Fractal Boundaries of Complex Networks

Jia Shao

Collaborators: Sergey V. Buldyrev, Reuven Cohen, Maksim Kitsak, Shlomo Havlin,

H. Eugene Stanley

Motivations

- The structural properties of boundaries are important in spread of disease on networks.
- Little attention has been paid to the boundaries of networks.

Questions

- 1. How do we define the boundaries of networks?
- 2. What are the structural properties of network boundaries?
- 3. How do we apply network boundaries to the study of disease spread?

Networks: definition and properties

• Node (vertex) & link (edge)

- Distance *d* between two given nodes.
- Average distance *d* (diameter) of a network.

Small-world networks
$$\rightarrow \bar{d} \approx \log N$$

 $N=10^6 \longrightarrow \bar{d} \approx 6$ "six-degree separation"

Network: definition and properties

- Degree: number of links a node has *k*
- Degree distribution P(k)

Power-law distribution

$$P(k) \sim k^{-\lambda}$$

scale-free (**SF**)

Part I

Answer to Q1: *How to define the boundary of network?*

1. Define nodes, which at distance ℓ from root, as shell ℓ .

Number of nodes on shell:

$$\ell = 1$$
, $B_1 = 3$, $\ell = 2$, $B_2 = 2$.

2. Define all nodes **outside** shell where $\ell > \bar{d}$, as the boundaries.

If we choose boundaries as nodes outside shell 2

- a) The number of clusters in boundaries: $M_2=3$
- b) The sizes of cluster in boundaries: $S_2=3$, 1, 1

Why do we de fine boundaries in this way?

Because, epidemic starts from random node, spreads along shortest path.

Answer to Q2: What are the structures of network boundaries?

- 1. average degree $\langle k_{\ell} \rangle$ of nodes on shell ℓ .
- 2. $P(B_{\ell})$ of number of nodes B_{ℓ} on shell ℓ , where $\ell > \bar{d}$.
- $P(M_{\ell})$ of number of clusters M_{ℓ} formed by the boundary nodes.
- 4. Number of clusters $n(S_{\ell})$ of size S_{ℓ} in the boundary.
- S_{ℓ} as function of the diameter \overline{d}_{ℓ} of the cluster

Answer to Q2: What are the structures of network boundaries?

- 1. average degree $\langle k_{\ell} \rangle$ of nodes on shell ℓ .
- 2. $P(B_{\ell})$ of number of nodes B_{ℓ} on shell ℓ , where $\ell > \bar{d}$.
- $P(M_{\ell})$ of number of clusters M_{ℓ} formed by the boundary nodes.
- 4. Number of clusters $n(S_{\ell})$ of size S_{ℓ} in the boundary.
- S_{ℓ} as function of the diameter \bar{d}_{ℓ} of the cluster

Structure of boundaries: $\langle k_{\rho} \rangle$

 $\langle k_{\ell} \rangle$: average degree of nodes **on** shell ℓ

On the boundaries, when $\ell > d$

$$< k_{\ell} > \longrightarrow k_{\min}$$

Boundary nodes have smaller degrees.

Note: $d \approx 8$ *for ER with* $\langle k \rangle = 6$

Do the diluted degrees yield different structural properties from the bulk of the network?

Part II

Structure of boundaries: $P_{cum}(B_{\ell})$

 B_{ℓ} : the number of nodes **on** shell

Probability distribution function:

 $P(B_{\ell})$ probability of having B_{ℓ} Cumulative distribution function:

 $P_{cum}(B_\ell)$ probability of having more than B_ℓ nodes

$$P_{cum}(B_{\ell}) \equiv \int_{B_{\ell}}^{\infty} P(B) dB$$

Note: $d \approx 8$ *for ER with* $\langle k \rangle = 6$

$$P_{cum}(B_{\ell}) \sim B_{\ell}^{-1.0} \& P(B_{\ell}) \sim B_{\ell}^{-2.0}$$

Univ ersal power-law holds for ER with different $\langle k \rangle$, SF with different λ , and different real

_____ Do different networks have similar boundary properties?

Structure of boundaries: $P(M_{\ell})$

 M_{ℓ} : number of clusters in the boundaries $(\ell > \bar{d})$.

On the boundaries:

$$P_{cum}(M_{\ell}) \sim M_{\ell}^{-1.0}$$

Note: $\bar{d} \approx 5$ *for SF with* $\lambda = 2.5$

holds for ER with different $\langle k \rangle$, SF with different λ , and different real networks.

Structure of boundaries: $n(S_{\ell})$

 S_{ℓ} : size of clusters in the boundaries $(\ell > \bar{d})$

 $n(S_{\ell})$: number of clusters of size S_{ℓ} .

$$n(S_{\ell}) \sim S_{\ell}^{-3.0}$$

Note: $d \approx 8$ *for ER with* $\langle k \rangle = 6$

holds for ER with different $\langle k \rangle$, SF with different λ , and different real networks.

HEP: High Energy Physics citations network

34,401 papers (nodes) and 420,784 citations (links)

Structure of boundaries: Sevs de

10⁴

 d_{ℓ} : the diameter of cluster, formed by nodes **outsid** e shell ℓ .

$$S_{\ell} \sim \bar{d_{\ell}}^2$$
 (1)

Clusters follow Eq.(1) are fractals [1].

The clusters in the boundaries are fractal clusters.

HEP 10^{0} \bar{d}_{l} Note: $\bar{d} \approx 4.2$ for HEP.

of the networks,

∘ *l*=5

HEP: High Energy Physics

citations network

slope=2.0

De spite the difference of the networks, their boundary structure sare similar!

[1] A. Bunde and S. Havlin, *Fractals and disordered system* (Springer, 1996).

Part III

Answer to Q3: How to apply boundaries to the study of disease spread?

SIR (Susceptible - Infected - Recovered) model

- Disease spread starts from one random chosen node in the network.
- For each time step, an infected node has probability *p* to infect each of its uninfected neighboring nodes.
- After time step T, infected nodes are recovered which are no longer infective and cannot be infected again.

Part III

Application of boundaries: disease spread in network

 $f_{\mathcal{C}}$ fraction of nodes **outside** shell \mathcal{C}

$$f_{\ell} = \sum_{m=\ell+1}^{m_{\text{max}}} \frac{B_m}{N}$$

When disease reaches the boundaries of network, not only the *total infected population*, but also the *spread speed* decreases.

*HEP: High Energy Physics*citations network (p=0.1,T=10)

Summary

- We find a power law for $P_{cum}(B_l)$ with a universal exponent "-1" for many types of networks (-2 for probability distribution function).
- Boundaries have interesting structural properties.
- Boundaries have important applications in disease epidemic on networks.

Thank you!