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ABSTRACT

Systems composed of dynamical networks - such as the human body with its biological

networks or the global economic network consisting of regional clusters – often exhibit

complicated collective dynamics. Three fundamental processes that are typically

present are failure, damage spread, and recovery. Here we develop a model for such

systems and find phase diagrams for single and interacting networks. By investigating

networks with a small number of nodes, where finite-size e↵ects are pronounced, we

describe the spontaneous recovery phenomenon present in these systems. In the case

of interacting networks the phase diagram is very rich and becomes increasingly more

complex as the number of interacting networks increases. In the simplest example of

two interacting networks we find two critical points, four triple points, ten allowed

transitions, and two “forbidden” transitions, as well as complex hysteresis loops.

Remarkably, we find that triple points play the dominant role in constructing the

optimal repairing strategy in damaged interacting systems. To test our model, we

analyze an example of real interacting financial networks and find evidence of rapid

dynamical transitions between well-defined states, in agreement with the predictions

of our model.
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Chapter 1

Introduction

The study of networks has its beginnings in graph theory, a mathematical discipline

describing graphs, which are representations of relationships between discrete objects.

Leonhard Euler’s paper Seven Bridges of Königsberg from 1736 is considered the first

published work on graph theory. In the 20th century, Erdős and Rényi introduced the

probabilistic approach to the graph theory [1]. At the end of nineties, the explosion

of data collection and the growth of technological networks led to much scientific

attention for network systems outside of discrete mathematics and computer science,

especially in physics where the tools of statistical physics are naturally applied to

complex networks.

A graph is a set of vertices, or nodes, connected by links. A simple example is a

network of friendships, where people are represented by nodes and their friendships by

links. Massive study of real networks began relatively recently, with the emergence of

the Internet and storing huge amounts of data describing di↵erent systems structured

as networks. This interdisciplinary field is known as the study of complex networks

or networks science, raging across many disciplines and using tools developed within

those disciplines; from physics, math, biology and medicine to sociology, computer

science, economy and finance. In all these disciplines we find systems consisting of

many discrete object that influence each other, and they can be viewed as networks.

1
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1.1 Networks around us

In the world around us there are many examples of networks [2]. In chemistry, there

are metabolic networks where nodes are molecules and the links are chemical reac-

tions between the molecules. Polymer gels can be described using the concepts from

the percolation theory and network theory. In biology and ecology, there is a signifi-

cant research, from the perspective of networks science, of human brain (network of

neurons [3, 4] ) and biological network system such as food webs (”what-eats-what”

networks in ecological communities) [5]. Facebook, LinkedIn, Twitter and Instagram

are examples of social networks [6]. In finance, banks borrow money to each other,

forming a network of banks. Various types of shock processes and damage spreading

processes within the networks of banks have been researched recently [7]. Perhaps

the most famous technical network is the World Wide Web, with web pages as nodes

and URLs as links [8–10]. Networks of airports and flight connections between them

is an example of infrastructure networks.

Networks di↵er in their shape, structure and size [11, 12], but even more by pro-

cesses that are ”running” on them [13]. Typical processes that take place on networks

are epidemic processes, searches, di↵usion processes, synchronization, and spread of

information, damage or diseases. Presently, epidemic processes are one of the most

important applications of the research in complex networks, with significant con-

tributions to understanding of the disease spread and immunization strategies [14].

Searching algorithms on the Internet can often been described as variant di↵usion pro-

cesses. Synchronization networks are networks of coupled oscillators that are capable

of emitting and receiving periodic signals. The synchronization is a self organizing

phenomena when the network as a whole starts oscillating at the same frequency.

Examples range from neurons, heart cells to fireflies. Network theory provides results

that suggest how to build more resilient infrastructure with respect to both massive
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external attack (nuclear weapons, chemical and biological warfare agents, epidemic

spread) or more targeted attack (attack on computer hubs) [15].

1.2 Basic terminology

As networks are systems comprising discrete objects and the connections between

them, nodes and links are most fundamental building blocks of complex networks.

Nodes can usually have states, for example binary states active or failed. Percolation

phenomena has been deeply researched on networks and the related giant component,

a cluster with a finite size spanning across the whole network, is an important concept

used to describe functionality of network systems. Formation of the giant component

is a typical percolation-style critical phenomena often arising in network models [13].

When describing structural properties of networks, important concepts are a node

degree (or connectivity, the number of links by which a specific node is connected

to other nodes) and the node’s neighborhood (a collection of nodes connected to the

observed node). Node degree is usually denoted by letter k. Clustering coe�cient C

is a parameter describing the occurrence of connection loops and space correlations

in connectivity of nodes, usually defined as a probability that two neighbors of a node

also have a mutual connection (note also that there are many clustering coe�cients

defined in the literature, with many possible variations).

By degree distributions, real networks can usually be sorted into two groups: a)

networks with a finite second moment of the degree distribution (for example networks

with an exponential tail) and b) scale free networks. Erdős - Rényi network model,

one of the most famous models for generating random networks, produces a randomly

connected network with binomial distribution of degrees, which in the thermodynamic

limit becomes Poisson distribution and thus it falls into the first class of network

degree distributions. Preferential attachment model generate networks with long-



4

tailed, power-law distributions asymptotically behaving as P (k) / k��, where � is

the exponent of the tail of the degree distribution. Networks with the power law

asymptotic distributions are usually denoted as scale-free networks [27].

1.3 Modern research in networks

Within physics, study of complex networks is considered a part of statistical physics.

Many networks systems exhibit phase transitions, critical and fluctuation phenomena

equivalent to other physical systems. However research in networks recently tends

to be interdisciplinary, connecting both theoretical concepts and real systems across

di↵erent disciplines, ranging from physics to biology and finance.

Modern cycle of massive research in networks, fueled by the explosion of data

being observed and stored during the end of 90s, jumped with the research of Barabasi

and Albert from 1999 [27]. In their model, today known as Barabasi-Albert model,

evolution of networks is described as a dynamical process in which networks grow by

adding nodes and links, in a way that new links added have higher probability to be

attached to nodes already having large number of links. This leads to the scale-free

distribution (power law) of node degrees. Considering examples of real networks,

Barabasi and Albert showed that the Internet is a scale-free network.

Researching epidemic spread of viruses is one of the most important applications

of the networks science. Network theory methodologies can be used to describe the

spread of biological or computer viruses within abstract (network of people) of phys-

ical (network of computers) network structures, with results suggesting strategies to

improve the herd immunity [14]. Robustness of networks as a topic has attracted

a particular attention. Network systems can be damaged, intentionally (by attack)

or unintentionally (by spontaneous processes). In this sense, significant research has

been conducted by studying how networks react to attack/damage. Following the

attack there is a cascading process where failed nodes can cause other nodes to fail.
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A good and natural measure of the network functionality is the size of the giant

component left after the cascade is finished. Bigger giant component corresponds to

a higher level of system functionality. If there is no giant component left at all, a

network system is considered completely unfunctional. When removing links from the

network, giant component size experiences a phase transition [13]. This phase tran-

sition can be second order or first order, depending on the process and the correlated

behavior of the nodes. Simply removing links from the network with no additional

damage spread leads to second order transition in the size of the giant component. If

nodes influence each other through links, then damage can spread from failed nodes

to active nodes, which sometimes (for strong enough dependences) can lead to first

order phase transitions.

1.4 Interacting networks

Networks of the world around us do not usually appear as isolated structures. In-

teracting networks are systems consisting of many (at least two) networks that are

dependent on each other or interact in some specific way [16]. Human body is a

typical example of a system consisting of strongly coupled networks, with interacting

neurological and physiological networks. Power grid and communication networks

are examples of interacting infrastructure networks. Rules of interaction between

interacting networks can be di↵erent, as well as types of links and the structure

of underlying graphs, leading to di↵erent physical phenomena. For some processes,

interacting networks may have very di↵erent behavior from their single network coun-

terparts [17–20]. For instance, it has been shown that for certain types of cascading

processes (damage spread through the system), interdependent networks are much

less robust then single networks and more susceptible to collapse, sometimes even if

a tiny initial damage is done to the system [21].
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1.5 Processes with failures, recoveries and spread

of damage (FRS)

In networks where nodes are described by binary states (active or failed), most fun-

damental events are individual node failures, recoveries of individual nodes and in-

teractions between the nodes. Without any intention to introduce new terminology,

I will refer to these processes as FRS processes. These systems show rich critical

phenomena and can be well described by the methods of standard statistical physics.

This dissertation is mainly based on my research of FRS processes in the domain of

complex networks, which was published as a series of papers [22–25]. The results are

presented in the chapters that follow. Chapter 2 concerns phase diagrams of FRS

processes in single networks, and Chapter 3 deals with rich dynamics in the case

of finite size single networks, suggesting that the mechanism of spontaneous recov-

ery might be present in certain real systems. Chapter 4 studies similar processes in

interacting networks and the corresponding phase diagrams, which turn out to be

much more complicated then in the single network case. Chapter 5 solves the opti-

mal repairing problem for interacting network systems and shows that triple points

play a prominent role in the construction of optimal repairing strategies. Chapter

6 concludes with finite size e↵ects in real interacting networks, comparing simulated

networks with the real network of credit default swaps and providing a methodology

to measure model parameters.



Chapter 2

Processes with failure, recovery

and damage spread in single

networks

2.1 Introduction

Many network models have been developed to examine (i) a network’s static prop-

erties, e.g., structural characteristics or percolation, (ii) relaxation processes after

abrupt network disruption, mainly concerning epidemics or attacks, and (iii) spe-

cial topics in dynamics, including dynamical growth and synchronization networks

[2, 5, 6, 8–11, 15–18, 20, 26–33]. The response of a network system to an external at-

tack, in particular, has received intensive study [2,10,11,15,16,28,29]. Some research

has focused on the details of transient dynamics. For example, in Ref. [31] the failure

propagation in the engineering networks was studied, especially the influence of the

network topology on the speed of the cascades. Phenomena such as spreading epi-

demics and attacks on the Internet have been thoroughly described using models of

type (ii), describing essentially irreversible processes of failures. However, this is not

the case in many real-world examples. The Internet can initially fail after a severe

7
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attack and then, after a period of time, recover. A human brain can spontaneously

recover after an epileptic attack. A tra�c network returns to its normal state after

a period of gridlock. A financial network may, after a period of time, recover af-

ter having large fraction its constituents fail. There is an entire class of real-world

dynamic complex systems in which networks can spontaneously recover after their

collapse, but the mechanism for this network recovery has not yet been modeled nor

is it adequately understood. In this paper we develop a framework for understanding

the class of dynamic networks that demonstrate an ability to spontaneously recover.

2.2 Model definition

We start with three fundamental assumptions: (i) that nodes in a network can fail

due to internal failures, (ii) that they can fail due to external failures, and (iii) that

individual nodes have a recovery process.

(i) We assume that any node can fail randomly and independently of other nodes

due to internal causes. We model internal failure using a parameter p. Each

node has a probability of internal failure p dt during a time interval dt. Internal

reasons for failure can be related to any process essential to node integrity.

(ii) We assume that any node can fail due to external causes. For example, if the

neighborhood surrounding node j (i.e., a collection of nodes directly connected

to j) is substantially damaged, it can negatively impact node j. We use a simple

threshold rule (similar to that proposed by Watts [37]) to define a substantially

damaged neighborhood, i.e., a neighborhood containing fewer than or equal to

m active nodes, where m is a fixed integer. For externally-induced failures we

assume the following: If node j has more than m active neighbors during the

time interval dt, its neighborhood is “healthy” and node j is not at risk of

externally-induced failure, but if node j has fewer than or equal to m active
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neighbors during the interval dt, there is a probability r dt that node j will

experience externally-induced failure.

(iii) We assume that there is a reversal process, a recovery from failures. We use a

parameter ⌧ 6= 0 to model the recovery from internal failures. Node j recovers

from an internal failure after a time period ⌧ . If a node has already failed

internally and, before it has recovered, a new internal failure hits this node

at t, then the opportunity for recovery will occur at t + ⌧ . A node recovers

from an external failure after time ⌧ 0, which generally is not equal to ⌧ . In

our simulations we measure time in units of ⌧ 0 and, for the sake of simplicity,

we use ⌧ 0 = 1. Instead of introducing recovery times, recovery process could

alternatively be described by recovery-rates, as in engineering networks with a

“wear-out” process [31] or in forest fire models [38, 39] where vegetation can

re-grow after it has been burned.

The parameters p and ⌧ control the internal failures and r controls external fail-

ures. A “damage conductivity” parameter r describes how easily damage spreads

through the network. When r = 1 and there are no recoveries (⌧ = ⌧ 0 = 1) the

system reduces to the Watts model [37] generalized and rigorously solved in Ref. [40].

Introducing (a) dynamic recovery and (b) “damage conductivity” leads to sponta-

neous network collapse and recovery, i.e., the phase switching phenomena found in

this study. Specifically, we find that global recovery is possible only when r 6= 1 (i.e.,

when r < 1).

2.3 Numerical simulations

To explore the possible existence of collective network modes and their dynamics we

perform numerical simulations and study the system analytically.

We study separately networks with large number of nodes (representing the ther-

modynamic limit) and more realistic small networks (representing a finite system).
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The latter is particularly interesting when studying such real-world networks as those

in neuroscience [3, 4] and finance [46].

Numerical simulations for the ”thermodynamic limit” are done for regular net-

works (in which all nodes have the same degree) and for Erdős-Renyi (ER) net-

works [1, 41]. Figures 2.1 and 2.2 show results of numerical simulations for regular

networks with k = 10, recovery time ⌧ = 100, the external failure threshold m = 4,

and N = 107 nodes, approximating the thermodynamic limit. Parameters p and r

are varied and they define a two-parameter phase diagram. Since most numerical

results depend only on the product p⌧ , instead of using p and ⌧ 6= 0, we define a more

convenient single parameter p⇤ ⌘ 1 � exp(�p⌧), later to be shown to have physical

meaning; it reveals the average fraction of internally failed nodes in the network.

The network global state is best characterized by the fraction of active nodes in

the network z, which is the order parameter of the problem. The most interesting

question is how p⇤ (which controls internal failures) and r (which controls external

failures) a↵ect the entire network. For a set of di↵erent values of p⇤ and r, we

numerically calculate a time average fraction hzi = hz(p⇤, r)i of active nodes in the

network. For a selected value of r, we gradually change the p⇤ value, starting with

small p⇤ value and increasing it towards p⇤ = 1, while the states of the nodes are

dynamically evolving.

We also calculate the hzi values in the inverse direction, decreasing p⇤ from p⇤ = 1

to p⇤ = 0. Figure 2.1 shows the results for hzi as a function of p⇤, for three di↵erent

values of r. For some values of r we encounter a discontinuity in hzi while slowly

changing the p⇤ value, for the increasing or decreasing direction of p⇤, or sometimes

both. The hysteresis we find in Fig. 2.1 is the characteristic feature of a first-order

phase transition.

Repeating this procedure for many values of r, we obtain the two-parameter (r, p⇤)

phase diagram presented in Fig. 2.2. It is characterized by a regime of hysteresis

behavior: in one part of the phase diagram between the two discontinuity lines, the
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equilibrium value of hzi is found to depend not only on the values of r and p⇤, but also

on the initial condition, or the system’s past. In the (r, p⇤) space, discontinuities define

two lines, called spinodals. They separate two collective phases corresponding to high

network activity (Phase I - large values of hzi) and low network activity (Phase II -

low values of hzi). Between the spinodals is the hysteresis region (the purple region

in Fig. 2.2), in which either of the two network phases can exist. Spinodals merge at

the critical point located at (r = 0.637, p⇤ = 0.386), followed by a region in which

there is no distinction between the two phases (a supercritical region). For the set of

parameters used, we find that the giant component of active nodes in the network is

existent (non-zero) in the entire region presented in Fig. 2.2.

2.4 Analytical solution

We now describe the network system in our model by a set of equations. Let 0 <

u(t) < 1 be the fraction of nodes that are in the internally failed state, where t is

a discrete time step. Imagine that on each internally failed node a small clock is

activated to measure the time l passed since the last internal failure of the node.

At any moment t, each node has a probability p << 1 to experience a new internal

failure, and the clock in the node is then reset to 0. When l reaches the value ` = ⌧ ,

the node recovers from the internal failure. Let c
`

(t) denotes the fraction of nodes

that experienced their last internal failure at moment t � l. The evolution of c
`

(t)

and u(t) is given by equations

c
`

(t+ 1) = (1� p)c
`�1

(t), (2.1)

and

u(t+ 1)� u(t) = p(1� u(t))� c
⌧

(t). (2.2)

The right hand side of Eq. (2.1) accounts for the process of aging of time ` (nodes

in c
`�1

transfer to c
`

after one time step) and the factor (1� p) accounts for internal
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a

Figure 2.1: Critical behavior of the system with first order phase transition

and hysteresis. Equilibrium average fraction of active nodes, hzi, simulation

results (symbols) and the MFT prediction (solid lines of corresponding colors). The

calculations were performed along the r = const. lines for three di↵erent values of r.

Parameters for RR networks, N = 107, k = 10 and m = 4 are used in this example.
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b

Figure 2.2: Phase diagram of the network system. The phase diagram in model

parameters (r, p⇤) exhibits two phases. Phase I (green region) represents a high-

activity collective network mode where high values of hzi are present, while Phase II

(orange) represents a low-activity network mode. For p⇤ < 0.386 (subcritical region),

there is a hysteresis region (purple) bounded with spinodals, which are denoted by

red and blue lines. The lines merge at a “critical point” located at (r = 0.637,

p⇤ = 0.386). Colors in the diagram are for illustration purpose to highlight regions of

di↵erent phases. Analytical MFT results for spinodals are denoted by black dashed

lines. Point A (yellow) shows the parameters used in Fig. 3.1.
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c

Figure 2.3: Transition lines for di↵erent average node degrees. Comparison of

analytical MFT result (dashed lines) with numerical results (dots), for the spinodals in

the (r, p⇤) phase diagram. For larger k the agreement between theory and simulations

is increasingly better.
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d

Figure 2.4: Transition lines for ER network. Comparison of analytical MTF

result with simulation results, for ER network with hki = 10 and m = 4.
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failures during the time step. The boundary condition for ` = 0 is c
0

(t) = p. In

Eq. (2.2), the first term on the right hand side describes the rate of failures of internally

active nodes that contributes to the growth of u, while the second term accounts for

the decrease in u due to recoveries of nodes with ` = ⌧ . When the system reaches the

steady state, the equation for c
`

is c
`

= (1 � p)c
`�1

, with solution c
`

= c
0

(1� p)` ⇡

pe�pl, while the steady state equation for u, p(1 � u) � c
⌧

= 0, gives the solution

u = 1� e�p⌧ ⌘ p⇤.

Next we analytically study the external failures in nodes caused by failed neigh-

boring nodes. Let E
k

be the probability that a node of degree k will have a critically

damaged neighborhood (fewer than m + 1 nodes are active) in the steady state. E
k

can be calculated using a mean-field approximation. Assume that the time-averaged

fraction of failed nodes in the network (either internally failed or externally failed) is

0 < a < 1, where a serves as a “mean-field.” Next we calculate E
k

, assuming that

every node has k neighbors, each with probability a to be failed and probability 1�a

to be active. Using combinatorics it is easy to find that E
k

=
P

m

j=0

�
k

k�j

�
ak�j(1� a)j.

The probability that a node with a degree k will fail externally is then rE
k

. If we

denote the events of failures as A = {internal failure} and B = {external failure},

the probability that a randomly-chosen node of degree k has failed is

a
k

= P (A) + P (B)� P (A \ B), (2.3)

where P (A) and P (B) are probabilities of events A and B. We next assume that

internal and external failures are independent events, thus a
k

⇡ P (A) + P (B) �

P (A)P (B). For an arbitrarily network with degree distribution f
k

, the fraction of

failed nodes, a =
P

k

f
k

a
k

, finally becomes

a(r, p⇤) = p⇤ + r(1� p⇤)
X

k

f
k

mX

j=0

✓
k

k � j

◆
ak�j(1� a)j. (2.4)

Equation (2.4) is a self-consistent equation of a single variable a ⌘ a(r, p⇤), recalling

that hzi = 1 � a. Depending on the choice of the values of r and p⇤, there is either
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a single mathematical solution for hzi (corresponding to a single, pure phase), or

three solutions (two physical solutions corresponding to the two stable phases, which

we observe in the simulations and the third solution which is dynamically unstable).

When r = 1, the expression for hzi = 1� a resembles the result of the Watts model

for irreversible cascades (there is no recovery) with deterministic rules [40], in which

case the physical system relaxes to the unique value of z for a fixed choice of the

problem parameters. In that model it is assumed that during the cascade of failures,

failed nodes cannot become active again, while in our model externally failed nodes

failed at the previous stage of the cascade may become active again at the next stage

of the cascade since we assume ⌧ 0 = 1. Our network model also resembles forest-fire

models. In a lattice forest-fire model [38], trees grow with probability p from empty

sites at each time step, and the fire on a site (node) will spread deterministically to

trees at its neighbor sites at the next time step, thus with probability r = 1 in our

terms. Including the immunity to a certain fraction of trees [39] leads to a continuous

phase transition from a steady state with fire to a steady state without fire.

Here we introduce recovery processes and stochastic failures, described by the pa-

rameters ⌧ and r, and obtain two physically possible equilibrium values (two physical

solutions) for hzi for certain choices of (r, p⇤) and the emergence of the hysteresis

behavior, which enables the dynamical phase switching phenomena in finite-size sys-

tems, as we show later. The crucial ability of the system - the spontaneous recovery

- will turn out to be possible only for r 6= 1. The solution of Eq. (2.4) gives a dis-

continuity in hzi for certain values of r and p⇤. Figure 2.1 shows analytical results

for hz(p⇤)i for three di↵erent values of r (red, green and black solid lines) for regular

network with k = 10, m = 4, compared to the simulation results (symbols). Mean

field theory (MFT) is in good agreement with simulations, but the error becomes

larger close to discontinuities. Figure 2.2 shows the MFT prediction for the position

of spinodals (black dashed lines), for the same network. The deviation of the MFT

approximation from simulations becomes smaller with connectivity k increasing (see
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Fig. 2.3) which is the characteristic mean field e↵ect, and for very small k MFT is

very crude. Nevertheless, the theory gives qualitatively excellent results. Figure 2.4

shows numerical and analytical results for the case of Poisson degree distribution (ER

network [1]), for hki = 10 and m = 4. In this case there is less agreement between

MFT and simulation results compared to the case of regular network (Fig 2.2), due

to a substantial fraction of nodes having k close to the value of m.

2.5 Critical exponents and comparison with other

models

To further characterize the network system, we measure the standard critical expo-

nents �, �, and � around the critical point (for definitions see Ref. [42]). Large random

networks can be regarded infinite dimensional systems. For our prototypical regular

(k = 10, m = 4) network we find � = 0.5 ± 0.1, � = 2.7 ± 0.6, and � = 1.2 ± 0.3,

indicating that our model is in the mean field Ising universality class in d � 4 dimen-

sions, i.e., in systems in which � = 1/2, � = 3, and � = 1. In contrast to magnetic

systems and fluids, the critical exponent ↵, related to the heat capacity, is not defined

for our dynamic network because there is no proper equivalence for heat or energy in

our system. Figure 2.2 shows that our phase diagram is similar to the phase diagram

found in fluids [43,44] and ferromagnets [42]. Note that the pattern of internal failures

in our model is analogous to the external magnetic field in lattice-magnetic models

(e.g., the Ising model) or the chemical potential in lattice-gas models. The external

failures correspond to the interaction between neighboring sites in lattice-gas models

or neighboring spins in lattice-magnetic models. The phase diagram of our system

is rotated when compared to the phase diagram of the Ising model, similarly to the

phase diagram of lattice gas models.

It is interesting to consider ”vertical paths” in our phase diagram (r = const

paths) because they correspond to changing p⇤ only. Since the process of internal
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failures that p⇤ is responsible for, is independent for all the nodes, we might expect

p⇤ to behave like an external field in the magnetic analogy. However, some of the

vertical paths cross only a single spinodal (in the Phase diagram in Fig. 2.1 , this

occurs for 0.980 > r > 0.877), and for such paths we got an interesting property: if

the system is initially put in Phase II it is stuck in that phase forever when only p⇤

is allowed to change. This is because the second spinodal is never crossed and we

cannot reach Phase I, although it exists on the path. This is like having a magnet the

polarization of which is ”locked” and cannot be changed from the ”south” (Phase II)

to the ”north” (Phase I) by changing only the external field.

In the case of noninteracting nodes, p⇤ = 0 simply means that all nodes in a

network are active (that there is maximum “magnetization”). In a 1/2-spin magnetic

analogy, this is associated with the magnetic field H ! +1 pointing “up,” which

aligns all spins in the up direction irrespective of temperature. Similarly, p⇤ = 1

corresponds to the internal failure of all nodes, i.e, the e↵ective field H ! �1. Local

interactions in our model di↵er greatly from those in magnetic materials, however.

Consider a node located in a substantially damaged neighborhood. The magnetic

analogy would be a down-spin in a local field. In our model this node has a probability

of external failure r, irrespective of the value of p⇤. Even if we apply an infinitely

strong external field directed up (p⇤ ! 0, which corresponds to H ! +1), the

probability that a node will be in the active state is still < 1. This phenomenon is

also reflected in in network behavior at the collective level.

This shows that for an interval of lower values or r, the system behaves similar

to a magnet, while for a higher values of r, it shows an anomalous ’plastic’ behavior.

In a way, this anomaly defines two di↵erent regimes with respect to a value of r: the

magnetic and ’plastic’ regime.



Chapter 3

Phase flipping in single networks

with FRS

3.1 Finite size phenomena: Phase Flipping

Most real-world networks are either small or medium-sized. This increases the im-

portance of fluctuations. Sometimes in a large network only a very small number

of its constituents play a major role, making the network “e↵ectively” small, e.g.,

the financial network system is composed of a relatively small number of important

banks. To explore the role of fluctuations, we perform numerical simulations for small

networks with N nodes in which dynamic fluctuations are very pronounced. For small

networks we find a dramatic collective dynamics in the hysteresis region. Figure 3.1

shows the fraction of active nodes z(t) as a function of time t for a network with

N = 100 when r = 0.8 and p⇤ = 0.28 is an arbitrary point in the hysteresis region,

again using a regular network (k = 10, m = 4) as an example. We find that z flips

back-and-forth from one phase to another. In this example the average fraction of

active nodes is hz
high

i ⇡ 0.67 in the high activity phase, and hz
low

i ⇡ 0.14 in the low

activity phase. The probability distribution function (pdf) of z exhibits a bimodal

shape (Fig. 3.3).

20
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a

Figure 3.1: Two network modes characterized by high and low network

activity. Switching between collective network modes in our dynamical network.

Dynamic switching (flipping) between two phases in the subcritical region, an example

for p⇤ = 0.28, r = 0.80 (point A, in yellow, Fig. 2.2), with k = 10, m = 4 andN = 100.

The figure shows a fraction of active nodes z, as a function of time, flipping back and

forth from one phase to another. Marked with green circles are sharp drops that

might be related to ”flash crashes”, discussed later.
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Figure 3.2: E↵ective potentials. Outside the hysteresis region, where pure phases

exist, there is only one local minimum in the e↵ective potential (e↵ective single-well

“potential”). In the hysteresis region, free energy landscape resembles a “double-well

potential.” In a small system the fluctuations are very pronounced, and after long

enough time the system can jump over the barrier from one potential well to another,

resulting in a dramatic change of the collective network state.
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b

Figure 3.3: Probability density function of z values for free evolution of the

system. The pdf of z shows a bimodal form, revealing states corresponding to high

and low network activity.
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The network activity represented by z(t) exhibits behavior similar to a random

walker attracted by a potential of asymmetric double-well shape, with minima at

hz
high

i (Phase I) and hz
low

i (Phase II). In parts of the phase diagram outside the hys-

teresis region where pure phases exist, there is only one e↵ective minimum (one single-

well “potential”) with a single, time averaged equilibrium value of z, and a unimodal

pdf P (z). E↵ective potentials are illustrated in Figure 3.2. System stability and be-

havior can be described utilizing a recently-introduced concept of basin stability [45].

Note that when we initially put the system in one of the two “wells” of the e↵ective

double-well potential, the system “rolls” to the bottom of the well and stays in the

same well if there are no fluctuations. When a dynamic network is small, the relative

fluctuations in z become important and, after a su�cient span of time, the system

can jump over the “potential barrier” from one potential well to another (and vice

versa) causing a phase flipping.

3.2 Dynamics of Phase flipping

To further understand the violent dynamics of the network system—for example, to

explain the average time spent in each phase—we need to determine the mechanism of

network global recovery/collapse. Observe a system with a small number of nodes N .

Consider the fraction of externally failed nodes among the nodes that have critically

damaged neighborhood. This fraction is not exactly r at random time t, but actually

fluctuates around r, due to probabilistic nature of external failures. Therefore, for

every short time-interval [t��, t], where � is its duration, we can define the local-time

realization of r, the quantity r
�

(t), as the time-averaged fraction of externally failed

nodes among the nodes having critically damaged neighborhood during that interval.

If for �, which is a time-resolution parameter, we choose a typical relaxation time

of the system, we expect that during short intervals the system will behave as the

“true” value of the damage conductivity is not r, but r
�

(t). As a simple estimate for
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�, we use a typical duration of cascades. For the N = 100 network that we examine,

� ⇡ 5. In an analogous way, we can define the local-time realisation of p⇤ as p
�

⇤(t),

the average fraction of internally failed nodes in the interval [t� �, t].

The evolution of the system can then be described as a trajectory (r
�

(t), p
�

⇤(t))

in the phase diagram. Our crucial hypothesis is this: The global recovery event of the

network in the low activity phase occurs when the trajectory (r
�

(t), p
�

⇤(t)) crosses

the “left” spinodal (red line in Fig. 2.2), triggering a cascade and resulting in the

transition to the high activity phase. A similar explanation is for the spontaneous

transition from the high activity phase to the low activity phase. In that case, only

the “right” spinodal (blue line in Fig. 2.2) must be crossed by the trajectory. Phase-

flipping phenomenon is then simply explained as the interchangeable crossing of the

two spinodals by the trajectory (r
�

(t), p
�

⇤(t)) in the phase diagram. Numerical

simulations confirm our hypothesis. For z(t) in Fig. 3.1, we measure the corresponding

(r
�

(t), p
�

⇤(t)) trajectory. Point “1” in Fig. 3.1 denotes the moment when the first

jump from the down state to the upper state is registered. The position of the point

(r
�

(t), p
�

⇤(t)) at that moment is marked in the phase diagram shown in Fig. 3.4

using the same symbol, and it is very close to the “left” spinodal. Similarly, the first

registered jump from the upper state to the lower state (point “2” in Fig. 3.1) is

plotted in Fig. 3.4. As expected, the system at that moment is close to the “right”

spinodal. Another few transitions are also presented, confirming our hypothesis for

the mechanism of jumps. In Fig. 3.4, the white curve represents the trajectory (r
�

(t),

p
�

⇤(t)) from t = 0 to the moment of the first transition at “1.”

Sometimes the system can cross the spinodal and leave the hysteresis region for

a very short time (shorter than the relaxation time) and then quickly go back to

the hysteresis region without triggering a cascade and the corresponding transition.

Exceptionally large spikes in Figure 3.1, denoted by green circles, correspond to such

“untriggered cascades.” These spikes are thus not huge ordinary fluctuations, but a

distinctive phenomena associated with the subtle dynamics of the trajectory (r
�

(t),
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Figure 3.4: Mapping the phase flipping. White line represents trajectory (r
�

(t),

p
�

⇤(t)) of the system in the phase diagram, from t=0 to the moment of the first

transition (point “1” Fig. 3.1), in the same numerical simulation where z(t) in Fig.

3.1 was simulated. The system was in low active phase until the trajectory crossed the

”left” spinodal, resulting in a global recovery event. Analogously, when the system

is in the high active state the right spinodal becomes relevant (points “2” and “4”).

Transitions between the macroscopic states are essentially first passage processes on

interchangeable spinodals.
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p
�

⇤(t)).

Our initial choice for � is supported by simulations. If for � we take a much

larger value then the relaxation time (which is the natural choice), the fluctuations

of r
�

(t) and p
�

⇤(t) become too small and the trajectory (r
�

(t), p
�

⇤(t)) shrinks to a

small region around Point A, and it does not cross the sponodals when it is supposed

to. If � is too small (for example � = 1), the system cannot follow rapid changes in

r
�

(t) and p
�

⇤(t)).

Note that when r = 1 the global recovery process is not possible. The fluctuations

of r
�

vanish, r
�

(t) = 1, and the system cannot cross the “left” spinodal, which is

necessary for global recovery.

3.2.1 State lifetimes

Two important observables are the average lifetimes of the system in the two states,

T
down

(N) and T
up

(N). These lifetimes can be estimated using a simple model (solved

below), with results

T
down

(N) ⇠ exp[
N�E[a(r, p⇤)](r � r

s

)2

2r(1� r)
] (3.1)

and

T
up

(N) ⇠ exp[
N�(p⇤ � p

s

⇤)2

2p⇤(1� p⇤)
], (3.2)

where r
s

and p
s

⇤ are distances from Point A to the left and the right spinodal, re-

spectively. Thus the average lifetime of the system in a certain state exponentially

increases with the system size N . This result is confirmed in simulations (see Fig. 3.5).

Now we provide a derivation for formulas (3.1) and (3.2), the crude estimates for

the average lifetimes T
down

(N) and T
up

(N) of the system in each of the two states.

The dependence of T
down

(N) and T
up

(N) on the system size N can be found using

a very simple model. For T
down

(N), the system is in the low active state, and we

suppose that the transition to the high active state occurs when r
�

reaches some
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value r
s

< r; where r
s

is a typical r-position on the left spinodal where most cascades

to the high active state occur. This is essentially a first passage process. There are

NE(a(r, p⇤), k,m) nodes in the network having critically damaged neighborhood, and

each has a probability r to be externally failed and 1� r not to be externally failed.

Since we defined r
�

as the average fraction of externally failed nodes among the nodes

with critically damaged neighborhood during interval of lenght �, the probability

distribution of r
�

values is binomial, and it can be approximated with the normal

distribution with mean µ = r and variance �2 = r(1� r)/n:

f(r
�

) ⇠ exp[�n(r
�

� r)2

2r(1� r)
], (3.3)

where n is the sample size. Knowing that n = NE(a(r, p⇤), k,m)�, for the probability

that r
�

= r
s

we get

f(r
s

) ⇠ exp[�N�E(a(r, p⇤), k,m)(r
s

� r)2

2r(1� r)
] (3.4)

If there is f(r
s

) chance that at random moment t the trajectory (r
�

(t), p
�

⇤(t)) is

crossing the ”left” spinodal, then the rough estimate for T
down

(N) is T
down

(N) ⇠ 1/f
rs

and we arrive at Eq. (3.1).

Equation (3.2) for T
up

(N) can be obtained in an analogous way.

3.3 Phase flipping in real networks

To obtain plausible empirical support for our dynamic network model, we study eco-

nomic networks in both developed and developing countries. We picture an economic

network to be a network of companies linked to each another by economic connec-

tions (mostly buyer-supplier dependencies). An aluminum smelter, for example, can

be approximated as a node connected by links to its major suppliers (companies

that produce or deliver bauxite ore and electricity, necessary in the production of

aluminum) and buyers (companies that trade with aluminum or need aluminum in

their own production). Disturbances in some of these nodes (companies) can e↵ect
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Figure 3.5: Average lifetimes VS system size. Expected lifetime of the system

in a certain state measured in simulations, increases exponentially with the system

size N , confirming our theoretical results, Eqs. (3.1) and (3.2). Black lines represent

linear regressions in (N , log T ) diagram.
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the functionality of neighboring nodes. Our network model is simple and consists of

nodes that can have only two states: active or failed. To map a real economic network

to our dynamic network model, we define an appropriate variable that has two states

indicating whether a company is operating well or poorly. We construct this binary

state variable using market returns, which can be positive or negative. Since market

returns on a daily basis are more a result of speculation than fundamental changes

in the companies, we chose a reasonably long period of 100 days when we measure

the company’s net return. The state of company i at moment t we define as “good”

if, during the period [t � 100, t], the company has a net market value increase and

“bad” if, during the same period, it has a net market value decrease. Much informa-

tion is lost in this mapping, but essential information, such as whether a company is

performing well or badly, is retained. We define the measurable variable z(t) to be

the fraction of companies in the economic network that have positive total returns

during the period [t� 100, t].

Figures 3.6 and 3.7 show results for z(t) and its pdf P (z) for two real markets

over a ten-year period that includes the recent severe recession and market crash.

Figure 3.6 shows the Indian financial index as an example of a developing financial

market. There are indications that values of z(t) switch back and forth between high

and low values, resembling the phase flipping phenomena that our model predicts for

the “hysteresis regime.” The pdf P (z) exhibits an asymmetric bimodal shape and

indicates that the network mode positions are less than hz
low

i ⇡ 0.2 and greater than

hz
high

i ⇡ 0.5. From these findings we assume the Indian market is in the hysteresis

regime.

We also study the constituents of a widely used US financial index, the S&P500

index, as an example of a developed market. Figure 3.7 shows the evolution of z(t)

for the S&P500 during the same ten-year period, and the corresponding frequency

distribution. The behavior of z(t) is similar to the Indian market, and P (z) again

exhibits a bimodal shape; the system spends more time around two values of z,
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z ⇡ 0.25 and z ⇡ 0.6, suggesting two possible modes.

For both the Indian index and the S&P500 index data we find that z exhibits

bimodal pdf behavior during the last ten years, the decade that includes the severe

economic crisis, but not during previous decades. This finding suggests the intriguing

possibility that model parameters of the economic network can change from year to

year or from decade to decade, and that the system can enter and exit the hystere-

sis region. The comparison with real data indicates that our model is a plausible

qualitative explanation for the behavior we observe in real economic networks. Our

prototypical network model supports the concept of economic states [46, 47]. Possi-

ble hysteresis was reported and discussed in some economic systems [48]. From the

phase flipping mechanism we uncovered, we can draw some interesting conclusions

for economic networks. Notice that, if several negative economic events occur (p
�

⇤

is increasing) separated by a time interval � � (the characteristic time of system

relaxation), the system will absorb the damage and avoid global collapse. If the same

negative events occur but are separated by a time interval  �, catastrophic system

failure is possible. This has implications for system recovery. Government economic

recovery measures applied within a very short time (. �) probably achieve better

results. If distributed during a long time, the economic network would probably ab-

sorb the positive “kicks” and no transition to the upper phase would follow. The

possible relation between the “untriggered cascades” in our model, and the “flash

crash” phenomenon in real-world networks, is discussed in the next subsection.

3.4 Flash crashes

Apart from phase switching, our model predicts another phenomenon: exceptionally

large isolated ”spikes” in z(t). These events are not fluctuations of ordinary type

but, as we find, a distinct phenomenon associated with ”untriggered cascades” when

the system’s trajectory (r
�

(t), p
�

⇤(t)) crosses the relevant spinodal and stays in the
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Figure 3.6: Properties of phase flipping phenomenon in financial data for

an undeveloped market. (a) For the constituents of financial index, the Indian

index (BSE200), the fraction of stocks z with positive return as a function of time

switches back and forth between the two network modes characterized by high and

low network activity. (b) Bimodal form in the pdf of financial data during the last

decade.



33

c

d

Figure 3.7: Properties of phase flipping phenomenon in financial data for a

developed market. The same as in Fig 3.6 but for the S&P500 financial index.

Ashman’s D test validates the significance of bimodality (D > 2).



34

”forbidden region” for a time typically shorter than the relaxation time of the system,

and then returns in the hysteresis region. These sharp drops followed by rapid recov-

ery might be related to the phenomenon of ”flash crashes” observed in real dynamical

networks. A notable example from economic networks is May 6, 2010 Flash Crash

of the US stock markets (see Fig. 3.8a). That day, stock markets in the US reported

a large and rapid loss in the market index value, followed by a rapid recovery. Fig-

ure 3.8 shows a single sharp drop from Fig. 3.1 (the green circle denoted as ”F”),

enlarged to see the structure of the event. The system’s trajectory (r
�

(t), p
�

⇤(t)) was

approaching the ”right” spinodal (decreasing the value of z below 0.6), and crossed

it at the moment marked by a red arrow. That moment was followed by a rapid drop

and recovery that lasted only a few timesteps, then followed by a slower recovery as

the system’s trajectory returned to the hysteresis region and slowly left the vicinity

of the spinodal.

a b

Figure 3.8: Flash crash. (a) The infamous flash crash of the US financial market

on 6 May 2010. The market index value dropped rapidly, followed by an equally

rapid recovery. Source: CNBC. (b) Isolated sharp drop associated with an avoided

transition, in our model.



Chapter 4

Phase diagrams of FRS processes

in interdependent networks

4.1 Interdependent networks

As already noted, most real networks are not isolated structures but interact with

other network structures. As a result, much research has been focused recently on

the dynamics of interdependent [17, 21, 49–54] and multilayer [12, 55, 56] networks.

Recent studies on network repair [22, 24, 58] have shown the importance of recovery

of nodes as a process which leads to reverse transitions, hysteresis e↵ects, and such

phenomena as spontaneous recovery [22,25].

4.2 FRS process in interdependent networks

The cardiovascular and nervous systems in the human body are examples of two dy-

namically interacting physiological networks [59]. Diseases often result from complex

pathological conditions that involve a dynamical interaction with positive or nega-

tive feedback between di↵erent functional subsystems in the body. Similarly, in the

global economy there is a hierarchy of clustered and tightly connected countries, often

35
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grouped geographically, that are further interconnected to one large global interacting

economic and financial network [60–62]. To understand the behavior of these systems

using network science, we develop a model of interacting networks with nodes that

can recover from failure and we examine the resulting phase diagram. We present our

method and the results in detail for the simplest case of n = 2 interacting networks,

which can be easily generalized to any number of interacting networks.

Our model of a generic system consisting of interacting dynamical networks cap-

tures the important events found in real-world interacting networks, i.e., node fail-

ure [29, 70–72], systemic damage propagation [73], and node recovery [22, 25,74].

We first introduce the model, describing the details of the dynamical processes.

We present the mean field solution of the model and a rather complex phase diagrams

that we obtain. Knowing the phase diagram allows us to study a fundamental problem

of optimal repairing of damaged interconnected systems, which we do in Chapter 5.

In the final chapter (Chapter 6) we apply our model to a selected real system, and

we give a full methodology for measuring model parameters.

In our model we first describe the structure of the system and then describe the

rules governing the dynamic behavior of the processes occurring within the system.

4.3 Model

The structure of our system for the n = 2 case is modeled as follows. We start with

two isolated networks, network A and network B, and for simplicity we assume that

both networks have the same number of nodes N and the same degree distribution

f(k) (these assumptions can be relaxed, but the results stay qualitatively similar).

We assume that within each network the nodes are randomly connected. Now, to

allow networks A and B to interact, we introduce interdependency links that connect

nodes across the two networks [21]. This can be achieved in di↵erent ways, and we

use a simple one-to-one dependency: each node in network A is dependent on exactly
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one node in network B, and vice versa. The pairs of nodes of both networks are

chosen randomly.

The dynamic behavior of our system is governed by two categories of event—

failure and recovery—and we assume that every node is in either a failed or an active

state. Node failure can result from internal failure or from the spread of damage

from neighbor nodes in either the same network or the interdependent network. We

thus assume that there are three ways a node can fail. The first way is the internally

induced failure, when a node’s internal integrity has been compromised, e.g., an

organ in the body can fail due to a malfunction within the organ or a company can

fail due to bad management. The second type of failure is externally induced failure

through failure propagation due to connections with failed nodes within the node’s

own network. Finally, there is a failure induced through the dependency link as a

result of being dependent on a failed node from another (opposite) network. Apart

of these three types of failures, we assume the existence of associated simple recovery

processes for every type of failure. We specify quantitatively each of these processes

below.

4.3.1 Model rules

For internal failures (I), we assume that in both networks any node can fail due to

internal problems, independent of other nodes. For each node in network A we assume

that there is probability p
A

dt that the node will fail internally during any time period

dt. The equivalent parameter in network B is p
B

.

Every node in network A and network B is connected by links to nearby nodes

in its own network. These nodes constitute the node’s neighborhood. The number

of links a node has within the network indicates its degree or connectivity, denoted

by k. If a large number of nodes in a node’s neighborhood have failed, i.e., if the

neighborhood is substantially damaged, we assume that the probability that the node

itself will fail is increased. This is modelled by external failures (E). As in previous
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chapters (and also Refs. [22] and [75]), we use a threshold rule to define a substantially

damaged neighborhood, which is a neighborhood containing  m active nodes, where

m is a fixed integer threshold. If node j has > m active neighbors during time dt, we

consider its neighborhood to be “healthy” and there is no risk of external failure. On

the other hand, if j has  m active neighbors during time dt, there is a probability

r
A

dt (for network A) or r
B

dt (for network B) that node j will externally fail. For

certain systems it is more appropriate to define a fractional threshold 0  m
frac

 1

as in [25]. That is, the minimum number of active nodes as a requirement for a

“healthy” neighborhood is replaced by a minimum fraction of active nodes in the

neighborhood. In the example of random regular network that we consider below,

both are equivalent and related by m = k m
frac

.

In the case of two interdependent networks (A and B), we assume that each node in

the first network is dependent on a node in the second network via an interdependent

link, and vice versa. We assume that if one node in the pair fails there is a finite

(but not 100%) probability, r
d

dt, that during time dt the other node in the pair will

fail as well (dependency failure - type D ). This represents the probability that the

damage will spread through the interdependency link.

We also assume that there is a reversal process, a recovery from each of these

three types of failure. A node recovers from an internal failure after a time period

⌧ 6= 0, it recovers from an external failure after time ⌧ 0, and from a dependency failure

after time ⌧ 00. In simulations, and without loss of generality, we use ⌧ = 100, and

for simplicity we set ⌧ 0 = ⌧ 00 = 1 to take into account the assumption that real-

world systems usually require a longer time period to recover from internal problems

(physical faults) then from a lack of environmental support. Changing the numerical

values however, does not introduce any qualitative di↵erence.

For the node activity notation, we assume that every node is in one of two states:

active or failed. A node is considered active in the observed moment, if it is not

experiencing internal (I), external (E), or dependency (D) failure.
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Parameters r
A

and r
B

are introduced because they describe how easily the damage

is spread through the network. When r = 0 there is no damage spread between the

nodes, and when r = 1 there is perfect damage conduction. Assuming that external

failures occur with certainty would mean fixing r to be equal to 1. In the case of

a single network with recovery it has been shown (Chapter 3, also [22]) that many

important phenomena (e.g., spontaneous recovery) are lost when r = 1. The most

interesting parts of the phase diagram are in fact where r is far from 1.

4.4 Mean field theory

We characterize this system by studying the order parameters chosen naturally as

the fraction of active nodes in network A and network B, z
A

and z
B

, respectively.

To simplify the calculation, however, we first concentrate on the complementary and

equally intuitive fraction of failed nodes a
A

and a
B

, in networks A and B respectively

(a
A

= 1� z
A

, a
B

= 1� z
B

).

Using the mean field theory presented in Appendix A, we obtain two coupled

equations that connect a
A

and a
B

, which the system must satisfy in the equilibrium

a
A

= p⇤
A

+ r
d

a
B

(1� p⇤
A

) +
X

k

f(k)F (k, a
A

)[r
A

� p⇤
A

r
A

� r
A

r
d

a
B

+ p⇤
A

r
A

r
d

a
B

](4.1)

a
B

= p⇤
B

+ r
d

a
A

(1� p⇤
B

) +
X

k

f(k)F (k, a
B

)[r
B

� p⇤
B

r
B

� r
B

r
d

a
A

+ p⇤
B

r
B

r
d

a
A

](4.2)

Here F (k, x) =
P

m

j=0

�
k

j

�
xk�j(1� x)j, and we have also introduced simplifying

parameters p⇤
A

⌘ 1 � e�pA⌧ and p⇤
B

⌘ 1 � e�pB⌧ to make the equations more elegant

and to reduce the number of parameters by replacing p
A

, p
B

, and ⌧ that appear as

a product. We find that the parameters p⇤
A

and p⇤
B

are very convenient to work with

because they correspond to the fraction of internally failed nodes in network A and

network B, respectively.

Despite the seeming complexity of Eqs. (4.1) and (4.2), note that there are only

two unknown variables, a
A

and a
B

, and that all other parameters are fixed. These
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two equations define two curves in the (a
A

, a
B

) plane.

a

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8
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Figure 4.1: Graphical representations of the mean field equations. The blue

and brown curves represent Eq. (4.1) and Eq. (4.2), respectively, for p⇤
A

= p⇤
B

= 0.16,

r
A

= r
B

= 0.60 and r
d

= 0.15, in a system with two interdependent networks (k = 16,

m = 8). There are nine intersections, representing mathematical solutions for network

activities a
A

and a
B

. Four of them are stable solutions (green circles) representing

physical states that we also observe in our simulations, and five are unstable solutions

(red crosses).

Figure 4.1 shows a graphical representation of the curves for a random regular [13]

network (in which all the nodes have the same degree) with degree of k = 16 and

thresholdm = 8, for the symmetric parameter values p⇤
A

= p⇤
B

= 0.16, r
A

= r
B

= 0.60,

and r
d

= 0.15. The size of each network is N = 2⇥104. The blue curve is a graphical
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Figure 4.2: Graphical representations of the mean field equations. Example

for p⇤
A

= 0.20, p⇤
B

= 0.24, r
A

= r
B

= 0.60 and r
d

= 0.15. Here we obtain two stable

solutions and one unstable solution. The two stable solutions correspond to 11 state

(both networks are at high activity) and 22 state (both networks are at low activity).
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representation of Eq. (4.1), and the brown curve is defined by Eq. (4.2). The curves,

like two “ropes,” create a “knot” that can have up to nine intersections, representing

mathematical solutions of the system of equations. Not all of these solutions represent

observable and stable physical states, however. To see that, observe one of the curves

in Fig. 4.1, for example the blue curve described by Eq. (4.1). If we increase damage

done to network B (i.e. we increase a
B

) and keep everything else constant, some

damage will undoubtedly spread to network A. Thus we expect that when a
B

is

increased, a
A

must also increase (it would be very unusual if one network improves

its activity as a result of damaging the other network). We conclude that the parts

of the blue and brown curve that produce physical solutions are only those where a
A

and a
B

increase together or decrease together along the curve. This elimination leaves

only four states in Fig. 4.1 that are stable (green circles), while the other five states

are unstable (red crosses), for this particular choice of parameters. In simulated finite

networks, when the network system evolves according to the rules of the model, at

t = 0 we have a freedom to set initial conditions for the activities. Systems initially

prepared to have a pair of values (a
A

, a
B

) corresponding to an unstable solution of

Eq. (1) and (2) will be disturbed by a small fluctuation of a
A

or a
B

due to the

system dynamics, and the values of a
A

or a
B

will rapidly change until one of the

stable states is reached. Systems that are initially prepared to have values of a
A

or a
B

corresponding to a stable solution will fluctuate around these values, until

perhaps a large finite fluctuation occurs and the system “jumps” to another stable

state. Generally, for any choice of parameters, we have between one and four stable

(physical) states. Figure 4.2 shows the scenario for the same network system when

p⇤
A

= 0.20, p⇤
B

= 0.24, r
A

= r
B

= 0.60, and r
d

= 0.15. In this case we have two stable

states and one unstable state.

In subsection 4.4.1 (“Additional phase diagrams”), we show diagrams for z
A

=

1� a
A

for a range of di↵erent values of p⇤
A

and all other parameters fixed. This mean

field theory calculation agrees well with the states that we observe in our simulations,
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as we will demonstrate below.

The four stable solutions found above correspond to the following four scenarios:

“11” or “up-up”, when there is high activity in both network A and network B; “12”

or “up-down” when there is high activity in network A and low activity in network

B; “21” or “down-up” when there is low activity in network A and high activity in

network B; and “22” or “down-down”, when there is low activity in both network A

and network B.

Depending on the parameters, we obtain between one and four stable states. Each

of the states exists in a certain volume of the multi-dimensional space of parameters.

Results of the mean field theory calculation for a particular set of parameters are

presented in Fig. 4.3-4.6 as a phase diagram with four layers. The figures show the

regions in which each of the four states exist in the (p⇤
A

, p⇤
B

) parametric sub-space,

when other parameters are fixed at values r
A

= r
B

= 0.60 and r
d

= 0.15, with k and

m remaining the same as before.

For example, in Fig. 4.3 the green area indicates the region where the 11 state

exists. This state (phase) is bounded with a smooth boundary of three colors. If the

boundary is crossed (by increasing p⇤
A

and p⇤
B

), the system makes a transition to state

12 (if the orange line is crossed), state 22 (if the blue line is crossed), or state 21 (if

the purple line is crossed). The arrows indicate transitions. In Fig. 4.3 there are two

triple points (black points) that mark the change in the transition type and where

three di↵erent states can exist. The blue area in Fig. 4.4 indicates the 22 state. This

layer of the phase diagram has two triple points as well, and three possible transitions

(22 ! 12, 22 ! 11, and 22 ! 21).

Figures 4.5 and 4.6 show the regions of state 21 (purple) and state 12 (orange),

respectively. Each has two di↵erent transitions and one critical point. For example,

there are two possible ways out of state 21 (Fig. 4.5): by a transition to the 11

(green arrow) state or the 22 (blue arrow) state. Note that the di↵erent state regions

(Figs. 4.3, 4.4, 4.5, and 4.6) are not disjoint sets but there is an overlap, resulting in
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2-fold, 3-fold, or even 4-fold hysteresis regions.

The state in which the system is found depends on the initial conditions or the

system’s past. There are a total of 10 di↵erent transitions (11 ! 12, 11 ! 22,

11 ! 21, 12 ! 11, 12 ! 22, 21 ! 11, 21 ! 22, 22 ! 12, 22 ! 21 and 22 ! 11)

that connect di↵erent layers of the phase diagram (states 11, 12, 21, and 22), much

like elevators connecting di↵erent floors. Transitions 12 ! 21 and 21 ! 12 are the

only missing (“forbidden”) combinations. Although regions 12 and 21 do overlap,

there is no direct transition connecting these two states. These transitions would

correspond to the unusual combination in which one network recovers (transitions

to a higher activity) and simultaneously the other network fails. Thus a transition

from state 12 to state 21 requires the use of an intermediate state (11 or 22). A more

detailed discussion of the absence of these two transitions can be found in subsection

4.4.2, Forbidden Transitions. The set of all allowed and forbidden transitions is

presented in Fig. 4.7. The total phase diagram (all four layers on top of each other)

is presented in Fig. 4.8. Here, colored lines represent the boundaries of four states,

with each color corresponding to the boundary of one state, e.g., the green line is a

boundary of the 11 state. Rich critical phenomena with discontinuous hybrid phase

transitions and second order transitions have been recently discovered in multiplex

networks. Particularly, Baxter et al. [57] introduced weak bootstrap percolation and

weak pruning percolation in multiplex networks, which have potential applications

in infrastructure recovery and information security, and can even provide a way to

diagnose missing layers in a multiplex network.

We next can examine the activity profile for various cross-sections in the phase

diagram. In Figure 4.8 we choose two representative cross sections (dashed straight

lines) to measure activity z
A

= 1� a
A

as p⇤
A

and p⇤
B

change. The black dashed line is

defined by the equation p⇤
B

= 0.1 + 4/3p⇤
A

and the red dashed line by p⇤
B

= 0.4� p⇤
A

.

Figure 4.9a shows the activity measured in simulations of network A as we move

along the black dashed line, changing both p⇤
A

and p⇤
B

and preserving the relation
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Figure 4.3: First layer of the phase diagram with corresponding transitions.

Region of 11 state, in green. Possible transitions are 11 ! 12 (orange line), 11 ! 22

(blue line) and 11 ! 21 (purple line). This layer of the phase diagram has two triple

points, marked as black points.
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Figure 4.4: Second layer of the phase diagram with corresponding transi-

tions. Region of 22 state (blue), with two triple points and three transitions.
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Figure 4.5: Third layer of the phase diagram with corresponding transitions.

Region of 21 state (purple), with two transition lines (to 11 and 22 state) that merge

in a critical point.
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Figure 4.6: Fourth layer of the phase diagram with corresponding transi-

tions. Region of 12 state (orange), with two transition lines (to 11 and 22 state)

that merge in a critical point.
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Figure 4.7: Illustration showing states (11, 12, 21 and 22) with allowed (blue arrows)

and “forbidden” (red line) transitions.

p⇤
B

= 0.1 + 4/3p⇤
A

. We perform simulations for various initial conditions and find

(Fig. 4.9a) three di↵erent states denoted by green, orange and blue colors, which

we identify as 11, 12, and 22 states, respectively. We find four di↵erent transitions:

11 ! 12, 12 ! 22, 12 ! 11, and 22 ! 12. The solid lines show the mean field

theory (MFT) prediction [Eqs. (4.1) and (4.2)] for the activity of network A. The good

agreement shows that the mean field theory correctly captures all the properties of the

system. We note that qualitative agreement between the MFT and the simulations is

better for higher values of k, because for higher k the fluctuations are smaller, which

improves the accuracy of the MFT. Figure 4.9.b shows the activity when moving

along the red dashed line. Here we obtain four states and six di↵erent transitions.

The phase diagram of a system of n = 2 interacting networks (Fig. 4.8) is much

richer than the phase diagram of a single network with damage and recovery [22].

The analytical results we presented here for n = 2 can be generalized to n interact-

ing networks in any topological configuration, although as n increases they become

increasingly di�cult to visualize. In general, a system with n interacting networks

can have up to 2n physical states.
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Figure 4.8: Total phase diagram, with all four layers. Solid lines represent the

borders of region 11 (green), 22 (blue), 12 (orange) and 21 (purple). Dashed lines

represent cross-sections where we calculate the activity profile, shown in Figure 4.9.

Note that there is a small central “window” where all four states are possible.
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Figure 4.9: States, transitions and hysteresis loops for two activity profiles.

a) Activity z
A

of network A, as measured in simulations (dots) and predicted by

mean field theory (solid lines), along the cross section defined by the black dashed

line in Fig 4.8. Parameters p⇤
A

and p⇤
B

are changed, preserving the relation p⇤
B

=

0.1 + 4/3p⇤
A

. Transitions are denoted by arrows. b) Same for the cross section

defined by p⇤
B

= 0.4 � p⇤
A

(red dashed line in Fig. 4.8). Here we obtain 4 states

and 6 di↵erent transitions, giving rise to more complex hysteresis loops. Network

parameters in all cases are (k=16, m=8).
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4.4.1 Additional phase diagrams

Figure 4.10a shows the collection of stable solutions (solid blue lines) and unstable

solutions (dashed red lines) for the activity z
A

= 1�a
A

of network A, with parameter

values as used in Fig. 4.1, but for a range of di↵erent values of p⇤
A

. The solid black

line indicates p⇤
A

= 0.16, the value of p⇤
A

used in Fig 4.1. Green circles in this figure

correspond to the stable states found in Fig 4.1, and red crosses correspond to the

unstable solutions for z
A

form Fig. 4.1. Figure 4.10b shows an analogous phase

diagram for the parameters with values as in Fig 4.2, again for a range of p⇤
A

.
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Figure 4.10: Activity of network A versus internal failure rate. a) Activity

z
A

= 1 � a
A

obtained by solving Eq. (4.1) and (4.2), for a range of p⇤
A

values, in a

system of two interdependent networks (k = 16, m = 8). Blue lines correspond to

stable physical states and red dotted lines represent unstable solutions. In Fig. 4.10a

the same parameters as in Fig. 4.1 are used, except p⇤
A

which is not fixed but varied.

When p⇤
A

= 0.16 (vertical black line) the corresponding values on the blue solid lines

(green circles) match the graphical solutions in Fig 4.1 (also green circles). b) An

analogous relationship holds between figures 4.2 and 4.10b, in which case two stable

states exist.
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4.4.2 Forbidden transitions

Transition lines for 12 ! 21 and 21 ! 12 do not appear in our phase diagram, and it

is quite easy to understand why. Let us assume that the transition line for 12 ! 21

does exist. To obtain that transition, the idea would be to simultaneously increase p⇤
A

and decrease p⇤
B

(i.e., increase the damage in one part of the system, and decrease in

another part). Suppose we are in phase 12 and infinitesimally close to the supposed

transition line. Considering the local geometry of this line, we may be able to observe

its angle with respect to the p⇤
A

axis. If a transition occurs when increasing p⇤
A

and

decreasing p⇤
B

, the tangent on the supposed line would have an angle of ✓ 2 [0, ⇡
2

].

From here it follows that by increasing p⇤
A

only, while keeping p⇤
B

constant, we would

also make a transition (cross the transition line). The only other possibility would be

that we were moving along the transition line, but this is easy to disprove because

it would imply that the transition does not depend on p⇤
A

. If increasing p⇤
A

only,

causes a transition, the transition must end in state 22, not 21. This is because if

we only increase p⇤
A

, we increase damage to both network A (directly) and network

B (indirectly, through the interdependent links).



Chapter 5

Optimal repairing strategies in

interdependent networks

5.1 The problem of optimal repair

Knowing and understanding the phase diagram of interacting networks enable us to

answer some fundamental and practical questions. A partially or completely collapsed

system of n � 2 interacting networks in which some of them are in the low activity

state is a scenario common in medicine, e.g., when diseases or traumas a↵ect the hu-

man body and a few organs are simultaneously damaged and need to be treated, and

the interaction between the organs is critical. It is also common in economics, when

two or more coupled sectors of the economy [61] experience simultaneous problems,

or when a few geographical clusters of countries experience economic di�culties. The

practical question that arises is: What is the most e�cient strategy to repair such

a system? Many approaches are possible if resources are unlimited, but this is usu-

ally not the case and we would like to minimize the resources that we spend in the

repairing process.

For simplicity, consider two interacting networks, both damaged (low activity).

Is repairing both networks simultaneously the more e�cient approach, or repairing

54
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them one after the other? What is the minimum amount of repair needed to make

the system fully functional again? In other words, what is the minimum number

of nodes we need to repair in order to bring the system to the functional 11 (“up-

up”) state, and how do we allocate repairs between the two networks? An optimal

repairing strategy is essential when resources needed for repairing are limited or very

expensive, when the time to repair the system is limited, or when the damage is still

progressing through the system, threatening further collapse, and a quick and e�cient

intervention is needed.

5.2 Solution

We show that this problem is equivalent to finding the minimum Manhattan dis-

tance between the point in the phase diagram where the damaged system is currently

situated, and the recovery transition lines to the 11 region. The Manhattan dis-

tance between two points is defined as the sum of absolute horizontal and vertical

components of the vector connecting the points, with defined vertical and horizontal

directions. It is a driving distance between two points in a rectangular grid of streets

and avenues. In our phase diagram, it is equal to |�p⇤
A

| + |�p⇤
B

|. It turns out that

two triple points of the phase diagram play a very important role in this fundamental

problem. We find that these special points have a direct practical meaning and are

not just a topological or thermodynamic curiosity.

To show this, we start by making some simplifying but reasonable assumptions.

First, we assume that only internal failures can be repaired by human hands, since

these failures are physical faults in nodes (any external and dependency failures and

recoveries are “environmental,” and are a spontaneous recognition of the changing

neighborhood of a node). We mentioned above that the parameters p⇤
A

and p⇤
B

corre-

spond to fractions of internally failed nodes in networks A and B, respectively. This

implies that the number of internally failed nodes repaired in, say, network A, is di-
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Figure 5.1: Optimal repairing strategies. The optimal repairing procedure (least

expensive in terms of the number of individual node repairs) depends on the initial

condition of the collapsed system. The total cost of repair is |�p⇤
A

| + |�p⇤
B

| and the

problem of optimal repairing translates into finding the minimal Manhattan distance

from the point (in the phase diagram) where the collapsed system is initially situated

(S
i

) to the nearest border of the green region where it becomes fully functional. For

a system having the initial condition within the red section (e.g. point S
1

), there are

two solutions: it is equally optimal to reach any of the two triple points R1 and R2

by decreasing p⇤
A

and p⇤
B

. For the systems starting in the yellow regions, it is optimal

to reach only one triple point, R1, for the sector containing point S
2

, or R2 for the

sector containing point S
3

. Starting in the dark blue regions it is optimal to decrease

p⇤
B

only, i.e., repairing only network B. Similarly, in the light blue regions it is optimal

to decrease p⇤
A

only. Triple points play a crucial role when both networks are initially

significantly damaged (red and yellow regions).
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rectly proportional to the change of p⇤
A

. Hence repairing nodes in networks A and B

means decreasing p⇤
A

or p⇤
B

. We also assume that these repairs are done fast enough

that there is only a small probability that the newly repaired nodes will internally fail

again before the repair process is completed. The total number of repaired nodes is

therefore N
rep

= N(|�p⇤
A

|+ |�p⇤
B

|), and it is proportional to the Manhattan distance

between the starting and final point in the phase diagram.

Figure 5.1 shows the solution to the minimization problem, and a detailed discus-

sion is provided in the next section. The di↵erent colors in Fig. 5.1 correspond to the

di↵erent optimal repair strategies, which depend on the failure state of the system. If

the system is initially at point S
1

, both networks are in a low activity state, i.e., they

are non-functional. Our goal is to decrease p⇤
A

and p⇤
B

and arrive to the region where

the system is fully recovered (the green region) by performing a minimal number of

repairs, i.e. minimal N
rep

. We find that for any point in the red region there are

actually two closest points in the green region, at an equal Manhattan distance away

from the red region point. These two points are the triple points R1 and R2 shown

in Fig. 5.1, which also correspond to the triple points in Fig. 4.4. Although R1 may

be closer to point A than R2 by Euclidian distance, the Manhattan distance is the

same. Thus two equally good repairing strategies are available. One involves allocat-

ing more node repairs to network A, and the other allocating more repairs to network

B. For the yellow regions (points S
2

and S
3

), the closest points by Manhattan dis-

tance are R1 (for point S
2

) or R2 (for point S
3

). Here only one triple point represents

the optimal solution. Note that the path samples in Fig. 5.1 are “zig-zag” in shape

(to highlight that we are minimizing |�p⇤
A

|+ |�p⇤
B

|), but even when a diagonal path

(direct straight line) to a triple point is used, the Manhattan distance is the same.

For the dark blue regions (points S
4

and S
7

), the optimal strategy is to decrease p⇤
B

only, until the system is recovered. Similarly, for the light blue regions (points S
5

and

S
6

), the optimal strategy is to decrease only p⇤
A

.
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5.3 Optimizing the Manhattan distance

The optimal strategies shown in di↵erent colors in Fig. 5.1 are derived from the

geometrical reasoning shown in Fig. 5.2. To optimize repairing we need to minimize

N
rep

= N(|�p⇤
A

| + |�p⇤
B

|). Figure 5.2 shows a plot of a series of curves consisting

of points at identical Manhattan distances from point S
1

(equidistant curves). They

produce a “diamond” shape, and the minimal Manhattan distance between point S
1

and the green region translates into the task of “fitting” the diamond so that it just

touches the green region and its center is at S
1

. The diamond in Fig. 5.2a touches the

green region at two points—triple points, which are the solution to the minimisation

problem. Figure 5.2b shows the solution for point S
6

in the light blue region. Here

the solution suggests a di↵erent strategy—decreasing only p⇤
A

.

5.4 Maintaining the functionality

In this subsection we do additional considerations of the functionality after the initial

”awaking” of the system due to the positive shock, in which triple points play major

role. Notice that after the initial successful repair (targeted repairing of individual

nodes), described in the previous subsection, if the repair not sustained, will lead

the system to relax back to point S1 of Figure 5.1. Thus, we conclude that after the

initial positive ”shock”, during which the system is awaken, it is still necessary for the

system to remain within the region limited by the green line in Figure 4.8. If point

S1 is situated within the region limited by this line (which is much broader then the

green region in Figure 5.1 - for this choice of numerical parameters it is about four

times larger by area), then no additional intervention is needed. However, if initial

point S1 is outside of that region, then a subsequent constant repair is needed to

keep the system within the green region of Figure 4.8. Best strategy for this repair

is sketched in Figure 5.3: for systems initially within the red region of Figure 5.3
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Figure 5.2: Minimum Manhattan distance problem, in two examples. a

Finding the minimum Manhattan distance between point S
1

in the red sector and

the green region where the system is fully functional. Equidistant curves are plotted

in gray and form a “diamond” shape. The largest “diamond” barely touching the

green region and having its center at point S
1

, suggests there are two equally optimal

solutions to the minimization problem - points R1 and R2. b The same geomet-

rical construction for point S
6

in the light blue region, suggests a unique solution:

decreasing p⇤
A

.
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additional repair should bring the system to point T; otherwise if in the blue region

repair should simply decrease p⇤
A

(for the ”right” blue region) or p⇤
B

(for the ”upper”

blue region).

Therefore, our conclusion is that, in order to truly repair the system, the optimal

repairing procedure should consist of two steps: a) initial shock that will ”awake” the

network (bring it to the green region of Figure 5.1, and then b) if needed, increasing

the repair rate to keep the system within the boundaries of green line of Figure 4.8.

Step b) is not needed if initial filed state S1 is already within the green line region in

Figure 5.1.

5.5 Conclusion

From our optimal repairing strategy analysis we find that the order of repair (the

specific path taken between the initial point and final point) does not a↵ect the final

result. Minimizing the Manhattan distance only determines the optimal destination

point. Therefore, there is actually a set of paths corresponding to equally optimal

repairing processes. However, if we value early partial results during the repair process

(for example, if we appreciate to have one of the networks repaired as quickly as

possible), the definition of “optimal” may be further restricted, and it may be optimal

to choose those paths from the set of optimal paths, that allow the quick recovery of

subsystems, i.e., individual networks.
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Figure 5.3: Subsequent maintenance. Depending on the the initial state, addi-

tional repairing support should be provided to the system to be functional after it

has beed awaked with a positive shock discused in Figure 5.1. Optimal strategy for

the red region is bringing the system to point T, and for blue regions it is decreasing

p⇤
A

only (for the ”right” blue region) or p⇤
B

only (for the ”upper” blue region).



Chapter 6

Dynamics of real interdependent

networks

6.1 Finite size phenomena

In relatively small networks (N ⇡ 10–1000) fluctuations are very large. Thus, in

small network systems exhibiting multistability it is possible to observe phase flipping

[22, 25, 76] between di↵erent states. Figure 6.1 shows the fraction of active nodes for

both networks, in time, for a symmetric choice of parameters, p⇤
A

= p⇤
B

= 0.21,

r
A

= r
B

= 0.60, and r
d

= 0.15, when each network has only N = 100 nodes. Large

fluctuations cause the system to jump between the di↵erent states allowed for this

set of parameters. Note that interdependent links cause the two networks to have

partially dependent and correlated dynamics. Very often a transition in one network

triggers a transition in the other. In Figure 6.1 we can identify examples of all four

global states: 22, 11, 21 and 12. For example, at time t ⇡ 400 both networks are in

the high activity state (11), while at t ⇡ 620 network A is in the low activity and

network B in the high activity state (21).
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Figure 6.1: Collective dynamics in simulated interacting networks. Sim-

ulation of the networks’ dynamics, activity versus time, for N = 100 and failure

parameters p⇤
A

= p⇤
B

= 0.21, r
A

= r
B

= 0.60, r
d

= 0.15, shows the switching of the

system between four di↵erent states. We can easily identify four collective states -

11, 22, 12, and 21.
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Figure 6.2: Collective dynamics in real interacting networks. Dynamics of

two CDS geographical networks consisting of 17 European and 8 Latin American

countries, showing very similar behavior: individual networks switching between well

defined high activity and low activity states, as well as correlated collective behavior

of the two networks in interaction. We identify collective states 11, 22, 12 and 21 and

mark them with connected black ovals. Note that since the CDS value grows with

risk, a higher activity in a CDS network corresponds to bad economic news.
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6.2 Empirical example: Credit default swap net-

works

Because many real-world interacting network systems have a small number of nodes,

in those systems we can potentially uncover dynamics similar to what we observe in

our model networks. As an example of a real system, we investigate the interacting

sovereign 5-year CDS (5-year credit default swap) system, consisting of 25 European

Union and Latin American countries (see Appendix B for the full list of countries)

that began to issue the CDSs from 2005. We divide countries into two groups on a

geographical basis: 8 countries belong to the Latin American group, and 17 belong to

the EU group. Sovereign CDSs are financial instruments, for which the value reflects

the probability that the reference country will default on its debts. Each country

has a CDS value assigned, and this value changes in time reflecting the economic

news about this country and the perceived risk of default, which results in a time

series that we can observe. CDSs are highly sensitive to important economic news,

positive or negative. There is also a significant contagion and influence between the

countries, especially between those with strong economic ties, which is reflected in

the correlation between their CDSs. These characteristics make the CDS signals a

candidate for modeling using our interacting network approach.

We can draw a parallel between the CDS system and our model network if we

assume that each country (with its associated CDS signal) can be represented as a

node, which has connections (links) to other countries within its own geographical

region, as well as ties with countries from another continent. In this case, we might

expect that random and independent bad (or good) economic news appearing in any

given country have behavior similar to random internal processes in nodes in our

artificial model (random internal failures/recoveries). When economic problems in

one country propagate to a neighboring country within the same geographical region,

the process resembles the external failures in our artificial model, while interaction
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between countries from di↵erent continents may be modelled by the interdependent

links from our network model. For the CDS network system we also suppose that

the fractional definition for the threshold (m
frac

) is somewhat more natural then the

absolute definition, as it is less dependent on the country size or its importance, i.e.,

the number of links a country has to other countries.

We study the international CDS system during the period between June 2005,

the earliest date when CDSs traded for all countries, and February 2014. We apply

the network model to it as follows. We represent each country with one node that

can have two states: active or failed. Because the raw CDS values are continuous

by nature, and our model uses binary node states (up or down), we perform a trend

mapping procedure to form a binary signal (0 or 1) for each country. In particular,

for each time t, we consider the interval [t � 252, t] of 252 business days (the usual

number of business days in a year). If the CDS value of a country has a net increase

during that period, we consider the node of the country to be active at t (state =

1). If it does not, it is inactive (state = 0). Having individual binary signals for each

country, we can calculate the average activity 0  z(t)  1 for both EU and Latin

American networks. The resulting time series for EU and LA activities are shown in

Figure 6.2. First, we note that the two geographical networks spend most of time

having either a significantly high activity or significantly low activity (i.e., there is an

indication for two well-defined single-network states). We confirm this by measuring

the frequency distribution of network activities, Figs. 6.3a and 6.3b, which exhibit a

strong bimodality in z. The CDS network system in Fig. 6.2 shows rapid transitions

between the high and low activity states, much like the artificial network system in

Fig. 6.1. Figure 6.4 shows the calculated correlations between binary signals of pairs

of individual nodes. The correlation matrix reveals two strongly correlated blocks,

which we identify as Latin American block (numbers 1-8) and EU block (numbers

9-25).

In Fig. 6.2 we also observe that the two networks sometimes make transitions
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Figure 6.3: Density plots for the activity of real networks. a Activity density

plot for the EU network reveals bimodality, an indication of the existence of two

states. b Same for the LA network.

simultaneously, but not always. This behavior also resembles the behavior observed

in the artificial networks in Fig. 6.1.

Finally, we find that it is possible to estimate numerical values for all the model

parameters of this real system (internal p⇤
EU

, p⇤
LA

, external m
frac,EU

, m
frac,LA

, r
EU

,

r
LA

, interdependent r
d

) from the data. The basic idea is that for each parameter

we identify an observation experiment in which this particular parameter dominates,

enabling us to e↵ectively isolate individual parameters from the noise of many others.

For example, when both networks (EU and LA) are in the high activity phase, most of

the failures are in fact internal failures. This allows us to almost directly estimate p⇤
EU

and p⇤
LA

from Fig. 6.2, by observing p⇤
EU

= 1� hz
EU

i and p⇤
LA

= 1� hz
LA

i. External

failures are most significant when a network is in a low activity state. Interdependent

parameter r
d

can be estimated by studying the correlation between z
EU

(t) and z
LA

(t),

as this is an increasing function of r
d

. Threshold parameters m
frac,EU

and m
frac,LA

can be estimated by exploiting the fact that they most significantly determine the

fraction of time that each network spends in the high, or low, activity states. We

describe in detail our procedures for numerically estimating these model parameters
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Figure 6.4: Correlation between individual CDS signals. Correlation matrix of

binary CDS signals with the EU (1-8) and LA (9-25) block. Separation into blocks

reinforces our initial decision to sort the countries by geographic location.
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in section 6.5. Our dynamical network model also independently predicts that the

typical fluctuation size of z(t) is not uniform for all values of z, but has a spike around

z ⇡ 1

2

. We observe this phenomenon in both our simulations and the real network

dynamics (section 6.6).

6.3 Applying the model to the CDS network: Out-

line

There are two steps in applying our model to the system of binary CDS signals: 1)

building the network (choosing the rules for connecting the nodes), and 2) estimating

model parameters (for internal failures: p⇤
A

, p⇤
B

, for external failures: m
frac,A

, m
frac,B

,

r
A

, r
B

, and for the interdependent interaction: r
d

) which are the core of our model.

We first make reasonable assumptions to model the structure of the links. We then

show that we are capable of estimating – based on the real records – all of the model

parameters, by analyzing the situations in which one of these parameters dominates

the dynamics of the system.

6.4 Building the CDS network

Because the CDS system is a symbolic network, we have a certain freedom in

modelling the links connecting the countries. First, we make few assumptions. We

assume that LA and EU countries are each represented by a network, one with N
LA

=

8 nodes and the other with N
EU

= 17 nodes. We make a simplifying assumption that

both have the same average degree hki, which we do not fix: we vary it and investigate

how it a↵ects the estimates of dynamics parameters. We assume a probabilistic rule

for the links: the probability that there is a link between two nodes within the same
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network is proportional to the correlation coe�cient between the nodes taken from

the correlation matrix in Fig. 6.4. Because the total number of links per network is

fixed to hkiN
2

, and the links are probabilistic, this results in many possible physical

realizations for each network. We run simulations for a large sample of such network

realizations, with the same parameters, and average over the ensemble. During each

simulation, the links do not change. For the interdependent links we assume that

every node in both the LA and EU networks has at least one interdependent link,

but some nodes can have more than one (because N
LA

6= N
EU

it is not possible to

have one-to-one interdependency). Here we also apply the probabilistic rule: the

probability that there is an interdependent link between a node in EU and a node

in LA is proportional to the associated matrix element in the correlation matrix in

Fig. 6.4. There is a degree of freedom for the total number (L) of interdependent

links between the two networks: we do not fix this value but investigate how various

quantities depend on the range of reasonable values of L.

6.5 Measuring and estimating model parameters

We find that it is possible to estimate from the data all the model parameters (in-

ternal p⇤
EU

, p⇤
LA

, external m
frac,EU

, m
frac,LA

, r
EU

, r
LA

, interdependent r
d

), using quite

simple and reasonable arguments. For each parameter, we identify an observation ex-

periment, a part of the dynamics, or a phenomenon, in which this particular parameter

dominates. This method enables us to e↵ectively isolate individual parameters from

the noise of many others. Below we outline our procedure.
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6.5.1 Estimating internal parameters (p⇤EU, p⇤LA): observing

high activity states

When both networks (EU and LA) are in the high activity phase, most of the

failures are in fact internal failures. In Fig. 6.1 for example, only about 3% of the

failures observed during the high activity are external failures, because there is a

small chance for having a critically damaged neighborhood when z is very high. The

contribution from interdependent failures when both networks have high activity is

also rather small (of the order of (1 � z)r
d

, where both (1 � z) and r
d

are small).

This allows us to almost directly estimate p⇤
EU

and p⇤
LA

from the real records, because

with only internal failures present we know that hzi = 1� p⇤, so p⇤
EU

= 1�hz
EU

i and

p⇤
LA

= 1� hz
LA

i. By measuring the average hz
EU

i and hz
LA

i for the times when both

networks are highly active (such as when z
EU

> 1/2 and z
LA

> 1/2 - an example of

a time interval with that condition is colored in red in Fig 6.5 ), we get estimates

p⇤
EU

= 0.07± 0.01 and p⇤
LA

= 0.11± 0.02 .

6.5.2 Alternative measurement of the internal parameters:

micro-dynamics

Alternatively, by observing the network on the micro level, i.e. observing the

dynamics of individual nodes, it is also possible to measure the average internal

time of recovery, ⌧
EU

and ⌧
LA

, the crude failure rates p
EU

and p
LA

, and to verify

the previously measured p⇤
EU

and p⇤
LA

in an alternative way. Figure 6.6 shows an

example of the Columbia signal (red) for a fraction of time between November 2006

and March 2007, when the activity of both LA and EU networks was in the upper

half (z
EU

> 1/2, z
LA

> 1/2). By measuring how long a country (node) stays in the
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). The region of interest (above z = 1
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, yellow line) is colored in green, with an
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73

0 state each time it fails under these conditions, and measuring how often it fails,

we can estimate its mean recovery time and the crude failure rate. We find the

average values for the EU countries to be ⌧
EU

= 13± 2, p
EU

= (3.0± 0.5) ⇤ 10�3 and

p⇤
EU

= 0.07 ± 0.01 (same as before). For LA countries we find the average values of

⌧
LA

= 9 ± 1, p
LA

= (7.6 ± 0.8) ⇤ 10�3 and p⇤
LA

= 0.11 ± 0.02 (same as before). Note

that because for any nonlinear function f and random variable x, the expectation

E(f(x)) 6= f(E(x)), we have hp⇤i 6= 1� exp(�hpih⌧i).
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Figure 6.6: Alternative method of estimation of the internal failure rate.

Dynamics of an individual binary signal (Columbia), when the LA network is in the

high activity state (z
LA

� 1

2

).
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6.5.3 Estimating the external parameters rEU and rLA: ob-

serving low activity states

When both networks are in the low activity state (low values of z for EU and

LA), external failures dominate. Internal failures are present all the time, but they

are known as we have already estimated the internal failure parameters. To get a

first estimate of r
EU

and r
LA

, we will neglect the interdependent failures temporarily,

which are also present but much weaker then external failures, and assume that the

networks are weakly coupled (when we later estimate the value of r
d

, we will get a

small correction for the values of r
EU

and r
LA

). Also, luckily, for low values of z, and

if m
frac

has a reasonable value (not too close to 0, and not too close to 1, which is

always satisfied by requiring the existence of two states per network - values of m
frac

too close to 0 or 1 lead to single states), nearly every node has a critically damaged

neighborhood, so the dependence on m
frac

vanishes and in this case the value of

hzi is almost independent on the threshold m
frac

. Indeed, our simulations confirm

that the positions of the network stable states (which in the thermodynamic limit

coincide with hz
low

i and hz
high

i) do not depend much on m
frac

. The parameter m
frac

however strongly determines the amount of time a network spends in the upper state,

as opposed to the lower state, but it has little influence on the position of those states.

Because of the structure of function F (1�z;m
frac

) ⇡ ✓(1�z�m
frac

) in Eq. (1) and

(2), which behaves similarly to the Heaviside step function ✓, the influence of m
frac

on the dynamics is strongest when 1 � z(t) is close to m
frac

. However this is rare

when the system is in the low or high activity states where it spends most of its time;

medium values of z are usually achieved when the system makes a transition which

lasts shortly and does not contribute much to hzi. Appreciating these simplifications,

the equation that connects the average fraction of failed nodes with the internal and

external parameters becomes 1-hz
i

i = p
i

⇤+r
i

�p
i

⇤r
i

(where i = {EU, LA}), with r
i

as
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the only unknown. By measuring hz
i

i in the low states (z
EU

< 1/2 & z
LA

< 1/2) and

already knowing p
i

⇤, we obtain estimates r
EU

= 0.81± 0.03 and r
LA

= 0.88± 0.03.

6.5.4 Estimating the thresholds mfrac,EU and mfrac,LA: visiting

times

If we picture the two states per network (low and high) as a double well, then

the parameter m
frac

through the function F (z;m
frac

) controls the position and the

shape of the potential barrier between the wells, and m
frac

dominates in determining

the total fraction of time that each network spends in the upper, or lower, state.

Higher values of m
frac

lead to the network spending more time in the low activity

state, and vice versa. This is another useful observation, which allows us to estimate

the values of m
frac,EU

and m
frac,LA

from the real data. In Figure 6.2, both networks

spend approximately half of their time in the high activity state or z � 1/2 (precisely,

EU - 53%, LA - 47%). By simulating decoupled (r
d

= 0) EU and LA networks using

previously measured parameters (p⇤
EU

, p⇤
LA

, ⌧
EU

, ⌧
LA

, r
EU

, r
LA

), and requiring that the

networks spend roughly 50% of time in each state, we are able to get first estimates for

the thresholds. We find that they slightly depend on the choice of hki, ranging from

m
frac,EU

= 0.57± 0.02 and m
frac,LA

= 0.50± 0.02 for hki = 3, to m
frac,EU

= 0.59± 0.02

and m
frac,LA

= 0.50 ± 0.02 for hki = 7 (hki is limited by the number of nodes in the

smaller network to a maximum of 7). Later, after we estimate r
d

, we will get small

corrections for m
frac,EU

and m
frac,LA

by simulating the networks with a nonzero value

of r
d

.
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6.5.5 Estimating rd: correlation between networks EU and

LA

The parameter r
d

represents the interaction strength of the interdependent nodes

in the two networks. If r
d

were zero, the two networks would have perfectly indepen-

dent dynamics. On the other extreme, if r
d

= 1 we would expect the two networks to

have extremely correlated dynamics. Thus, studying the correlation between z
EU

(t)

and z
LA

(t) represents a natural way for estimating the interaction parameter r
d

. The

correlation between the two real signals in Fig. 6.2 has the value of 0.61. The idea

for measuring r
d

is straightforward: By simulating an artificial interacting network

system, using our estimated numerical values for all other parameters (p⇤
EU

, p⇤
LA

, r
EU

,

r
LA

, etc.), we can determine which value of r
d

yields the target correlation of ⇡ 0.61

between the two network activity signals. We find that the value of r
d

that achieves

this is a↵ected somewhat by the structure of the network. Table 6.1, Column #6

shows the values of r
d

that we obtain for a range of values of hki (average degree)

and L = 30 interdependent links. Thus our estimate for r
d

is in the range 0.10–0.16,

and it is higher for smaller hki. A possible explanation is that for small values of

hki, nodes have fewer neighbors, intensifying the fluctuations in the rate of external

failures (we confirmed this in simulations), which increases the noise of z(t) for each

network. This noise component intrinsic to each network lowers the correlation be-

tween the two network signals, and a higher value of r
d

is needed to compensate.

Finally, by varying the total number of interdependent links L between 30 and 70, we

find that the optimal r
d

is only slightly a↵ected by the value of L (as long as every

node has at least one interdependent link): high values of L lower the estimate for

r
d

by approximately 0.01. If we relax the constraint that each node has at least one

interdependent link and allow for nodes without interdependent links, this increases

the estimate for r
d

; some nodes are not engaged in the interaction with the other
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network, which weakens the interaction between the two networks, and a higher r
d

is

needed to compensate. In this case an e↵ective r
d

(a product of r
d

and the fraction of

nodes having at least one interdependent link) is approximately invariant with respect

to L.
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Figure 6.7: Estimating the numerical value of interdependency parameter.

Matching the value of r
d

for Corr = 0.61: correlation between the signals of two

artificial networks with N
A

= N
EU

= 17 and N
B

= N
LA

= 8 nodes, for di↵erent

values of r
d

, with other parameters fixed to the values from hki = 5 row in Table 6.1.

Once we have estimated r
d

, we can correct our initial estimates for r
EU

and r
LA

in

the estimation method #3 above, where we had initially neglected the contribution

from interdependent failures. Simulating the dynamics with a nonzero r
d

also gives

a correction to our initial estimates for m
frac,EU

and m
frac,LA

. Corrections for all
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parameters are quite small, and the final values of r
EU

, r
LA

, m
frac,EU

and m
frac,LA

are shown in Table 6.1, which also shows that the estimates slightly depend on hki.

Figure 6.7 presents an example of an actual measurement of the correlation between

the two artificial network signals as a function of r
d

, using numerical values from

Table 1 for hki = 5 and L = 30. The dashed orange line indicates the correlation

target value of 0.61.

The estimate of r
d

and the corrections to other parameters complete our estimation

for the model parameters using the real CDS records. Figure 6.8a shows a typical

outcome of the artificial network simulation using numerical values from Table 6.1,

for the hki = 5 row. Figures 6.8b-c show the frequency distribution histograms of

the signals simulated with the hki = 5 row data, but with much longer simulation

time for better statistics.

hki m
frac,EU

m
frac,LA

r
E

U r
L

A r
d

3 0.55 0.43-0.49 0.78 0.87 0.16

4 0.55 0.43-0.49 0.79 0.87 0.14

5 0.57 0.43-0.49 0.79 0.87 0.13

6 0.57 0.43-0.49 0.79 0.87 0.11

7 0.57 0.43-0.49 0.79 0.87 0.10

Table 6.1: Numerical estimates for the model parameters. Using the ”isolation

method” we find limits on the numerical values of the model parameters. These

observation experiments allow us to gauge the strength of various e↵ects in real world

systems. Here we confirm experimental accessibility of all of the model parameters.

Note that values for r
d

are rather small - this is expected as discussed in the text.
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6.6 Similarity in fluctuation size structure

Our dynamical network model predicts that the typical fluctuation size of z(t)

is not uniform for all values of z. Supplementary Figures 6.9a and 6.9b show the

average squared fluctuation h[z(t)� z(t� 1)]2i of the activity signal as a function of

z, for artificial networks A and B (N
A

= 17, N
B

= 8, for the parameters from Table

6.1, row hki = 5). The average fluctuation size shows a spike around z ⇡ 1

2

. This is

a reminiscent of a critical phenomenon, since z ⇡ 1

2

is the critical value of z below

which the system is attracted to the lower single–network state, and above which

it is attracted to the higher state. This behavior is best visualized by imagining a

double well, where the single-network states (z
low

and z
high

) correspond to two wells,

separated by a barrier where the top of the barrier corresponds to z ⇡ 1

2

. This is

especially clear in simulations with large networks (N > 10000) where, depending on

the initial condition, the system relaxes to either the higher state (if the initial z is

above the critical value), or to the lower state (if the initial z is below the critical

value). We analyze the two real CDS networks (EU and LA) and find that they

also show a strong spike in average fluctuation size as a function of z (Fig. 6.9c–d),

with the maximum at approximately the same position as in their artificial network

counterparts (z ⇡ 1

2

).
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Typical time evolution of activity. b–c Activity density plot for two model networks

reveals bimodality.
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Appendix A

Mean field theory solution for the

FRS process in interacting

networks

Mean field theory.

Fractions a
A

and a
B

denote the fraction of nodes that are failed due to any of the three

types of failures: internal (I), external (E), or dependency failure (D). We denote the

probabilities that a node at a time of observation experiences a failure of I, E, or D

type as P (I), P (E), and P (D), respectively. As a first approximation, we assume that

these failures are mutually independent events. Considering network A first, we write

an expression for the probability a
A,k

that a node of degree k in network A is failed.

The node can fail due to I, E, or D events or to a combination of them.

Using the inclusion-exclusion principle for independent events, we write

a
A,k

= P (I)+P (E)+P (D)�P (I)P (E)�P (I)P (D)�P (E)P (D)+P (I)P (E)P (D).

(A.1)

Next, we separately calculate P (I), P (E), and P (D).

83
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Figure A.1: Inclusion-exclusion principle.

Calculating P(I), the probability that a randomly chosen node is inter-

nally failed at the time of observation.

P (I) is also the average fraction of internally-failed nodes in a network, since

internal failures are independent events. This is a Poisson process on individual

nodes [22, 77], and therefore P (I) = e�pA⌧ . Since parameters p
A

and ⌧ come in this

expression as a product, we can replace them with a single parameter, p⇤
A

⌘ e�pA⌧ ,

which is bounded and also has the property 0  p⇤
A

 1, and so P (I) = p⇤
A

for network

A.

Calculating P(E), the probability that a randomly chosen node with

degree k has externally failed.

Focusing once again on network A, without a loss of generality, we let F (k) be the

probability that a node of degree k in network A is located in a critically damaged

neighborhood (where fewer than m + 1 nodes are active). By definition, the time-

averaged fraction of failed nodes (for any reason) in network A is 0  a
A

 1.

In a mean-field approximation, this is also the average probability that a randomly

chosen node in that network has failed. Using combinatorics, we obtain F (k, a
A

) =
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P
m

j=0

�
k

j

�
ak�j

A

(1� a
A

)j [22]. The probability that a node of degree k in network A has

externally failed is then P (E) = r
A

F (k, a
A

). An analogous result is valid for network

B.

Calculating P(D), the probability that a node has failed due to the

failure of its dependent counterpart node in the other network.

For network A, this probability is equal to the product of parameter r
d

and the

probability that a counterpart node in B has failed: P (D) = r
d

a
B

. In network B by

analogy this probability is equal to r
d

a
A

.

Writing Eq. (A.1) for both networks and inserting the results for P(I), P(E), and

P(D) after summing over all k (and noting a
A

=
P

k

f(k)a
A,k

and a
B

=
P

k

f(k)a
B,k

),

we get a system of two coupled equations that describes the system of networks,

a
A

= p⇤
A

+ r
d

a
B

(1� p⇤
A

) +
X

k

f(k)F (a
A

)[r
A

� p⇤
A

r
A

� r
A

r
d

a
B

+ p⇤
A

r
A

r
d

a
B

](A.2)

a
B

= p⇤
B

+ r
d

a
A

(1� p⇤
B

) +
X

k

f(k)F (a
B

)[r
B

� p⇤
B

r
B

� r
B

r
d

a
A

+ p⇤
B

r
B

r
d

a
A

].(A.3)



Appendix B

Credit default swaps (CDS)

In Chapter 6 we have analyzed 5-year sovereign debt CDSs for a set of European coun-

tries: France, Germany, Italy, Spain, Portugal, Belgium, Austria, Denmark, Sweden,

Greece, Ukraine, Hungary, Poland, Croatia, Slovenia, Romania, Bulgaria, and Slo-

vakia. This is the set of European countries that had a sovereign debt CDS in 2005.

The set of Latin American countries we analyze consists of Brazil, Colombia, Ar-

gentina, Mexico, Venezuela, Chile, Peru, and Panama. A CDS is typically used to

transfer the credit exposure of fixed income products from one party to another. The

buyer of the CDS is then obligated to make periodic payments to the seller of the

CDS until the swap contract matures. In return, the seller of the CDS agrees to

compensate (pay o↵) the seller who holds this third party debt if this (third party)

defaults on the issued debt.

A CDS is, in e↵ect, an insurance against non-payment of a debt owed by a third

party. The buyer of a CDS does not have to hold the debt of the third party but can

speculate on the possibility that the third party will indeed default, and the buyer can

purchase the CDS for this speculative purpose. CDSs were developed in the 1990s

and, given their simple structure and flexible conditions, they are now a major part

of the credit derivative activity in the OTC market used to hedge credit risk. One

of the most important aspects of a CDS is the definition of the “credit event” that
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triggers the CDS. These events include bankruptcy, obligation acceleration, obligation

default, failure to pay, repudiation (moratorium), and restructuring. In the case of the

sovereign bond market, the last three are typically included in the contracts. CDSs

are used by investors to hedge exposure to a fixed income instrument, to speculate

on likelihood of a third party (reference asset) default, or to invest in foreign country

credit without currency exposure.
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