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Abstract
Many real-worldmultilayer systems such as critical infrastructure are interdependent and embedded
in spacewith links of a characteristic length. They are also vulnerable to localized attacks or failures,
such as terrorist attacks or natural catastrophes, which affect all nodes within a given radius. Herewe
study the effects of localized attacks on spatialmultiplex networks of two layers.Wefind ametastable
regionwhere a localized attack larger than a critical size induces a nucleation transition as a cascade of
failures spreads throughout the system, leading to its collapse.We develop a theory to predict the
critical attack size andfind that it exhibits novel scaling behavior.We further find that localized attacks
in thesemultiplex systems can induce a previously unobserved combination of random and spatial
cascades. Our results demonstrate important vulnerabilities in real-world interdependent networks
and shownew theoretical features of spatial networks.

1. Introduction

The important subject of vulnerability of complex systems has garneredmuch interest formany years.Most
infrastructure is embedded in space, for example the power grid and sewer networks, and thus, severalmodels
have been proposed for understanding the vulnerability of spatially embedded networks [1–9]. In addition, in
recent years, world-wide human, technological, social and economic systems have becomemore andmore
integrated and interdependent, affecting infrastructure robustness [10–13] as well as information spreading [14]
and other socioeconomic processes [15–17]. Therefore, it is necessary to realisticallymodel these systems as
interdependent in order to understand their structure, function and vulnerabilities [18–28]. Interdependent
networks contain layers of networks with two types of links—connectivity links between the nodes in the same
layer and dependency links between nodes in different layers. Studies on spatially embedded interdependent
networks found that inmany cases they are significantlymore vulnerable than non-embedded systems [25,
29–36].

Thoughmost research on resilience of complex systems considers random failures, inmany cases, nodes fail
in localized areas, due to natural catastrophes, terrorist attack or other failures. Recent studies show that
localized attacks on some systems are significantlymore damaging [37–46].

Here, we study localized attacks on a realistic spatialmultiplexmodel that has been proposed recently
[47, 48]. The system is amodel ofmultiplexwith exponential link-length distribution of connectivity links in
each of the two layers:
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Here ζ is a parameter determining the characteristic link length and thereby the strength of the embedding—a
smaller ζ reflects a stronger embedding. Networks with links of characteristic length ζ appear in reality, for
example, the European power grid and the inter station local railway lines in Japan [47, 49–51].We further
assume that the nodes require connectivity in each layer in order to function, a requirementwhich is equivalent
to having dependency links of length zerowith longer connectivity links. This is in contrast to the research based

OPEN ACCESS

RECEIVED

27March 2017

REVISED

15 June 2017

ACCEPTED FOR PUBLICATION

22 June 2017

PUBLISHED

31 July 2017

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2017 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aa7b09
https://orcid.org/0000-0002-4722-9844
https://orcid.org/0000-0002-4722-9844
https://orcid.org/0000-0002-2674-0109
https://orcid.org/0000-0002-2674-0109
https://orcid.org/0000-0002-9974-5920
https://orcid.org/0000-0002-9974-5920
mailto:dana9494@gmail.com
https://doi.org/10.1088/1367-2630/aa7b09
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa7b09&domain=pdf&date_stamp=2017-07-31
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa7b09&domain=pdf&date_stamp=2017-07-31
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


on themodel of Li et al [31] andBerezin et al [39]which considered the casewhere dependency links are longer
than connectivity links.We suggest that the assumption of dependency linkswhich are shorter than connectivity
links ismore natural, because, for example, it ismore likely for a communication’s station to receive power from
its nearest power station than a distant one, though the communications and power networks are known to have
potentially long links [47, 52].

Aswe showhere, the combination of spatially constrained connectivity links andmultiplex dependency—
both ubiquitous features of real complex systems—makes these systems vulnerable to potentially catastrophic
localized attacks. Such attacks are important and realistic because they can represent a local damage on two
spatial networks that depend on one another to function in a very natural way: the nodes are either the same, or
every node in one network layer depend on a close node in the other.

Wefind that for a broad range of parameters our system ismetastable,meaning that a localized attack larger
than a critical size—that is independent of the system size—induces a cascade of failures which propagates
through thewhole system leading to its collapse.We develop a theorywhich can predict this critical size of the
initial local damage, and can explain the unique cascading process thatmakes the critical size independent of the
system size.Wefind that when the localized attack is of the critical size—the cascade is atfirst randomwithin a
disc of radius of order ζ, and then it propagate spatially until it reaches the boundaries of the system.Using this
theorywe also find a new scaling exponent describing the critical nucleation (of damage) size.

2.Model

Wemodel themultiplex composed of two layers inwhich the nodes are placed at lattice sites of a square lattice
where the link lengths r are distributedwith probability of equation (1) and average degree á ñk (see figure 1).
Here, we focus on the case inwhich both layers have the same characteristic length ζ and same á ñk . In practice,
we assign each node an (x, y) coordinate with integers Î ¼[ )x y L, 0, 1, , and construct the links in each layer as
follows: (a)we randomly select a source node ( )x y,s s and draw an angleα selected uniformly at random. (b)We
draw a length r selected from the distribution P(r), equation (1). (c)We select the target node ( )x y,t t , which is
closest to satisfying, a a= +( ) ( ) ( · · )x y x y r r, , cos , sint t s s . This process is executed independently in each

layer and is continued until we have a total of á ñN k

2
links. The topologicalmodel is similar to theWaxmanmodel

[53] and recent work by Bianconi andHalu et al [24, 54]with a key difference being that ourmodel converges to
a lattice as z l 0.

For a node to remain functional itmust be connected to the giant component in both layers. This reflects the
assumption that in order for the node to continue to function it requires the two types of connectivity. Next, we
perform a localized attack as follows: (a)we remove all nodes within a distance rh from a random location in the
system. (b) From the set of the remaining nodes, we remove all the nodes that are not in the giant component of
thefirst layer. (c)We repeat step (b) in the second layer. (b) and (c) are repeated until there are no nodes to
remove, andwe are left with themutual giant component (MGC) [18, 19, 55, 56].

Figure 1.Demonstration of a spatially embeddedmultiplex network after localized attack of radius rh. The nodes are regular locations
in two-dimensional lattice while the links in each layer (purple and orange) have lengths that are exponentially distributed
(equation (1))with characteristic length z = 3 and are connected at random.
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At the end of this cascade, the system is categorized as functional or non-functional depending onwhether
theMGC is of the order of the system size L2 or not.

3. Results

Weanalyzed the damage spreading of the localized attack on themultiplexwith different á ñk , ζ and rh. Our
simulations suggest the existence of rh

c , aminimum radius of damage needed to cause the system to collapse.
Below rh

c the damage remains localizedwhile for a radius above rh
c the damage propagates indefinitely and

destroys thewholemultiplex.Whenwe calculate the critical attack size rh
c for different á ñk and ζ, we discover

three regions, as shown in the phase diagram infigure 2. The regions are: (a) stable (in red)—in this region the
system remains functional after a localized attack of anyfinite size. (b)Unstable (in blue)—in this region the
system is non-functional even if no nodes are removed. (c)Metastable (between the above-mentioned regions)
—in this region only attacks with radius larger than rh

c propagate, through cascading failures, the entire system
andmakes it non-functional.

To understand these phenomenawe consider the network as being composed of regions of size of order ζ
that are tiled on a 2D lattice, each of which can be approximated as a randomnetwork. The localized attack of
size rh can then be approximated as a randomattack of size prh

2 in an interdependent randomnetworkwith z~ 2

nodes. In this case, the percolation threshold for random removals is known to be =
á ñ

pc
k

k
c , where »k 2.4554c

[18]. It has also been shown that localized attacks (formed by shells surrounding a root node) in Erdős–Rényi
multiplex networks have the same percolation threshold as random attacks [40, 41].

Based on this, we can predict the critical attack size rh
c close to kc as follows:
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where a is the constant of proportionality for the effective randomnetwork (radius) size, whichwe determine
numerically. This rh

c is theminimal expected size of the hole that destroys the entire randomnetwork regime
( za ). However, since there are links between the tiled Erdős–Rényi sub-networks, the collapse propagates toward
the surrounding sub-networks andwe see a typical spreading cascade in an embedded network.

For the limit of ζ of the order of L, themultiplex can bewell approximated as two interdependent Erdős–
Rényi networks, and therefore we can calculate rh

c as follows:

p
@ -

á ñ
( ) ( )r

L

k

k
1 , 4h

c
c

2

2

Figure 2.Phase diagramof the critical attack size rh
c . Dependence of the critical attack size rh

c on the average degree á ñk and the
characteristic length ζ. The color bar in the right represent the size of rh

c . In thisfigure L=1500, averaged over five runs for each data
point.
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fromwhich,
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We show that equations (2) and (4)predict the simulation results infigure 3(a)with »a 9. Because of the
long links and since the sub-networks are not isolated—a is relatively big. In supplementary section II is available
online at stacks.iop.org/NJP/19/073037/mmediawe can see similar phenomenon on a systemwith average
degree á ñk with links that connected slightly different. In this alternativemodel we choose a node randomly and
link it to another nodewith link-length distribution of step function up to ζ, for each of the two layers. In this
case, there are no long links (but the small Erdős–Rényi networks are still not isolated) so a is found to be smaller
than in ourmodel (approximately 3.2).

Formultiplex networks, near criticality, ¥P (the size of theMGC) fulfill the scaling ~ á ñ - b
¥ ( )P k kc (in

lattice for example b = 5 36 see e.g. [57]). In ourmodel, in analogy to ¥P , wefind theoretically (equations (3)
and (5)) that rhc scales as á ñ -( )k kc

1
2 , suggesting that 1

2
is a critical exponent for rh

c . Indeed the simulations shown
infigures 3(b) and (c) support this exponent. Generally, it is difficult tofind evidence for universality in the
absence of a second-order transition. This new scaling, related to nucleation type processes,may provide an
alternative approachwhich can be useful to understand universality properties in critical phenomena associated
with afirst-order transitionwhere nucleation processes are involved [58, 59].

We alsofind a newdynamical process of cascadingwhen the localized attack is near the critical size, that is
consistent with our theory. To understand this process for a given á ñk and ζ, we follow the standard cascade
process until theMGC reaches a steady state. At this time (whichwe call ta), we remove a holewith radius rh

c

which initiates a new cascade. Figure 4(a) shows thewhole spatial-temporal process of cascading and figures 4(b)
and (c)demonstrate the different types of number of iterations (NOI) in the two regimes as described below. The
graph infigure 5(a), of á ñr , the average distance from the center of the nodes that failed in every iteration, reveals
explicitly the threemain stages of thewhole process shown infigure 4(a): (i) before the localized attack (until the
dashed line at ta), there are a few steps where the cascade describes the removal of nodes that are not in theMGC,

Figure 3.The critical attack size rh
c—simulations and theory. (a) rhc as a function of ζ for four á ñk values. The dotted lines represent the

theory for small and large ζ as obtained from equations (2) and (4) respectively. (b) z( )rlog h
c and (c) ( )rlog h

c as a function of
á ñ -( )k klog c for small and large ζ values, with the 1

2
exponent (dotted line), predicted by the theory (see equations (3) and (5)). For

this figure L=2000with averages over at leastfive runs for each data point.

Figure 4.Dynamic evolution of cascading failures near the critical point. Propagation of a local damagewith radius slightly above the
critical size rh

c . The colors represent the number of iterations (NOI) until the nodes fail. (a)Thewhole propagation, (b) the branching
process, (c) the spatial spreading process. In (b) and (c)we show a ruler in ζ units (9ζ) for demonstrating the orders ofmagnitude. For
this figure L=4000, z = 50, á ñ =k 2.5 and rh=69.
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so á ñr is close to the average distance from the center to all nodes (∼1500). (ii)Randombranching process
[60, 61] in limited annulus around the hole (demonstrated infigure 4(b)) so á ñr isfixed formany iterations at
distance z» ·a

2
. (iii) Spatial spreading process that propagates thewhole system (demonstrated infigure 4(c)),

so á ñr increases linearly as a function ofNOI. Indeedwe can see the effect of the three above processes in
figure 5(b)—the size of theMGC, ¥P , atfirst decreases sharply, then, after the attack in ta, it decreases very slowly
in a plateau, and then parabolically as a function ofNOI. The transition fromphase (ii) to (iii) can be discerned
by identifying a transition in á ñr from constant to linear increase (figure 5(a)), or from a transition in ¥P from
approximately constant to parabolically decreasing (figures 5(b) and (c)). Additionally, the processes are also
described in supplementary section I in the discussion about the branching factor.

Infigure 5, we see that the cascade begins random-like, with no spatial influencewithin the neighborhood of
the failure and a randombranching process with expected branching factor of»1, as established for
interdependent randomnetworks [28, 60, 62]. However, this random-like behavior is constrained to the
neighborhood of radius za . Once the damage spreads beyond this neighborhood, it expands linearly in space,
with a constant rate and a parabolic decrease in ¥P , as documented for spatially embedded interdependent
networks [31, 32, 35]. A similar coexistence of randomand spatial properties, differentiated by scale, has been
observed in the single-layer case [48, 63].

In the spreading process we can see the cascading dynamics both in the simulations for á ñ( )r t and in the

simulations for ¶
¶
¥( )P t

t
infigure 5(c). The connection between them is expressed in the equations below so that t

expresses theNOI and v, that sets the speed of the cascading, is z~0.6 ,

Figure 5.Analysis of the cascading failures near the critical point. (a)The average distance from the center, á ñr , of the nodes that fail at
every iteration, with a linearfit for the spatial spreading phase, andwith a dashed line at = tNOI a. (b)The size of theMGC, ¥P , as a
function ofNOI. (c)The derivative of ¥P with comparison in the spatial spreading process to equation (8). For thisfigure L=4000,
z = 50, á ñ =k 2.5 and rh=69, the same runs asfigure 4. The relation between ζ and the velocity is determined by the average degree
á ñk as shown in supplementaryfigure 3.
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Understanding the dynamical process of cascading can explainwhy in themetastable region, when the size
of the network crosses the size of our approximated randomnetwork (around point z»L a2 infigure 6), there
is no correlation between the critical attack size rh

c and the system size. This is because once the network is large
enough for a damage spreading process to take place, the holewill spread until the damage reaches the edges of
the system, regardless of its size.

4.Discussion

Wehave presented a study of interdependent spatial networks with a novel and realistic combination of spatially
localized damage and connectivity linkswhich are longer than the dependency links. This combination is
ubiquitous in nature, and yet has not been studiedmethodically, to our knowledge.Wefind that a nucleation
phenomenon can be triggered by local damage, with failures spreading through the entire system. The cascade
itself has randombehavior on a small scale but spatial behavior on a large scale, similar towhat has been
observed in the single-layer case [48, 63].We further find that the critical nucleation size has novel scaling
features. Future researchwill determinewhether this indicates a general, universal feature of nucleation
transitions.
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