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Abstract

Many real-world multilayer systems such as critical infrastructure are interdependent and embedded
in space with links of a characteristic length. They are also vulnerable to localized attacks or failures,
such as terrorist attacks or natural catastrophes, which affect all nodes within a given radius. Here we
study the effects of localized attacks on spatial multiplex networks of two layers. We find a metastable
region where alocalized attack larger than a critical size induces a nucleation transition as a cascade of
failures spreads throughout the system, leading to its collapse. We develop a theory to predict the
critical attack size and find that it exhibits novel scaling behavior. We further find that localized attacks
in these multiplex systems can induce a previously unobserved combination of random and spatial
cascades. Our results demonstrate important vulnerabilities in real-world interdependent networks
and show new theoretical features of spatial networks.

1. Introduction

The important subject of vulnerability of complex systems has garnered much interest for many years. Most
infrastructure is embedded in space, for example the power grid and sewer networks, and thus, several models
have been proposed for understanding the vulnerability of spatially embedded networks [1-9]. In addition, in
recent years, world-wide human, technological, social and economic systems have become more and more
integrated and interdependent, affecting infrastructure robustness [10—13] as well as information spreading [14]
and other socioeconomic processes [15—17]. Therefore, it is necessary to realistically model these systems as
interdependent in order to understand their structure, function and vulnerabilities [ 18—28]. Interdependent
networks contain layers of networks with two types of links—connectivity links between the nodes in the same
layer and dependency links between nodes in different layers. Studies on spatially embedded interdependent
networks found that in many cases they are significantly more vulnerable than non-embedded systems [25,
29-36].

Though most research on resilience of complex systems considers random failures, in many cases, nodes fail
in localized areas, due to natural catastrophes, terrorist attack or other failures. Recent studies show that
localized attacks on some systems are significantly more damaging [37-46].

Here, we study localized attacks on a realistic spatial multiplex model that has been proposed recently
[47,48]. The system is a model of multiplex with exponential link-length distribution of connectivity links in
each of the two layers:

P(r) ~ exp(—%]. (1)

Here (is a parameter determining the characteristic link length and thereby the strength of the embedding—a
smaller (reflects a stronger embedding. Networks with links of characteristic length { appear in reality, for
example, the European power grid and the inter station local railway lines in Japan [47, 49-51]. We further
assume that the nodes require connectivity in each layer in order to function, a requirement which is equivalent
to having dependency links of length zero with longer connectivity links. This is in contrast to the research based
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Figure 1. Demonstration of a spatially embedded multiplex network after localized attack of radius ;. The nodes are regular locations
in two-dimensional lattice while the links in each layer (purple and orange) have lengths that are exponentially distributed
(equation (1)) with characteristic length ¢ = 3 and are connected at random.

on the model of Li et al [31] and Berezin et al [39] which considered the case where dependency links are longer
than connectivity links. We suggest that the assumption of dependency links which are shorter than connectivity
links is more natural, because, for example, it is more likely for a communication’s station to receive power from
its nearest power station than a distant one, though the communications and power networks are known to have
potentially long links [47, 52].

As we show here, the combination of spatially constrained connectivity links and multiplex dependency—
both ubiquitous features of real complex systems—makes these systems vulnerable to potentially catastrophic
localized attacks. Such attacks are important and realistic because they can represent a local damage on two
spatial networks that depend on one another to function in a very natural way: the nodes are either the same, or
every node in one network layer depend on a close node in the other.

We find that for a broad range of parameters our system is metastable, meaning that a localized attack larger
than a critical size—that is independent of the system size—induces a cascade of failures which propagates
through the whole system leading to its collapse. We develop a theory which can predict this critical size of the
initial local damage, and can explain the unique cascading process that makes the critical size independent of the
system size. We find that when the localized attack is of the critical size—the cascade is at first random within a
disc of radius of order ¢, and then it propagate spatially until it reaches the boundaries of the system. Using this
theory we also find a new scaling exponent describing the critical nucleation (of damage) size.

2. Model

We model the multiplex composed of two layers in which the nodes are placed at lattice sites of a square lattice
where the link lengths r are distributed with probability of equation (1) and average degree (k) (see figure 1).
Here, we focus on the case in which both layers have the same characteristic length ( and same (k). In practice,
we assign each node an (x, y) coordinate with integers x, y € [0, 1, ...L), and construct the links in each layer as
follows: (a) we randomly select a source node (x,, ;) and draw an angle « selected uniformly at random. (b) We
draw alength r selected from the distribution P(r), equation (1). (c) We select the target node (x;, y,), which is
closest to satisfying, (x(, ) = (x5 ;) + (r - cosa, r - sin ). This process is executed independently in each
layer and is continued until we have a total of @ links. The topological model is similar to the Waxman model
[53] and recent work by Bianconi and Halu et al [24, 54] with a key difference being that our model converges to
alatticeas ( — 0.

For a node to remain functional it must be connected to the giant component in both layers. This reflects the
assumption that in order for the node to continue to function it requires the two types of connectivity. Next, we
perform alocalized attack as follows: (a) we remove all nodes within a distance r; from a random location in the
system. (b) From the set of the remaining nodes, we remove all the nodes that are not in the giant component of
the firstlayer. (c) We repeat step (b) in the second layer. (b) and (c) are repeated until there are no nodes to
remove, and we are left with the mutual giant component (MGC)[18, 19, 55, 56].
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Figure 2. Phase diagram of the critical attack size 14, Dependence of the critical attack size rj, on the average degree (k) and the
characteristic length ¢. The color bar in the right represent the size of 7}, In this figure L = 1500, averaged over five runs for each data
point.

Atthe end of this cascade, the system is categorized as functional or non-functional depending on whether
the MGC s of the order of the system size L* or not.

3. Results

We analyzed the damage spreading of the localized attack on the multiplex with different (k), (and . Our
simulations suggest the existence of 74, a minimum radius of damage needed to cause the system to collapse.
Below 77, the damage remains localized while for a radius above , the damage propagates indefinitely and
destroys the whole multiplex. When we calculate the critical attack size 7, for different (k) and ¢, we discover
three regions, as shown in the phase diagram in figure 2. The regions are: (a) stable (in red)—in this region the
system remains functional after a localized attack of any finite size. (b) Unstable (in blue)—in this region the
system is non-functional even if no nodes are removed. (c) Metastable (between the above-mentioned regions)
—in this region only attacks with radius larger than }, propagate, through cascading failures, the entire system
and makes it non-functional.

To understand these phenomena we consider the network as being composed of regions of size of order ¢
thatare tiled on a 2D lattice, each of which can be approximated as a random network. The localized attack of
size rj, can then be approximated as a random attack of size 77, in an interdependent random network with ~ ¢?

(I; ,where k. ~ 2.4554
[18]. It has also been shown that localized attacks (formed by shells surrounding a root node) in Erd6s—Rényi
multiplex networks have the same percolation threshold as random attacks [40, 41].

Based on this, we can predict the critical attack size 7}, close to k. as follows:

m(r)’ ke

m@(? ~ (k)

nodes. In this case, the percolation threshold for random removals is known tobe p =

) )

from which,

c
g, ok o8 TR, 3)
¢ (k) ke
where a is the constant of proportionality for the effective random network (radius) size, which we determine
numerically. This r, is the minimal expected size of the hole that destroys the entire random network regime
(a¢). However, since there are links between the tiled Erd6s—Rényi sub-networks, the collapse propagates toward
the surrounding sub-networks and we see a typical spreading cascade in an embedded network.

For the limit of  of the order of L, the multiplex can be well approximated as two interdependent Erd&s—
Rényi networks, and therefore we can calculate 74, as follows:

LGN

ok

> (4)
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Figure 3. The critical attack size rj—simulations and theory. (a) 14, as a function of  for four (k) values. The dotted lines represent the
theory for small and large ( as obtained from equations (2) and (4) respectively. (b) log(r; /¢) and (c) log(rj;) as a function of
log((k) — k.) for small and large ¢ values, with the % exponent (dotted line), predicted by the theory (see equations (3) and (5)). For
this figure L = 2000 with averages over at least five runs for each data point.
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Figure 4. Dynamic evolution of cascading failures near the critical point. Propagation of alocal damage with radius slightly above the
critical size 75,. The colors represent the number of iterations (NOI) until the nodes fail. (a) The whole propagation, (b) the branching
process, (c) the spatial spreading process. In (b) and (c) we show a ruler in { units (9¢) for demonstrating the orders of magnitude. For
this figure L = 4000, ¢ = 50, (k) = 2.5andr;, = 69.
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We show that equations (2) and (4) predict the simulation results in figure 3(a) with a ~ 9. Because of the
long links and since the sub-networks are not isolated—a is relatively big. In supplementary section Il is available
online at stacks.iop.org/NJP/19/073037 /mmedia we can see similar phenomenon on a system with average
degree (k) with links that connected slightly different. In this alternative model we choose a node randomly and
link it to another node with link-length distribution of step function up to ¢, for each of the two layers. In this
case, there are no long links (but the small Erd6s—Rényi networks are still not isolated) so a is found to be smaller
than in our model (approximately 3.2).

For multiplex networks, near criticality, P, (the size of the MGC) fulfill the scaling P, ~ ({k) — k)’ (in
lattice for example 3 = 5/36 see e.g. [57]). In our model, in analogy to P, we find theoretically (equations (3)
and (5)) that 14, scales as ((k) — k.), suggesting that % isa critical exponent for .. Indeed the simulations shown
in figures 3(b) and (c) support this exponent. Generally, it is difficult to find evidence for universality in the
absence of a second-order transition. This new scaling, related to nucleation type processes, may provide an
alternative approach which can be useful to understand universality properties in critical phenomena associated
with a first-order transition where nucleation processes are involved [58, 59].

We also find a new dynamical process of cascading when the localized attack is near the critical size, that is
consistent with our theory. To understand this process for a given (k) and ¢, we follow the standard cascade
process until the MGC reaches a steady state. At this time (which we call #,,), we remove a hole with radius 75,
which initiates a new cascade. Figure 4(a) shows the whole spatial-temporal process of cascading and figures 4(b)
and (c) demonstrate the different types of number of iterations (NOI) in the two regimes as described below. The
graph in figure 5(a), of (r), the average distance from the center of the nodes that failed in every iteration, reveals
explicitly the three main stages of the whole process shown in figure 4(a): (i) before the localized attack (until the
dashed line at t,,), there are a few steps where the cascade describes the removal of nodes that are not in the MGC,
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Figure 5. Analysis of the cascading failures near the critical point. (a) The average distance from the center, (r), of the nodes that fail at
every iteration, with a linear fit for the spatial spreading phase, and with a dashed line at NOI = t,. (b) The size of the MGC, Py, asa
function of NOL. (c) The derivative of P,, with comparison in the spatial spreading process to equation (8). For this figure L = 4000,
¢ =50, (k) = 2.5andr;, = 69, the same runs as figure 4. The relation between ( and the velocity is determined by the average degree
(k) as shown in supplementary figure 3.

so (r) is close to the average distance from the center to all nodes (~1500). (ii) Random branching process
[60, 61]in limited annulus around the hole (demonstrated in figure 4(b)) so (r) is fixed for many iterations at
distance %% - (. (iii) Spatial spreading process that propagates the whole system (demonstrated in figure 4(c)),

so (r) increases linearly as a function of NOI. Indeed we can see the effect of the three above processes in

figure 5(b)—the size of the MGC, P, at first decreases sharply, then, after the attack in ¢, it decreases very slowly
in a plateau, and then parabolically as a function of NOI. The transition from phase (ii) to (iii) can be discerned
by identifying a transition in (r) from constant to linear increase (figure 5(a)), or from a transition in P, from
approximately constant to parabolically decreasing (figures 5(b) and (c)). Additionally, the processes are also
described in supplementary section I in the discussion about the branching factor.

In figure 5, we see that the cascade begins random-like, with no spatial influence within the neighborhood of
the failure and a random branching process with expected branching factor of a1, as established for
interdependent random networks [28, 60, 62]. However, this random-like behavior is constrained to the
neighborhood of radius a{. Once the damage spreads beyond this neighborhood, it expands linearly in space,
with a constant rate and a parabolic decrease in P, as documented for spatially embedded interdependent
networks [31, 32, 35]. A similar coexistence of random and spatial properties, differentiated by scale, has been
observed in the single-layer case [48, 63].

In the spreading process we can see the cascading dynamics both in the simulations for (r) (¢) and in the
simulations for % in figure 5(c). The connection between them is expressed in the equations below so that ¢
expresses the NOI and v, that sets the speed of the cascading, is ~0.6(,
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Figure 6. Dependence of the critical attack size 7}, on the system size L. We see that above a certain value of L the critical attack size rj; is
constant. For this figure (k) = 2.5, with 5 runs for each data point.
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Understanding the dynamical process of cascading can explain why in the metastable region, when the size
of the network crosses the size of our approximated random network (around point L = 2a( in figure 6), there
is no correlation between the critical attack size 74, and the system size. This is because once the network is large
enough for a damage spreading process to take place, the hole will spread until the damage reaches the edges of
the system, regardless of its size.

4. Discussion

We have presented a study of interdependent spatial networks with a novel and realistic combination of spatially
localized damage and connectivity links which are longer than the dependency links. This combination is
ubiquitous in nature, and yet has not been studied methodically, to our knowledge. We find that a nucleation
phenomenon can be triggered by local damage, with failures spreading through the entire system. The cascade
itself has random behavior on a small scale but spatial behavior on a large scale, similar to what has been
observed in the single-layer case [48, 63]. We further find that the critical nucleation size has novel scaling
features. Future research will determine whether this indicates a general, universal feature of nucleation
transitions.
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