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• We develop a robustness estimation technique for large complex networks.
• A set of subquadratic-time network metrics is exploited for node importance.
• Sampling of robustness is performed based on equi-depth intervals.
• Experiments show that our technique estimates R values better than betweenness centrality.
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a b s t r a c t

Robustness estimation is critical for the design and maintenance of resilient networks. Existing studies
on network robustness usually exploit a single network metric to generate attack strategies, which
simulate intentional attacks on a network, and compute a metric-induced robustness estimation, called
R. While some metrics are easy to compute, e.g. degree, others require considerable computation efforts,
e.g. betweenness centrality. We propose Quick Robustness Estimation (QRE), a new framework and
implementation for estimating the robustness of a network in sub-quadratic time, i.e., significantly
faster than betweenness centrality, based on the combination of cheap-to-compute network metrics.
Experiments on twelve real-world networks show that QRE estimates the robustness better than
betweenness centrality-based computation, while being at least one order of magnitude faster for larger
networks. Our work contributes towards scalable, yet accurate robustness estimation for large complex
networks.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

During the last decades, empirical studies have characterized a
plethora of real-world systems as complex networks [1,2], includ-
ing air transportation networks [3–5], electrical power grids [6,7],
Internet backbone [8], inter-bank networks [9], etc. Most networks
present a well-recognized resistance against random failures [10]
but disintegrate rapidly under intentional attacks targeting rela-
tively important nodes in the network first [11,12]. Moreover, ini-
tial shocks can sometimes lead to cascading failures [13]. Exam-
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ples of recent extensive,wide-ranging network failures include Eu-
ropean air traffic disruption caused by Icelandic volcano Eyjafal-
lajökull [14], large-scale power outages in the United States [15],
computer virus spreading [16], cross-continental supply-chain
shortages in the Japanese tsunami aftermath [17]. Such disruptions
cause high economic costs [18], making the analysis and improve-
ment of resilience become one of the most critical challenges in
applied network theory [19,20].

A first proposal for a metric assessing the network robustness
was presented in [21]. Given a network with N nodes, the robust-
ness is defined as R =

1
N

N
Q=1 s(Q ), where s(Q ) is the size of

the giant component (GC size) after removing Q nodes. The value
of R depends significantly on the underlying attacking strategy,
i.e. the order in which node removals occur. Studies on network
robustness usually select a single network metric, e.g. degree, be-
tweenness, or collective influence [22], to rank nodes or links; such
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ranking is then used to sequentially remove the elements of net-
works, from the most important to the least important one.

This standard approach has three limitations. First, the ob-
tained R value reflects the robustness against a particular attacking
strategy, for instance, by attacking high-degree nodes first. Conse-
quently, attacking the same network according to different strate-
gies yields different values of R, each of them only capturing a
specific dimension of the network resilience. In general, one is in-
terested in the worst-case robustness, represented by the mini-
mum R value. Second, different network metrics have significantly
different computational requirements. Notably, methods obtain-
ing the lower R scores often have the highest computational re-
quirements. For instance, computing the betweenness of all nodes
in the network, a strategy which has been shown rather effec-
tive for attacking a network, needs time at best quadratic with
the number of nodes. This makes it very difficult to obtain good
attacks (leading to smaller, realistic R values) for very large net-
works with millions of nodes. The computation of betweenness
values in a network with 100,000 nodes takes almost one day on
today’s consumer computers; and doubling the network size fur-
ther quadruples the execution time. Third, existing studies often
employ a fixed-length interval sampling strategy in order to avoid
computing the GC size N times. As we show below, this static sam-
pling yields an over-estimated network robustness, particularly for
large vulnerable networks.

In this paper, we propose a new technique (QRE = Quick Ro-
bustness Estimation) for estimating the network robustness in sub-
quadratic time. We assess the importance of nodes by exploiting a
set of network metrics which can be computed in linear time re-
garding the number of nodes and edges in the network. Further-
more, we iteratively adapt sampling intervals fitting the shape of
the robustness curves, yielding an increasingly improved solution
after each iteration. Experiments on 12 real-world networks show
that QRE estimates R-values better than interactive betweenness
centrality, while having attractive computational properties. Our
work contributes towards scalable, yet accurate robustness esti-
mation for large complex networks. In our study, we use the size
of the giant component under an attack as the robustnessmeasure.
In the literature, several other views/terminologies on criticality of
networks have been proposed, addressing amultitude ofmeasures
and observations; see [7] for an overview on measures for power
grids. Examples for these different terminologies include reliabil-
ity [23], disturbance [24], contingency [24], vulnerability [25], and
stability [26]. See also [27] for a review on modeling and simula-
tion of interdependent critical infrastructure systems.Moreover, in
our studywe focus on the case of single networks, while critical in-
frastructures are recently often modeled as networks of networks
[28,29].

The remainder of this paper is structured as follows. In Sec-
tion 2, we describe the design and implementation of QRE. Sec-
tion 3 evaluates QRE and competitors against a set of random and
real-world networks. The paper is concludedwith a discussion and
some ideas for future work in Section 4.

2. Methods

The description of the QRE robustness estimation methodol-
ogy is here organized around five subsections. Section 2.1 intro-
duces and discusses the measurement of network robustness. In
Section 2.2, we describe how attack traces induced by network
metric rankings can be exploited for robustness estimation and the
limitation of this method. We develop the notion of partial attack
traces in Section 2.3 and generalize it towards multiple partial at-
tack traces in Section 2.4. The overall framework and implementa-
tion of QRE is presented in Section 2.5.
2.1. Robustness estimation

Inspired on the well-known concept of percolation in statis-
tical physics [30–34], the robustness of a network is usually de-
fined as the critical fraction of nodes that causes a sudden disin-
tegration [11], the latter being measured as the relative reduction
in the size of the giant (largest connected) component. Note that
the disintegration is higher when the GC size is smaller [35]. The
intuition here is that the functionality of a network strongly de-
pends on the number of connected nodes. In this paper we use
the robustness measure R, as defined in [21] and described in Sec-
tion 1. Given a network with N nodes, the robustness is defined
as R =

1
N

N
Q=1 s(Q ), where s(Q ) is the GC size after removing

Q nodes. The computation of R for a network requires a strategy to
derive a node ranking, based onwhich the nodes are removed from
the network. In Fig. 1, we show the robustness curves and their
corresponding R values for three example networks, when nodes
are removed according to their degree, i.e., highly connected nodes
first (please refer to Section 3 for a description of the corresponding
datasets). The football network (Fig. 1, left panel) can be considered
robust: Only after attacking 50% of the nodes, the GC size is signifi-
cantly reduced. The network netscience (Fig. 1, right panel), on the
other hand, is very fragile: Attacking less than 5% of the nodes leads
to an almost completely disintegrated network. As previously dis-
cussed, these results only provide a limited view on the network
robustness, as they correspond to a specific attack strategy; one
may then ask if a better node ranking criterion could be devised,
and what would be the impact on the robustness estimation.

2.2. Single attack traces

In previous studies on network robustness, node rankings are
usually defined by a single network metric. While the use of
network metrics have been proposed in the past, we review five
most significant ones:

1. Degree: The number of neighbors of a node, i.e., how many
nodes can be reached within one hop. The degree of all nodes
can be obtained in linear time regarding the number of nodes.

2. Betweenness centrality: Bi =


s≠t
σst (i)
σst

, where σst is the
number of shortest paths going from node s to node t; σst(i)
is the number of shortest paths going from node s to node
t and passing through node i [36]. This metric essentially
indicates the number of shortest paths going through a node.
The betweenness of all nodes can be best obtained in quadratic
time regarding the number of nodes.

3. Eigenvector centrality: The eigenvector for the largest eigen-
value of the adjacencymatrix. Nodeswith high eigenvector cen-
trality also connect to other nodes which have high eigenvector
centrality.

4. Katz centrality: Computes the relative influence of a node
within a network by measuring the number of the immediate
neighbors (first degree nodes) and also all other nodes in the
network that connect to the node under consideration through
these immediate neighbors [31].

5. PageRank: A ranking of the nodes based on the structure of the
incoming links, developed for assessing the importance of web
pages [37].
Each of these metrics can be used to define an attack: Nodes

are removed according to their ranking, from highly important
(i.e. High metric values) to secondary (low metric values) ones. In
general, two variants of a metric can be used: Static attack (which
computes the metric only one time for the complete network)
and interactive attack (which recomputes the metric after each
removal of the top-ranked node) [38–40]. The choice of the metric
is far from trivial. While the betweenness may be a good option,
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Fig. 1. Robustness curves and computed R values for three networks: Football (rather robust with R = 0.430), adjnoun (slightly fragile with R = 0.258), netscience (very
fragile with R = 0.036). We have used the interactive degree of nodes to attack the network.
(a) Original network. (b) Optimal attack (GC
size = 5).

(c) Degree-based attack
(GC size = 7).

(d) Betweenness-based
attack (GC size = 7).

Fig. 2. An example of a network attack. The process starts with a target network (a), where we want to attack two nodes. In (b) we show an optimal attack, which reduces
the GC size from 13 to 5. A degree/betweenness-based attack, as shown in (c) and (d), reduces the GC size to 7; while attacking different node pairs. The combined knowledge
from both metrics could be helpful to find the optimal attack, since node d is identified as important by the degree-based ranking and node a is identified as important by
the betweenness-based ranking.
Fig. 3. Comparison of attacking strategies induced by different network metrics (S = static, I = interactive). Different network metrics induced significantly different
robustness curves, and consequently, notably different R values. For instance, with interactive betweenness centrality as an attack strategy, football (left) becomes similar
fragile as adjnoun (center). The difference in R values for football makes up 40% of the range of R (from minimum 0 to maximum 0.5).
due to its ability in describing between-communities connectivity,
it underestimates the importance of local connectivity patterns,
which are best captured bymetrics like the node degree. Therefore,
the choice of the network metric is instrumental for obtaining a
realistic R value. This issue is illustrated in Fig. 2 through a simple
toy example; Fig. 3 further develops the idea, by showing how the
GC size evolves as a function of the considered attack. Note that
no exact bound on the time complexity is known for the metrics
Eigenvector, Katz, and PageRank, yet experiments usually show a
linear running time regarding the number of nodes and links.

An additional aspect oftenneglectedby thephysical community
is the complexity cost associated with metric computation. While
many metrics can be computed in linear time (regarding the num-
ber of nodes/links in the network), some need at least quadratic
time complexity. If the difference is not relevant for small net-
works, it becomes important for large graphs, up to the point that
the computation of a single betweenness-based attack is often in-
tractable. To illustrate, the computation of a node-degree based at-
tack requires only 2.7 s for a network with 16,706 nodes, while
the betweenness computation for the same network takes more
than one hour. The divergence increases tremendously with larger
networks. Computing an R value is thus a trade-off between accu-
racy and time complexity, where spending more time often cor-
responds to higher accuracy. As we will show in our evaluation,
the combination of few fast-to-compute network metrics can of-
ten outperform computationally expensive metrics.

2.3. Single partial attack traces

In the previous section we have discussed how to compute the
R value of a network based on a node ranking. For large networks,
the process of computing the R value itself, given an existing
ranking, requires a significant amount of time: For each node in
the ranking list, the node is removed and the GC size is computed.
Since measuring the GC sizes takes at least O(N) steps, the overall
computation takes quadratic time. Therefore, computing the exact
value of R for a large network – even if a good ranking is provided –
is still intractable. Below,we discuss how to obtain an approximate
R value based on sampling.

The intuition for sampling-based approximation is that, given
the formulation of R =

1
N

N
Q=1 s(Q ), the contribution of a single
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Fig. 4. Sampling for the network adjnoun: The complete robustness curve for adjnoun (left); Equal-width sampling creates many measurements at network snapshots
where the network is already disintegrated (center); Equi-depth sampling creates sampling points for network snapshots where the network is still robust (right).
s(Q ) term is rather small for large networks: The maximum value
of s(Q ) is 1 and therefore the contribution of s(Q ) cannot exceed 1

N .
For large N , this value converges towards zero. Therefore, we pro-
pose to sample the measurements of s(Q ) for a limited number of
values in Q ∈ {1, . . . ,N}. Assuming that we sample the measure-
ments at the interval points {I1, . . . , Im}, how do we approximate
the values of s(Q ) for Ii < Q < Ii+1? In general, we do not justwant
any approximation, but we want to avoid underestimation of R, as
this may be troublesome in real applications. Thus, we discard lin-
ear interpolation. We propose to set s(Q ) = s(Ii) for Ii < Q < Ii+1,
i.e., all points inherit the GC size from the closest sample point to
the left. Using this strategy, the robustnessmight be overestimated
between two samples, but never underestimated, yielding an up-
per bound.

Given the upper bound approximation between sample points,
the next question is how to distribute sample points. One solution
is to perform an equal-width sampling, where all intervals have
exactly the same size. This strategy is good for an initial robustness
estimation without additional knowledge about the robustness
trace. However, once we obtained an initial approximation of
the robustness trace, it is often beneficial to adapt the sampling
according to the currently best-known trace. Particularly, if the
network is very fragile, results become more accurate, if samples
points are preferably placed during the initial phase of the attack
trace generation.

Instead of equal-width sampling,we propose amethod inspired
by equal-depth binning for the approximation of an attack trace.
The idea is to split the area under the currently best-known curve
into regions of approximately the same size. This strategy focuses
on parts of the network with higher robustness. Once the network
is almost destroyed, it does not make sense to collect further
samples in this region anymore, since improvements will only
slightly change the R value. For a comparison of equi-width and
equi-depth sampling, please see Fig. 4.

2.4. Multiple attack traces, multiple iterations, and approximate
betweenness

So far,wehavediscussed the case of using a single networkmet-
ric for generating an attack trace by sampling points based on equi-
depth sampling. This section deals with the use of several metrics
and how to select the onemostly reducing the GC size. Our hypoth-
esis, supported by a comprehensive evaluation in Section 3, is that
combining several metrics which have a low time complexity, can
outperform harder-to-compute metrics such as betweenness. Our
evaluation on real-world networks below confirms this hypothe-
sis.

Finally, in addition to the previously discussed networkmetrics,
we propose to exploit approximate betweenness [41] for ranking
Algorithm 1 Function: QRE(G,metrics, iter,maxSampleCount)
Input:GraphG, set ofmetricsmetrics, number of iterations iter ,
maximum number of samplesmaxSampleCount
Output: Estimated R

1: LetM = [1, . . . , 1] be a list of length |G.nodes()|
2: Let initgcs =

|LC |

|G.nodes()| , where LC is the largest component of G
3: for i ∈ {1, . . . , iter} do
4: Let samplesx = getSampleIntervals(M,maxSampleCount)
5: Let pat = getPartialAttackTraceDynamic(G, samplesx,

metrics, initgcs)
6: LetM = updateM(M, samplesx, pat)
7: end for
8: Let R = sum(M)/|M|

Algorithm 2 Function: getSampleIntervals(M,maxIntervalCount)
Input: Current minimum trace M , sample points samplesx,
sample observations samplesgcs
Output: Updated M

1: Let R = sum(M)/|M|

2: Let result = []

3: Let cursum = 0
4: for i ∈ {0, . . . , |M| − 2} do
5: cursum = cursum +

M[i]
|M|

6: if cursum ≥
|result|∗R

maxIntervalCount then
7: Append i to result
8: end if
9: end for

the importance of nodes. Instead of computing the exact between-
ness of all nodes, an approximation is computed based on a given
number of sample node pairs. Thanks to this metric, the time com-
plexity is significantly reduced, while results are still comparable
to the exact betweenness analysis.

2.5. Overall framework

In this section, we present our framework for scalable robust-
ness estimation, merging all the insights discussed in Sections 2.1–
2.4, we design an algorithm for estimating the robustness of a net-
work. Our overall algorithm is presented in Algorithm 1. First, we
initialize the listM , representing the aggregation of currently best
known attack traces, with ones.

Firstly we defineM as a vector of the size |N|, whichwill encode
the aggregation of the best attack traces known at each iteration.
Intuitively, M represents the best known attack trace, i.e., the
relative GC size as a function of the number of nodes disabled.
We initialized all elements in M with 1, indicating that we have
no knowledge about any trace initially. Next, we execute the loop
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Algorithm 3 Function: getPartialAttackTraceDynamic(G, samplesx,
metrics, initgcs)

Input: Network G, sample points samplesx, set of metrics
metrics, initial size of giant component initgcs
Output: Sampled values samplesgcs

1: Let samplesgcs = []

2: Let G1 be a copy of G
3: Let gcs =

GCSizeRelative(G1,G)

initgcs
4: Append gcs to samplesgcs
5: for i ∈ {0, . . . , |samplesx| − 1} do
6: Let end = |G1.nodes()|
7: if i + 1 < |samplesx| then
8: end = samplesx[i + 1]
9: end if

10: Letmingcs = 1
11: Let bestranking = []

12: for metric ∈ metrics do
13: Let G2 be a copy of G1
14: Let ranking be the ranking obtained frommetric over G2
15: for i ∈ {samplesx[i], . . . , end} do
16: Remove node n from G2
17: end for
18: Let gcs =

|LC |∗initgcs
|G.nodes()| , where LC is the largest component

of G2
19: if gcs < mingcs then
20: mingcs = gcs
21: bestranking = ranking
22: end if
23: end for
24: for n ∈ bestranking do
25: Remove node n from G1
26: end for
27: Append mingcs to samplesgcs
28: end for

iterations times, and perform three operations in each pass: (1)We
get the sample points samplesx based on the currentM . In the first
iteration, this methodwill return an equi-width sampling, because
M is initialized with equal values. In the following iterations, the
sample intervals are based on the equi-depth binning ofM . (2) We
compute the partial attack traces for the given set of metrics at the
sample points samplesx. (3) We update the values of M according
to the partial attack trace sampled from samplesx. After iterating
for iterations times, we estimate the R value as R = sum(M)/|M|.
The implementation of these three methods inside the loop are
explained in detail below.

In Algorithm 2, we describe our sampling procedure, given the
currently best known attack trace encoded in M . Intuitively, we
want to calculate the points that uniformly divide the area under
the curve. First, we compute the R value from M . Afterwards, we
iterate over all sample points and sum up the area under the curve
obtained so far in variable cursum. Once the aggregated area is
larger than the required area for the jth sample point, determined
by j∗R

maxIntervalCount , we add a new sample point to the result. Finally,
the result is returned. The worst-case time complexity of this sub-
algorithm is O(|N|) for a network with nodes N: We iterate over
all values in M , where M has |N| elements. All other operations in
the algorithm are atomic and independent of the network size.

Algorithm 3 is at the heart of our robustness estimation
technique: Given pre-computed sample points and a list of
network metrics, the algorithm computes the partial attack trace
combined fromallmetrics. Intuitively, for each sample interval, the
algorithm probes all metrics, and continues based on the best local
attack for the next sample interval. The algorithm is described in
detail as follows. First, we create a copy of the network, which is
Algorithm 4 Function: updateM(M, samplesx, samplesgcs)
Input: Current minimum trace M , sample points samplesx,
sample observations samplesgcs
Output: Updated M

1: for i ∈ {0, . . . , |samplesx|} do
2: Let end = |M|

3: if i + 1 < |samplesx| then
4: end = samplesx[i + 1]
5: end if
6: for i2 ∈ {samplesx[i], . . . , end − 1} do
7: if samplesgcs[i] < M[i2] then
8: LetM[i2] = samplesgcs[i]
9: end if

10: end for
11: end for

being attacked throughout the remainder. Second, we iterate over
all sample points in samplesx. We determine the number of to-be-
removed nodes first. Then we iterate over the provided network
metrics inmetrics. For eachmetricwe create a copy of the currently
attacked network, and then remove |{samplesx[i], . . . , end}| top-
ranked nodes from the network. We calculate the relative GC size
and compare it to the previously best known attack. Throughout
the loop, we keep track of the best attack and append the lowest
recorded relative GC size to samplesgcs. Moreover, we remove the
nodes with the best ranking from G1.

In Algorithm4,we update the currently best known attack trace
minimum by using the sample indices samplesx and their relative
GC size measurements samplesgcs. Essentially, the algorithm
iterates over all points inM and checkswhether the current point is
below the sampling-induced lowest relative GC size for that point.
If yes, we updateM accordingly. The time complexity of Algorithm
4 is O(|N|), since we access each element inM exactly one time.

Fig. 5 presents an example of the whole process, for five iter-
ations of the algorithm when applied to the adjnoun network; it
depicts the change ofM in each iteration for the network together
with the selected sample points.

3. Results

3.1. Evaluation setup and data sources

We report the results of our evaluation on 12 real-world net-
works. All experiments were executed on a server with 32 cores
and386GBRAM, running Fedora 24 (Linux4.7.5–200.fc24.x86_64).
The QRE framework was implemented in a single-threaded fash-
ion, using the network analysis library NetworKit.1 All datasets are
available to download from the UCI Network Data Repository,2 and
have been studied extensively in the past [42–45]. These networks
cover a variety of network structures and network scales, see Ta-
ble 1. We use six network metrics in our evaluation: Degree (deg),
betweenness (betw), approximate betweenness (abetw), eigen-
vector (ev), pagerank (pr), and katz centrality (katz).

3.2. Fine-tuning of parameters

First, we perform a sensitivity analysis of the approximate
betweenness against the number of sample node pairs. For four
networks of different sizes (dolphins, celegansneural, netscience,
and power), we have computed the exact betweenness of nodes

1 Available at https://networkit.iti.kit.edu/.
2 Available at https://networkdata.ics.uci.edu/index.php.

https://networkit.iti.kit.edu/
https://networkdata.ics.uci.edu/index.php
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Fig. 5. Visualization of M and ten sampling points with Algorithm 1 for the example network adjnoun and the strategy interactive degree. The red line in all charts
corresponds to the robustness curve obtained without sampling, therefore representing the baseline. Initially,M is a vector filled with ones, as represented by the blue area
in Iteration 0. After the first equi-depth sampling, which is equivalent to equi-width here, we obtain theM for Iteration 1. Subsequent iterations improve the approximation,
with M converging to the actual robustness curve without sampling (red lines). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
Table 1
List of twelve datasets used in our experiments, ranked by increasing number of nodes. We report standard network properties: Number of nodes (N) and links (L), density,
number of connected components (Comp.), relative size of the giant component (Rel. GC), diameter, radius, and assortativity.

Network N L Density Comp. Rel. GC Diameter Radius Assortativity

Karate 34 78 13.9% 1 100.0% 5 3 −0.48
Dolphins 62 159 8.41% 1 100.0% 8 5 −0.04
Lesmis 77 254 8.68% 1 100.0% 5 3 −0.17
Polbooks 105 441 8.08% 1 100.0% 7 4 −0.13
Adjnoun 112 425 6.84% 1 100.0% 5 3 −0.13
Football 115 613 9.35% 1 100.0% 4 3 0.16
Celegansneural 297 2148 4.89% 1 100.0% 5 3 −0.16
Polblogs 1490 16715 1.51% 268 82.01% – – −0.22
Netscience 1589 2742 0.22% 396 23.85% – – 0.46
Power 4941 6594 0.05% 1 100.0% 46 23 0.00
hep-th 8361 15751 0.05% 1332 69.79% – – 0.29
astro-ph 16706 121251 0.09% 1029 88.86% – – 0.24
and compared it to the approximate betweenness scores as a
function of the number of sample points [41]. The number of
samples is a function of the number of nodes N in the network. We
have evaluated three cases: log(|N|),

√
|N|, and |N| pairs of nodes.

Note that for the exact betweenness computation one needs to
consider a number of node pairs quadratic in the number of nodes.
Fig. 6 reports the results of our experiments.We compare the ranks
of nodes according to the exact betweenness computation (x-axis)
with the rank of nodes for approximate betweenness (y-axis). The
ranking differences between log(|N|) and

√
|N| are insignificant,

with the former being 4–8 times faster than the latter. The case
with N samples obtains very good rankings, but is even slightly
slower than the exact betweenness computation. We conclude
that log(|N|) is a good trade-off to perform a sampling-based
approximation of betweenness, with a good initial ranking at low
computation costs. However, if the approximate betweenness of
a node is wrongly estimated, the importance of the node can be
identified by one of the other metrics or be revealed during a later
iteration with different sample points. Our results indicate that
log(|N|) sample pairs are often sufficient to find interesting sub-
attacks.

In the following, we analyze the sensitivity of the computed R
value given a number of sample points for partial attack traces.
We evaluate four datasets and six static network metrics. The
results are visualized in Fig. 7. After an initial phase of steep
descent, a plateau is reached, after which increasing the number of
sample points does not yield improved results. Our experimental
results suggest, that 100 sample points are sufficient to accurately
estimate the robustness. The non-determinism of approximate
betweenness can be observed for the network netscience. In very
few cases, the R value based on approximate betweenness can
be rather high, if the number of samples is too small. For the
remainder of our experiments we set the number of sample points
to 100. We will show below that 100 samples points are sufficient,
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(a) The number of sample points is set as log(|N|).

(b) The number of sample points is set as
√

|N|.

(c) The number of sample points is set as N .

Fig. 6. Sensitivity analysis of the number of samples for the approximate betweenness computation, with different number of samples: log(|N|),
√

|N|, and N , where |N|

is the number of nodes in the network. The title of each subchart lists the dataset, as well as, the speed up factor, i.e., how many times faster the approximate betweenness
calculation is, compared to the exact computation. For the network netscience, we observe that the approximate betweenness has problems to distinguish the betweenness
centrality of several nodes, which is probably due to the larger number of components in netscience: With a few sample pairs, the approximate betweenness algorithm
leaves several nodes undiscovered.
Fig. 7. Sensitivity analysis for the number of sample points for computing a partial attack trace. In the charts, we highlight the case of 100 sample points with a dashed
vertical line.
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Fig. 8. Sensitivity analysis for the number of iterations. In the charts, we highlight the case of 4 iterations with a dashed vertical line.
Fig. 9. Estimated R versus running time for QRE with single network metrics. Each green circle corresponds to one competitor. Methods belonging to the Pareto front and
within 0.01 to the best obtained R value are labeled with their name. The label of a competitor consists of the network metric, S/I (for static/interactive) and 1 or 4 (for the
number of iterations). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
particularly, as long as we do not rely on a single network metric
for ranking the nodes.

The influence of the number of iterations on the estimated ro-
bustness of a network is evaluated next. Again, we evaluate four
datasets and six static network metrics. Fig. 8 presents the results,
with 100 sample points. For all network metrics, except from ap-
proximate betweenness, we can see that the robustness estimation
is rather stable after a few number of iterations (horizontal line).
Approximate betweenness, on the other hand, can still find lower
R values, with an increasing number of iterations. Overall, we pro-
pose that for all network metrics, a small number of iterations is
sufficient. For the remainder of our experiments we fix the num-
ber of iterations to either 1 (fast) or 4 (stable) for all five static net-
work metrics. The variation of approximate betweenness will be
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Fig. 10. Variation of robustness estimation with 24 different methods. For some datasets, e.g., football and celegansneural, the R values vary by 0.2, which is 40% of the total
robustness range.
Fig. 11. Scalability of metric-based robustness estimation. The running time is presented as a function of the number of nodes.
Table 2
Comparison of robustness estimation, as computed with R, by standard network metrics (betwI, degI, evI, katzI, prI), and two selected QRE instances: ADI (approximate
betweenness, degree; all interactive) and ADEKPI (approximate betweenness, degree, eigenvector, katz, pagerank; all interactive).Minimumvalues (=better) are highlighted
in bold.

Network betwI degI evI katzI prI ADI ADEKPI

Karate 0.156 0.160 0.161 0.161 0.161 0.145 0.145
Dolphins 0.181 0.239 0.245 0.245 0.239 0.176 0.173
Lesmis 0.122 0.129 0.132 0.132 0.127 0.102 0.100
Polbooks 0.197 0.260 0.258 0.258 0.265 0.177 0.182
Adjnoun 0.235 0.258 0.250 0.250 0.246 0.227 0.226
Football 0.324 0.430 0.431 0.431 0.427 0.323 0.335
Celegansneural 0.247 0.295 0.290 0.290 0.295 0.226 0.226
Polblogs 0.153 0.166 0.168 0.168 0.163 0.151 0.150
Netscience 0.043 0.036 0.040 0.040 0.034 0.017 0.016
Power 0.043 0.057 0.057 0.057 0.065 0.013 0.014
hep-th 0.068 0.077 0.077 0.077 0.075 0.062 0.062
astro-ph 0.130 0.192 0.203 0.203 0.155 0.138 0.138
addressed by using multiple partial attack traces, instead of single
partial traces (see evaluation below).

3.3. Robustness estimations by QRE

Our sensitivity analysis in the previous section has led to the
following parameters for Algorithm 1: Approximate betweenness
is sampled by log(|N|) random node pairs, we compute partial
attack traces with 100 sample points, and iterate the main loop in
Algorithm 1 for either one or four times.

In Fig. 9,we report the results of considering the networkmetric
separately. In total we have 24 competitors, implemented in QRE:
six metrics, static/interactive, and 1/4 iterations. We can see that
the bestmetrics are usually approximate betweenness (abetw) and
exact betweenness (betw). In a few cases, degree (deg) is in the
Pareto front as well, with very short running times. Overall, we
can conclude that for the majority of networks, only betweenness-
based metrics can accurately estimate the robustness; where
for larger networks, exact betweenness takes much longer to
compute than the approximate variant. In Fig. 10, we visualize the
distribution of R values of the 24 competitors for each dataset as a
box-plot. It can be seen that the variation of R values is rather large;
even the median is rather far away from theminimum values. This
highlights that one should not randomly select a network metric
to compute the R values, because this often leads to a significant
overestimation of network robustness.

In Fig. 11, we analyze the running times of the interactive QRE
instances with 4 iterations; according to our evaluation above,
these instances provide the best results. The running time of ex-
act betweenness computation increases tremendously with the
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Fig. 12. Estimated R versus running time for QRE with multiple network metrics. Each green circle corresponds to one competitor. Methods belonging to the Pareto front
and within 0.01 to the best obtained R value are labeled with their name. The label of a competitor consists of the network metric abbreviations. The configuration ADI is
among the best Pareto method in 11 out of 12 cases. All other configuration appear significantly less often (at most 7 times). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
number of nodes in the network. The execution times of the other
five metrics (including approximate betweenness) grow signifi-
cantly slower. The kink around 1500 nodes is caused by the dataset
polblogs, which has a significantly higher number of links than
the other datasets with similar number of nodes, e.g., netscience.
Therefore, the computations for polblogs always take longer.

In Fig. 12, we further evaluate QRE with multiple network met-
rics. For these experiments, we have enumerated all possible sub-
sets of {abetw = A, betw = B, deg = D, ev = E, katz =

K, pagerank = P} and four iterations, such that ADEI denotes
the sequential application of metrics. Again, we analyze the Pareto
front. We can conclude that for each network, only a few instances
of QRE belong to the best competitors. Particularly often, we find
that ADI (approximate betweenness, degree; interactive) is among
the best results, and the difference between ADI and the best result
per network is usually small, i.e., less than 0.005.

4. Discussion

In Table 2, we summarize the robustness estimations for five
standard (single) interactive networkmetrics using our methodol-
ogy, togetherwith the cases of ADI (approximate betweenness, de-
gree; all interactive) and ADEKPI (approximate betweenness, de-
gree, eigenvector, katz, pagerank; all interactive). In all but one
case, the two ADI/ADEKPI identify the minimum R values for the
networks. It should be noted that the difference between ADI and
ADEKPI is usually less than 0.005 (except for polblogs). Among sin-
gle network metrics, interactive betweenness performs best as an
attacking strategy. The difference to other network metrics is sig-
nificant (up to 0.1 smaller R values). However, the major limita-
tion of interactive betweenness is its high computation time. In
Table 3, we compare the computation times for all approaches. We
can clearly see the computational requirements for interactive be-
tweenness. Moreover, the interactive degree is usually the fastest
method to attack the network, but the obtained Rmight not be ac-
curate. ADI and ADEKPI provide very good robustness estimations
at acceptable running times.

In synthesis, we have proposed a computationally efficient
framework, Quick Robustness Estimation (QRE), for estimating the
robustness of networks. We show that instances of QRE can be
used to obtain R values smaller than the state-of-the-art with
subquadratic computation times. The results of our study show
that efficient, yet accurate robustness estimation is possible even
for very large networks. We believe that this work contributes to
a better understanding of real-world network robustness in face
of big data. We envision that our technique can be extended to
analyze robustness of networks of networks [46–48]. Moreover,
recent progress on exploitation of artificial intelligence search
techniques for network resilience analysis promotes to go beyond
the use of network metrics only [49–51].
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Table 3
Comparison of robustness estimation running time (in s) by standard network metrics (betwI, degI, evI, katzI, prI), and two selected QRE instances: ADI (approximate
betweenness, degree; all interactive) and ADEKPI (approximate betweenness, degree, eigenvector, katz, pagerank; all interactive).Minimumvalues (=better) are highlighted
in bold.

Network betwI degI evI katzI prI ADI ADEKPI

Karate 0.002 0.001 0.001 0.001 0.002 0.008 0.022
Dolphins 0.012 0.002 0.003 0.003 0.005 0.021 0.062
Lesmis 0.024 0.01 0.005 0.015 0.006 0.041 0.081
Polbooks 0.067 0.004 0.007 0.008 0.019 0.049 0.15
Adjnoun 0.076 0.005 0.006 0.007 0.021 0.054 0.166
Football 0.136 0.004 0.008 0.008 0.023 0.071 0.202
Celegansneural 0.672 0.012 0.032 0.032 0.046 0.234 0.749
Polblogs 9.741 0.065 0.102 0.102 0.222 1.402 5.364
Netscience 0.764 0.043 0.064 0.066 0.076 0.454 2.061
Power 24.704 0.145 0.178 0.18 0.462 2.258 7.69
hep-th 64.099 0.233 0.324 0.327 0.703 4.561 15.331
astro-ph 997.342 0.559 0.988 0.988 2.777 18.065 56.356
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