO; bead (not shown) has an optimal orientation. The
drawing approximately reproduces the geometry for the values of dpyin,do,d1,anddmax given in
[87]. The similar construction must be done for the contribution of the other two auxiliary bonds

bead (e.g., N) as indicated in Fig. 6b. These spherical segments are formed by the
intersection of the sphere of radius bmax With the center at CO and the spheres of
radii dyn, do, di, and dp,x surrounding the neighboring beads (e.g., CO and Cy).
Figure 6b shows the projection of these segments on the plane of beads C,CON,
thus the boarders of these segments appear as straight lines. The numbers on the fig-
ure indicate the change in potential energy without taking into account the other two
auxiliary bonds which are not shown [AU — U (r1) —U(r2)]. This construction which
belongs to Feng Ding [87] is the main difference between our four-bead model and
the PRIME model of Carol Hall and co-workers [86].

We model a polyalanine of 16 amino-acids. The graphs of the Ramachandran
angles for o-helix, B-hairpin, and random coil are in good agreement with the ex-
perimental ones (Fig. 7). The ground state of this model is the a-helix with potential
energy Uy = —12eyg, which is significantly below the energy Ug = —6epg of the
B-hairpin; however the entropy S, of the c-helix is very small comparatively to
the entropy Ug of the B-hairpin which is visually apparent from the spread of the
points on the Ramachandran plots. An accurate method of finding the entropy of the
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Fig. 7 Upper panel: typical conformations of the o-helix (a), B-hairpin (b), and random coil
(). The large gray beads represent Cg. The gray scale code indicates from black to white: N,
CO, Cq, Cg, hydrogen bonded and terminal N, hydrogen bonded and terminal CO. Lower panel:
Ramachandran plots for the ce-helix (a), B-hairpin (b), and random coil (¢) states of the 4-bead
model. The scales range from 0 to 360° for both @ (horizontal axis) and ¥ (vertical axis). Each
cell corresponds to a bin of 5° in @ and . Colors in rainbow order indicate the probabilities for @
and 'V to belong to a certain bin from red (high) to blue (low). Black cells indicate zero probability

4-bead model based on the root mean square deviation of the beads from a repre-
sentative conformation is presented in our original publication [87]. The potential
energy of the random coil is U, = 0, but its entropy S, is even higher. We found
that there is a window of temperatures when the free energies Fy = U, — T'S, of all
the three states are approximately equal. In fact, at T = 0.12¢pp /kg, the free ener-
gies of B-hairpin and o-helix are populated with equal probability and the model
can spontaneously undergo a reversible ¢-helix to -hairpin transition (Fig. 8). We
found that the only pathway from an ¢-helix to a S-hairpin leads through a com-
pletely unfolded conformation. The frequency of these transitions are proportional
to exp((Fo — Fc)/ksT) and exp((Fg — F;)/ksT), which are highly dependent on
temperature. At T = 0.13eyp /kp, the B-hairpin is at equilibrium with the random
coil and the o-helix is almost never observed. In contrast, at 7 = 0.11eyp /kg, the
spontaneous transition between an o-helix and a 3-hairpin is never observed and
the peptide can be trapped in a metastable f3-hairpin conformation. If we estimate
enyp = 21 kJ/mol, [88] this temperature range corresponds to 276-328 K, i.e. to phys-
iological conditions. Note that the transitions between all the three states resemble
the first-order phase transitions. On the other hand, the B-hairpin can be regarded as
a high temperature intermediate in the folding transition to the ¢-helix.
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Fig. 8 (a) Potential energy versus time for the four-bead model of the 16-poly-alaninine peptide
at T = 0.125 which is close to the equilibrium temperature of the S-hairpin (U = 6eyp) to a-helix
transition (U = 12eyg). Several spontaneous transitions from a -hairpin to an ¢-helix and back
are observed. The transitions occur through complete unfolding to a random coil conformation
(U = 0). The temperature window for which this behavior is possible is narrow. (b) Potential en-
ergy histograms for four different temperatures close to the glass transition. For 7 = 0.115, the
random coil conformations are almost never observed, and the spontaneous transition becomes im-
possible in the simulation time scale window for 7' < 0.11. For 7 = 0.13 the peak of the histogram
corresponding to the a-helix becomes almost invisible and for higher temperatures the transition
to an a-helix never occurs

In order to study if the cooperative folding to the o-helix can be achieved by
introducing side chain interactions, we include the hydrophobic interactions (H)
for some of the Cg beads as square well potentials with depth eyp and range of
attraction 6.5 A. We model the polar side chains (P) by the hard spheres of the
original diameter. We study the sequence PPHPPHHPPHPPHHPP, which was ex-
perimentally designed [86, 89, 90] to fold into the native o-helix. Indeed, when the
relative strength of the hydrophobic interactions reaches epyp = 0.25¢yp we achieve
the cooperative folding from a random coil to an o-helix, via a structureless molten
globule state [66]. The folding transition is characterized by a very sharp maximum
in the specific heat over the range of temperatures from 0.122 to 0.134. Thus, our
model provides one of the first successful simulation of folding of a short peptide.

A missing link in understanding the amyloidogenesis of ¢-helix-rich proteins to
B-sheet-rich fibrils is the possible presence of a metastable -hairpin intermediate
state, prone to aggregation [85]. Our results suggest a generic framework that ex-
plains why this B-hairpin intermediate is favorable in terms of free energy. Although
the potential energy of a B-hairpin is higher than that of an c-helix, its entropy is
also higher, thus the B-hairpin can appear as a high temperature intermediate. Also
our simulation is consistent with the recent experimental results which show that the
changes in the solvent can induce conformational changes in the protein. Indeed, the
solvent can strongly affect the relative strength of hydrophobic interactions and hy-
drogen bonds. In recent years, a major progress in the DMD simulations of polyala-
nine and polyglutamine has been achieved by Hall and co-workers [84]. They also
successfully simulated the effect of side chain interactions.
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In [91] the four-bead model has been applied to the studies of the S-amyloid
aggregation. The side chains of the amyloid peptide with 40(42) residues DAE-
FRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV(IA) have been repre-
sented by hard spheres located at Cg, except for six glycines (G), which have
been presented by only three beads. At low 7' = 0.1 the conformations are mostly
o-helical, while for larger T, mostly f3-stranded conformations have been observed
in agreement with the simulation of polyalanine [87]. When two identical peptide
are placed in the simulation box they form various 3-stranded dimers linked together
by parallel or antiparallel $-strands. These conformations serve as initial conforma-
tions for the all-atom MD simulations which employ the Sigma program [92] for
calculation of the free energy [93] difference to determine the stability of various
dimer conformations and to compare the stability of Af-42 and AB-40 dimers. The
majority of the peptide conformations produced by DMD passed the stability test
by the all-atom MD. This fact suggests that the four-bead model generates realistic
protein conformations. However, the observed conformations do not correspond to
the structure of the Af conformations in the Af fibrils [94] and do not show sig-
nificant differences between the stabilities of Af3-42 and AB-40 dimers. This is not
strange since the four-bead model used in these studies does not take into account
the amino acid—specific interactions.

Later, the four-bead model has been used to investigate the aggregation of
microglobulin [95], which is the molecular basis of the complications in patients un-
dergoing long-term hemodialysis. These studies have addressed an important prac-
tical question of the role of the disulfide bond in the aggregation pathways. The side
chain interactions have been modeled by the Go interaction matrix as in [79]. The re-
sulting trimers produced by DMD have been further studied by all-atom AMBER-8
simulations [43].

9 Simulations of Amino Acid-Specific Interactions

The example provided by the four-bead model shows that we indeed have some
hope to simulate ab initio folding of short proteins and make verifiable predictions
of the protein aggregation and missfolding. Also, this example shows an extreme
complexity of parameterization of the DMD model, with lots of parameters which
do not have much physical meaning like auxiliary interactions used in the hydrogen-
bond algorithm. Another problem is that very few research groups are working
on the development of the DMD code and there is no a single publicly available,
well-documented source code for the DMD simulations of biomolecules. Obviously,
development of such a code needs huge funding, while the granting agencies are fo-
cused on immediate biomedical applications and are reluctant to invest money in
untraditional methods like DMD.

Nevertheless, some success has been achieved in this direction. In 2005, Ding
et al. successfully simulate a folding transition of a trp-cage miniprotein NLY-
IQWLKDGGPSSGRPPPS to a 1.5 A resolution [61]. They have developed a more
detailed “5 4+ +”-bead model of protein with explicit carbonyl oxygens and heavy
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side chains with Cy, Cs beads, bifurcated side chains with two 3 beads, and with
an additional covalent bond between the side chain and the backbone for proline.
The explicit carbonyl oxygens lead to a much more realistic and simple model of
the backbone hydrogen bonds than in the four-bead model. Different type of inter-
actions have been included for salt bridges, aromatic, and aromatic—proline inter-
actions. They have found a folding transition with an intermediate of 3.5 A from
the native state and the folded state of 1.5 A from the NMR-resolved native state.
However, as they decrease the temperature, the intermediate does not completely
disappear and the distance from the NMR native state increases. This discrepancy
clearly indicates that the parameters of the model are still imperfect although all the
interactions have been defined from the extensive statistical analysis of the protein
structures in the PDB. Another concern is that trp-cage miniprotein is a very specific
one with especially rigid backbone due to four prolines. Thus, the relative success
in its folding may not be transferable to other proteins.

More recently, similar model [96] has been applied for the studies of polyglu-
tamine aggregation, which is the cause of nine human diseases including Hunting-
ton’s disease. Glutamine has been modeled by six beads: four beads of the backbone
Cy, C°, O, N and two beads of the side chain, one bead representing methylene
groups (-CH,-CH>-) and another representing the carboxylamine (CONH>) group.
The authors show that the propensity to form B-sheets increases with the length
of the polyglutamine repeat. This may explain why if the repeat length exceeds a
critical value of 35—40 glutamines the disease starts to develop and becomes more
severe as the repeat length increases in a lifetime of a patient. The same model have
been also employed to study the o-helix-to-3-sheet transition with a subsequent ag-
gregation of a 17-residue peptide named ccf3, SIRELEARIRELELRIG [97]. Con-
formational changes of this small protein-like peptide can serve as a model for prion
diseases.

Recent DMD studies [98, 99, 100] have been done in close collaboration with the
experimental group of David Teplow and are aimed to model specific pathways of
amyloid aggregation in Alzheimer’s disease [101, 102]. Urbanc et al. use DMD sim-
ulations of B-amyloid aggregation using the original four-bead model with various
strength of hydrophobic interactions on the Cg beads, which are intended to model
the amino acid—specific interactions. The hydrophobic strength has been taken from
standard hydrophobicity tables [103]. These simulations have been done with 32
peptides and show that they aggregate into micelle-like disordered oligomers of var-
ious sizes with highly hydrophobic amino acids in the center and hydrophilic amino
acids forming a shell around the hydrophobic core which prevents further aggrega-
tion. Interestingly, the A-42 which is genetically linked with the Alzheimer disease
phenotype forms larger oligomers than Af3-40 which lacks a highly hydrophobic
isoleucine at the C-terminus. This finding is constant with the experimental results
of [81, 104]. These studies also reveal a statistically predominant turn near the N-
terminus of the aggregated peptides. This turn is due to glycines Gly37 and Gly38
and is stabilized by the strong hydrophobic interaction between two valines Val36
and Val39. While in AB40, no other nearby amino acid is involved in this turn, in
AB42, methionine Met35 strongly interacts with isoleucine Ile41 and valines Val39
and Val40 and thus stabilizes this turn even more. This is especially significant,
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since in vitro oxidation of methionine in Af42 by Bitan et al. [105] reduces the
aggregation propensity of AB42 and makes it equal to that of Af3-40.

An attempt to build a united atom DMD model has been recently made by
Borreguero et al. [106]. This model is a further development of Feng et al. [61]
5+ +-bead model and takes into account all atoms except hydrogens. In collabo-
ration with Teplow’s group, they studied the conformational statistics of the central
amyloid segment AB(21-31) which is believed to form a folded structure in the
oligomers. The results of simulations predict a loop structure with a turn caused by
the hydrophobic interactions between valine and a long hydrophobic part of lysine.
The charged tail of lysine is competing to form a salt bridge with the aspartic acid
and the glutamic acid. This salt bridge stabilizes the loop. By varying the strength of
electrostatic interactions, it is possible to shift the most predominant electrostatic in-
teraction from Glu22-Lys28 to Asp23-Lys28. This may indicate a special role which
Glu22 has in familial mutations which increase the risk of Alzheimer disease. This
example shows what level of molecular details can be achieved by DMD. Of course,
all these predictions may not be correct because the behavior of the model highly de-
pends on the hundreds of parameters describing the interactions. These parameters
are obtained by Borreguero from the extensive studies of the PDB but still a huge
effort on optimizing the interactions is needed before DMD will achieve predictive
power. At present, the results of DMD can provide a useful food for thought for the
experimentalists but one has to always take them with reservations. Nevertheless,
I believe that with the increase of computation power and with enormous effort of
devoted graduate students, DMD will soon become a routinely used predictive tool
in molecular biology.
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Appendix A Details of the DMD Algorithm

The structure of the DMD algorithm is the following:

(1) Find collision times of all pairs of neighboring particles and record them into
collision tables
(2) Find the next collision time.
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(3) Clean up the tables from the data involving colliding particles.

(4) Move the colliding pair to the time of collision and find the new velocities after
collision.

(5) Find the new collision times of the collided particles with their neighbors.

(6) Compute time averages of the properties of interest and save the data if needed.

(7) Go to Step (2)

A.l Find the Next Collision

Between collisions, particles move along straight lines with constant velocities.
When the distance between the particles, r, becomes equal to r at which U(r) has
a discontinuity, the velocities of the interacting particles instantaneously change.
The interaction time ¢#;; for two particles with coordinates r;, r; and velocities v;, v;
satisfies the quadratic equation

(rij+1vi;)* =R3;,

where R;; = r; and k depends on the initial distance between particles r;; =
r; —r; and their relative velocity v;; = v; —v;. This quadratic equation may have
two positive roots, two negative roots, two roots of different signs, or no roots at all.
The roots are determined by the formula

2
—(vij-r,-j)j:\/(v;j-r;j) +V,2j(R12j—r,2j>
tij: ) )

vii

where the actual collision time corresponds to sign “plus” if roots have different
signs or “minus” otherwise. The value of k in R;; = ry is selected to minimize #;; > 0.
If there are no positive roots, it means that the particles will not interact and #;; = .

A.2 Move the Colliding Particles Forward Until a Collision Occurs

We find the next collision time
= minljj
<j

for all possible pairs of particles and propagate the system to time
!'=t+6t

so that
I',,' =r;+otv;.
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At this moment, the distance between the centers of colliding particle-pairs becomes
equal to r¢. The minimization of the #; is optimized by dividing the system into
small cubic cells whose size is equal to the largest interaction distance. The colli-
sion times are computed only for particles in the nearest neighboring cells and are
stored in the collision lists of the atoms belonging to this cell. After two particles
collide, their future collision times with other atoms become invalid and must be
removed from their collision lists and from the collision lists of the atoms in whose
collision lists these particles occur. Only these affected atoms are moved to the next
collision time, and the new collision times of these atoms with the collided particles
are computed. The rest of the atoms in the system are not affected and stay at their
positions.

In order to keep track of the atom position in space-time, each atom structure
stores (besides the atom type, current coordinates, and velocity components) the
update time, (i.e., the time at which the atom coordinates were last updated) and
the time of leaving the cell. The collision times larger than this value are not kept.
After an atom enters a new cell (which is treated as an event equivalent to the col-
lision with other particles) its collision list is empty, and it is filled again with colli-
sions with atoms in the new neighboring cells. After collision tables are updated, the
new nearest collision time is found for each cell containing the affected atoms and
then those cells participate in the binary tree sorting procedure similar to the World
Cup schedule. This algorithm reduces the computational costs to N In N, where InN
comes from the tree sorting and for all practical purposes can be neglected. However,
this algorithm becomes impractical when the largest interaction distance becomes
greater than 1/4 of the system box. Further improvements can be achieved com-
puting a list of all atoms within certain distance to a given atom [33]. The program
spends most of the CPU time in the calculation of the next collision times, many
of which will never occur, because an atom will collide with somebody else sooner.
The calculations of the future collision times during the update of the collision ta-
bles can be parallelized. But the problem of effective scalable parallelization for the
DMD (to the best of my knowledge) has not yet been solved.

A.3 Implement Collision Dynamics of the Colliding Pair

Finally, we find the new velocities v'; and v/ ; after the collision. These velocities
must satisfy the momentum conservation law

/ !/
mivi+m;vj=myy;+m;v j,
the angular momentum conservation law
’ / _ / / / ’
mi[r'i X vil +mjr j xv;] = mir'; xv'i]+mjlr' j xv'j],

and the energy conservation law
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2 ma?

i )7 /
2’ +—5=+Uj,

2
m,-v,-2 m;v; m;v
+U,‘j =
2 2

where U;; and U,-’j are the values of the pair potential before and after the collision,
equal to U(R;j +¢), depending on the direction of the initial relative velocity v;;,
initial distance r;;, and the value of R;;. These equations are equivalent to six scalar
equations, which are sufficient to determine the six unknown components of the
velocities v’; and v’;. By introducing a new coordinate system with the origin at the
center of the particle j, and the x-axis collinear with the vector r’;;, we construct the
expressions for the velocities that satisfy the momentum and the angular momentum

conservation laws:
V’,‘ =v; —+—Ar’,-jmj,

v’j = Vj —Ar’,-jm,-, (2)
where constant A is determined from the energy conservation law:
j:\/l +2(Us — UJ,) (mi -+ mj) ) (Raa®mm;) — 1
A=a 3)

m;+m;

and a = (v,-j,r,-j)/Rizj. The sign “plus” in the expression for A corresponds to the
motion after the collision in the same direction as before the collision, i.e. the parti-
cles penetrate into the attractive well or the soft core if they move toward each other
before the collision, or leave them if they move away from each other. Note that this
may happen only if the expression under the square root is positive, i.e. if there is
enough kinetic energy to overcome the potential barrier:

RI.Z-azm,-m<
J J ’
— > U..—U;;.
2(m;+m;j) by

Otherwise, the reflection happens, the particles do not change their state: Ui’j = Ujj,
and the sign in the expression for A must be “minus”.

Appendix B Calculation of Energy and Temperature

The total energy of our system is defined as:
E=K+U, 4

where K and U are the kinetic and potential energy, respectively. The kinetic energy
is a sum of contributions from the individual particles

m,-v,-2
2

M=

K= , &)

1
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while the evaluation of the potential energy contribution involves summing over all
pairs of interacting particles
U=>YU;. (6)
i<j
The temperature of the system 7T is calculated according to the equipartition the-
orem. For a d-dimensional system the instantaneous temperature can be defined as

T =2K/(Ndkg) (7N

B.1 Temperature Rescaling

In the DMD algorithm, the energy strictly conserves, so it corresponds to the mi-
crocanonical ensemble. To maintain the temperature constant or to slowly cool the
system down, we use the Berendsen method [107] of velocity rescaling, multiplying
all the velocities by a factor y/T’/T, which is determined by

T'=T(1-KkAt)+ kAT, , (8)

where At is an approximately constant interval of time between two successive
rescalings, 7, is the temperature of the heat bath, T is the instantaneous temper-
ature before rescaling, T’ is the instantaneous temperature after rescaling, and x
is the heat exchange coefficient. Usually, we select Ar as a time during which N
collisions occur. In order to keep the old collision tables after rescaling, we actually
rescale the energies of interactions and take this into account by keeping track of the
ratio of the actual physical velocities and the unrescaled velocities in the computer.
The inverse correction factor is applied to time. Interestingly, this correction factor
exponentially inflates and may soon reach astronomical values. Once the correc-
tion factor becomes too large (e.g., 10) or too small (e.g. 0.1), we rescale velocities
and time, return the interaction energies to the original value, and recalculate the
collision tables from scratch.

Appendix C Calculation of Pressure

For ergodic systems, a thermodynamic average of a quantity f can be achieved in
MD by averaging over a sufficiently large time At,

1 t-+AL

Na=g [ S0 ©

The calculation of pressure in MD has another difficulty because due to the pe-
riodic boundaries the system does not have walls which create external pressure.



Discrete Molecular Dynamics 127

Nevertheless, the average pressure P over a long enough period of time can be ef-
fectively computed using the virial theorem:

2 N omiv? 1 N
P:vcz<,zl '2’> ‘Vd<;f"""> (0
- At = At

where f; is the force acting on particle i from all other particles. Note that Zﬁil m;
v,-2/2 is by definition (7) equal to dkgNT /2 and

Nkgp

1 N
P:V<T>A1_Vd<izl,fi'ri>m . (11

When the system has walls, this equation gives the value of the pressure acting from
the walls to the system. In the absence of walls, it gives the value of the internal
pressure in the system. Thus, this equation provides the basis for the computation
of pressure in molecular dynamics simulations.

In discrete molecular dynamics, the force f; is equal to zero except at the mo-
ments of collision with other particles, when it is equal to infinity. We count all the
collisions of a given particle i with a given particle j that occur in the time interval
from 7 to  + Az, using index K;; = 1,2,3,... We denote the times of these collisions
1x;; and the change in momentum of particle i at the moments x;; as

ApKij :m,'[v,(tk +€) (IK,J E)], (12)

where € is an infinitesimally small value. Since the force acting on the particle i is
the derivative of momentum with respect to time,

N
= 3 Y Apg, 8 —1x,) (13)

J=1Kjj

where §(f —1x;;) is a Dirac 6-function and the sum over K;; is taken over all colli-
sions between particle i and j during time interval (¢,z 4 Ar).
Integration involved in the averaging over time [see (9)] eliminates 8-functions

and we obtain
LY ﬁ 3 2 Ap (14)
= r .
v D AVd =& Kiy 7
ij Jj=
Finally, we can count all the collisions that occur in interval (¢, + Ar) by index ¢.
Each collision is specified by the particles i(¢) and j(¢) involved in the collision
(i < j) and is counted twice in the sum of (14)—the first time when i is from the
first sum and the second when i is from the second sum. According to momentum
conservation, Ap; ;) = —Ap ;). Thus we rewrite (14) as

Nkg

P:7<T>Az—m2{@,(e te) - [ri(te) —rj(te)]} (15)
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where the sum is taken over all collisions ¢ that occur at moments #; during the time
interval Ar. Finally, taking into account Egs. (2) and (3),

Nkg 1 )
P= 7<T>A,—m;mi(@mj(@Rij(oAg, (16)

where Ay is given by expression (3) for i = i(¢), j = j(£).

The DMD algorithm allows also the constant pressure simulations. The easiest
way to do it is to apply Berendsen barostat, analogous to Berendsen thermostat,
with the difference that now all the coordinates are rescaled periodically by a factor
(14 1), where N < € is a small quantity, proportional to the difference between the
average pressure over this period of time and the desired pressure £ of the barostat.
The problem is that after the rescaling some pairs of particles may occur in the zone
of the infinite potential, since after rescaling they may become closer than their
hardcore interaction distance or outside the range of the permanent bond. To solve
this problem, we add an inner hard-core which constitute 1 — € of the true hard core,
and the outer bond distance which is larger than actual bond distance by factor of
1+ €. The particles that appear to be within the gap between the actual and the inner
hardcore cannot go inside the inner hardcore but can freely move through the outer
hardcore. The analogous algorithm works for the bonds. No new rescaling takes
place before all the particles become outside the actual hardcore. Of course, after
rescaling, all the collision tables must be reconstructed from scratch. So rescaling
should not be done too often, otherwise the simulation will significantly slow down.
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