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ABSTRACT

To design complex networks with optimal transport properties such as flow efficiency, we

consider three approaches to understanding transport and percolation in complex networks.

We analyze the effects of randomizing the strengths of connections, randomly adding long-

range connections to regular lattices, and percolation of spatially constrained networks.

Various real-world networks often have links that are differentiated in terms of their

strength, intensity, or capacity. We study the distribution P (σ) of the equivalent conduc-

tance for Erdős-Rényi (ER) and scale-free (SF) weighted resistor networks with N nodes,

for which links are assigned with conductance σi ≡ e−axi , where xi is a random variable

with 0 < xi < 1. We find, both analytically and numerically, that P (σ) for ER networks

exhibits two regimes: (i) For σ < e−apc , P (σ) is independent of N and scales as a power law

P (σ) ∼ σ〈k〉/a−1. Here pc = 1/ 〈k〉 is the critical percolation threshold of the network and

〈k〉 is the average degree of the network. (ii) For σ > e−apc , P (σ) has strong N dependence

and scales as P (σ) ∼ f(σ, apc/N
1/3).

Transport properties are greatly affected by the topology of networks. We investigate the

transport problem in lattices with long-range connections and subject to a cost constraint,

seeking design principles for optimal transport networks. Our network is built from a regular

d-dimensional lattice to be improved by adding long-range connections with probability

Pij ∼ r−α
ij , where rij is the lattice distance between site i and j. We introduce a cost

constraint on the total length of the additional links and find optimal transport in the

system for α = d + 1, established here for d = 1, 2 and 3 for regular lattices and df

for fractals. Remarkably, this cost constraint approach remains optimal, regardless of the

v



strategy used for transport, whether based on local or global knowledge of the network

structure.

To further understand the role that long-range connections play in optimizing the trans-

port of complex systems, we study the percolation of spatially constrained networks. We

now consider originally empty lattices embedded in d dimensions by adding long-range con-

nections with the same power law probability p(r) ∼ r−α. We find that, for α ≤ d, the

percolation transition belongs to the universality class of percolation in ER networks, while

for α > 2d it belongs to the universality class of percolation in regular lattices (for one-

dimensional linear chain, there is no percolation transition). However for d < α < 2d, the

percolation properties show new intermediate behavior different from ER networks, with

critical exponents that depend on α.
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Chapter 1

Introduction

Complex networks with substantial non-trivial topological features have been studied re-

cently in many science fields such as biological, social and communication.1–20 Transport

and percolation are important properties of a complex network. By studying transport

property, we understand the origin of flow efficiency in a network and obtain methods to

improve it. The percolation property of a network provides us the underlying topologi-

cal structure of a network. Percolation is extremely useful in oil fields finding, forest fire

controlling, diffusion in disordered media, etc.21

Networks are simple because they contain only nodes and links which connect nodes.

The number of links a node has is called the degree of this node. The degree distribution

is the probability distribution of these degrees over the whole network. In the meantime

networks are complex because of the countless degree distributions leading to varied forms.

Our work is based on random network models, which are obtained by generating nodes and

links at random. Different random network models produce different degree distributions.

The most classic random network model is called Erdős-Rényi (ER) model.22,23 In ER

model, each node has the same probability p to be connected to the other nodes. This

results in that the average degree of each node is 〈k〉 = pN , where N is the system size

or number of nodes in a network. The degree distribution of an ER network is a Poisson

distribution

P (k) =
〈k〉k
k!

e−〈k〉, (1.1)
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when N → ∞.

In the last decade two well-studied classes of complex networks are scale-free (SF) net-

works6,10, 11, 24, 25 and small-world (SW) networks.1–3,26, 27 Both networks are characterized

by specific structural features. The degree distribution of SF networks follows a power law

distribution

P (k) ∼ k−λ, (1.2)

where λ is a parameter typically in the range 2 < λ < 4. The power law implies that the

degree distribution of SF networks has no characteristic scale. The most known generative

model of SF networks is Barabási-Albert (BA) model25 with λ = 3. Since 1990s, the

Internet and World Wide Web have been developed in a high speed and the interest of

studying them as complex networks boomed after they were discovered that their degree

distributions follow a power law over a few orders of magnitude.28–31

The study of small-world phenomena can be traced back to several experiments con-

ducted by Stanley Milgram in 1960s.32,33 The experiments suggested that human society

is a small-world network and the average path length between any two selected people is

six. This phenomena is called “six degrees of separation”. Under the help of computer

resource, small-world model was created and has been extensively studied in the recent

ten years. Watts and Strogatz proposed a tractable model of small-world network with

high transitivity in 19991–3 although the degree distribution of this model does not match

most real-world networks very well.9 The degree distribution of small-world models was

presented analytically34 and it belongs to the ubiquitous normal distribution.

In this work, we focus on the networks described above: ER, SF and SW networks.

Inevitably our work is related with some other models, but they are derivate from these

three basic models.

We understand the topological structures of complex networks through the models.

However there exist many other important properties we need to know in the networks.

A typical property of a network is transport which determines the flow efficiency in the

network. Transport in many random networks is much different from regular networks.
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Transport is anomalous in random networks.35 To quantify transport of a network, average

path length 〈ℓ〉 defined as the average number of steps along the shortest path for all pairs

of nodes in the network is the most important measure for the network. For the random

models (ER, SF and SW networks), 〈ℓ〉 has been found 6 and proven analytically36 that it

follows a logarithmic function

〈ℓ〉 ∼ lnN. (1.3)

The average path length is not the unique parameter to evaluate the transport of a

network. For example, a power grid is mainly made up of metal wires which can be treated

as resistors in complex network. In this power grid, the conductance is a more important

parameter to evaluate the transport than path length because electric current can travel

in parallel paths across the electrodes. For this kind of networks, we introduce weight to

links and call these types of networks as weighted/disordered networks.37,38 In a resistor

network, each link is a resistor with different resistance or conductance. When the resistance

represents the weight of each link, the larger the weight, the harder it is for electric current

to transverse the link.

The first part of our work (in Chapter 2) focuses on conductance distribution of resistor

networks. We use conductance not resistance in our work for convenience’s sake because

conductance represents the transport efficiency more intuitively. Let us consider a random

resistor network with N nodes and average degree 〈k〉 > 1. Our models are limited to ER

and SF networks. Each link is assigned with conductance

σi ≡ e−axi , (1.4)

where xi is a random variable with 0 < xi < 1 and the parameter a controls the strength of

the disorder for each link. When a = 0, σi = 1, this returns to unweighted case which has

been studied in Ref.35

We randomly select two nodes A and B from the resistor network, then place two

electrodes on them (as source and sink) and load a voltage difference VAB ≡ VA − VB = 1
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between them. This results in electric current IAB flowing from A to B in the system. The

current IAB is measurable and we get the conductance between A and B as

σAB = IAB/VAB = IAB . (1.5)

If we measure the conductance over all the pairs of nodes in the network, we can get

conductance distribution P (σ) of the network. P (σ) provides the basic transport property

of resistor network. However in our simulation of resistor networks, we cannot measure

the current IAB directly. Actually we solve Kirchhoff equations to get the current on each

resistor link based on Kirchhoff’s current law. And σAB can be calculated as sum of currents

on all links connected to A or B. The method of solving Kirchhoff equations is a traditional

and effective way to get the conductance of a resistor network with limited system size, i.e.

N is finite. But it is very slow and cannot be applied to big system size because it solves a

nearly N ×N matrix while we have limited computer resources.

We provide an iterative fast algorithm to obtain P (σ) and compare it with the traditional

algorithm of solving Kirchhoff equations. The iterative algorithm can give us N → ∞

approach and performs much faster than the method of solving Kirchhoff equations while

it gives the corresponding results of P (σ) with the traditional method of solving Kirchhoff

equations.

Through the results of two methods, we find, both analytically and numerically, P (σ)

exhibits two regimes for ER networks:39

(i) A low conductance regime for σ < e−apc , where pc = 1/ 〈k〉 is the critical threshold

of the network. In this regime P (σ) is independent of N and follows the power law

P (σ) ∼ σ〈k〉/a−1.

(ii) A high conductance regime for σ > e−apc in which we find that P (σ) has strong N

dependence and scales as P (σ) ∼ f(σ, apc/N
1/3).

For SF networks with degree distribution as Eq.(1.2), where kmin ≤ k ≤ kmax, we find

numerically also two regimes, similar to those found for ER networks.
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In Chapter 3, we investigate the design principles for optimal transport networks. This

time, we focus on general complex networks, no longer resistors networks. Transport proper-

ties are greatly affected by the topology of networks. So basically, optimizing the transport

of a network is to optimize the topological structure of the network.

Let us start from a simple 2-dimensional regular N = L×L square lattice. Every node

is connected to its four nearest neighbors through short-range connections.40 The transport

property can be simply represented by the average path length 〈ℓ〉 over all the pairs of nodes

in the network. For this regular square lattice, 〈ℓ〉 ∼ L and transport is normal compared

to random networks.35 But the transport is inefficient in regular lattices.

To improve transport, a simple and effective way is to add some long-range connections

(shortcuts) to the regular lattice to make it become a SW network.1–3 With an appropriate

number of additional long-range connections, the average path length can be dramatically

reduced to 〈ℓ〉 ∼ lnL.6,36 Our model is based on Kleinberg’s navigation model.41 A node

i has a probability to connect to a remote node j through a long-range connection. The

probability follows

Pij ∼ r−α
ij , (1.6)

where rij is the lattice distance between node i and j and α is a variable exponent. The

model is reasonable, for example, in a social network people are rich in structured short-

range connections (knowing a lot of friends nearby) and have a few random long-range

connections (knowing a limited number of friends faraway). The networks underlying the

model follow the ‘small-world’ paradigm.1

It is not hard for us to conclude that the optimal 〈ℓ〉 is achieved at α = 0 in this model

from a simple analysis. We understand that only when α = 0, the long-range connection

does not depend on the distance between the selected nodes, and thus the process of adding

long-range connections is simply the same as the procedure used to create an ER network.22

In this situation, the average path length 〈ℓ〉 ∼ lnN .

However in real-world networks, there is always a cost on a long-range connection. And

the cost is usually proportional to the length of long-range connection. The conclusion
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drawn above that optimal transport occurs at α = 0 is valid only under the condition that

there is no cost limit. Because when α = 0, the average length of long-range connections

〈r〉 reaches the biggest value, this means it costs most in this condition. Now it is not the

most effective way to improve transport obviously.

We introduce a cost constraint Λ on the total length of the additional long-range con-

nections, i.e. Λ ≡ ∑

rij ∼ N . The constraint that the total cost of long-range connections

is proportional to the system size N is acceptable. With cost limit, the optimal transport

no long occurs at α = 0 because in this situation 〈r〉 is large so that only a few long-

range connections are available. In the meantime, if α is large, we have a lot of long-range

connections but the average length of them is small, the optimizing becomes ineffective in

this condition although we have a large number of long-range connections. Thus there is a

trade-off between the length of long-range connections and the number of them. So there

must exist an intermediate regime of α. In this intermediate regime, the balance between

the length and the number of long-range connections is achieved and the optimal transport

is gained.

Our numerical results show that the most efficient transport is attained at α = 3 for

two-dimensional lattice when total length of long-range connections is constrained. In a

more general d-dimensional lattice, we find the optimal transport occurs at α = d+ 1 when

system size N → ∞. We also extend the conclusion to a fractal lattice with dimension df

and find the optimal transport occurs at df + 1. This is in sharp contrast with the results

obtained for unconstrained navigation, where the optimal condition is α = 0.

To further understand the role that long-range connections play in optimizing the trans-

port of complex systems, we study the percolation of spatially constrained networks. Usu-

ally the spatial constraints are neglected when studying the properties of networks, such

as World Wide Web or citation network where the distance is not considered. However, in

many other networks, the distance does play an important role, such as the Internet,12,42

airline networks,38,43 human travel networks,15,44 wireless communication networks,45 so-

cial networks,46,47 etc. All these type of networks are embedded in two-dimensional space.



It has recently been shown that these spatial constraints are important and in certain cases

can significantly alter the topological properties of the networks.27,48–56

Let us first consider the percolation on two simple network models: an ER network

and a two-dimensional square lattice. The percolation process can be simply described as

following: nodes are removed from a fully connected ER network or a regular square lattice

one by one, the remaining nodes are still connected as a giant cluster until the ratio of

removed nodes q exceeds a critical value qc. When q > qc, the giant cluster breaks into

small clusters. The proportion of remaining nodes pc = 1− qc at this critical value is called

the threshold of percolation. For an ER network, if pN = 1, then it will almost surely

have a giant cluster whose size is in the order of n2/3.22 For a two-dimension lattice, when

p ≥ 0.59, one giant cluster extends from top to bottom and from left to right.21,57

In chapter 4, we study how spatial constraints are reflected in the percolation properties

of networks embedded in d-dimensional lattices. We now consider originally empty lattices

embedded in d dimensions (d = 1 and 2) by adding long-range connections with the same

power law probability p(r) ∼ r−α as in chapter 3. Similar distribution has been found in

spatially embedded real networks such as social and airline networks. We find for α ≤ d, the

percolation transition belongs to the universality class of percolation in ER networks, while

for α > 2d, it belongs to the universality class of percolation in regular lattices. However

for d < α < 2d, the percolation properties show new intermediate behavior different from

the two types of universality classes aforementioned, with critical exponents which depend

on α.



Chapter 2

Transport and Percolation Theory in Weighted

Networks

2.1 Overview

The networks are represented by nodes associated with individuals, organizations, or com-

puters and by links representing their interactions. In many real networks, each link has

an associated weight, the larger the weight, the harder it is to transverse the link. These

networks are called “weighted” networks.37,38

Transport is one of the main functions of networks. In a resistor network, transport

property is represented by the conductance distribution. The problem of conductance dis-

tribution in unweighted resistor networks, i.e. each link has unit resistance, was studied

in Ref.35 and it was found that P (σ) of ER resistor networks has a narrow shape with

exponential tail, while SF networks has a wide range shape with power law tail. It was

concluded that SF networks exhibit larger values of conductance than ER networks, thus

building SF networks is better for transport.

However the effect of disorder on transport in networks is still an open question. Based

on the problem of conductance distribution in unweighted resistor networks, we introduce

weights to the resistors. And we continue to study the distribution P (σ) of the equivalent

electrical conductance σ between two randomly selected nodes A and B on ER and SF
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weighted networks. After we introduce weights to the resistors, most resistors have resis-

tance much greater than 1, and the transport property of the network has been changed

much. It is important and meaningful to solve the problem of transport in weighted resistor

networks.

We first provide an iterative fast algorithm to obtain P (σ) for disordered resistor net-

works, and then we develop a theory to explain the behavior of P (σ). The theory is based

on the percolation theory57 for a weighted random network. We model a weighted network

by assigning the conductance of a link connecting node i and node j as in Ref.58

σij ≡ exp[−axij], (2.1)

where the parameter a controls the broadness (“strength”) of the disorder, and xij is a

random number taken from a uniform distribution in the range [0,1]. We use this kind of

disorder since a recent study of magnetoresistance in real granular materials systems58 shows

that the conductance is given by Eq. (2.1). Moreover, a recent study59 shows that many

types of disorder distributions lead to the same universal behavior. The range of a ≫ 1 is

called the strong disorder (SD) limit.60,61 The special case of unweighted networks, i.e.,

a = 0 or σij = 1 for all links have been studied earlier.35

To construct ER networks of size N , we randomly connect nodes with 〈k〉N/2 links,

where 〈k〉 is the average degree of the network. To construct SF networks, in which the

degree distribution follows a power law, we employ the Molloy-Reed algorithm.62

2.2 Iterative fast algorithm

The traditional algorithm to calculate the probability density function (pdf) P (σ) is to

compute σ between two nodes A and B by solving the Kirchhoff equations63 with fixed

potential VA = 1 and VB = 0 and compute P (σ)dσ, which gives the probability that two

nodes in the network have conductance between σ and σ+dσ. However, this method is time

consuming and limited to relatively small networks because it solves an (N − 2) × (N − 2)
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matrix (Refer to Appendix A) while we have very limited computer resources. Here we also

use an iteration algorithm proposed by Grimmett and Kesten64 to calculate P (σ) and show

that it gives the same results as the traditional Kirchhoff method.

In the limit N → ∞ we ignore the loops between 2 randomly chosen nodes because

the probability to have loops is very small. Hence the resistivity Ri of a randomly selected

branch i connecting a node with infinitely distant nodes satisfies Ri = ri + 1/(
∑k−1

j=1 R
−1
j ),

where ri = eaxi is the random resistance of the link outgoing from this node and k is

a random number taken from the distribution p̃k = pk · k/ 〈k〉, which is the probability

that a randomly selected link ends in a node of degree k, where pk is the original degree

distribution. In Fig. 2.1, we show the schematic iteration method. The randomly selected

nodes A and B are connected to the infinitely distant nodes C. When we calculate RAC ,

the resistance between A and C, we perform the iterative steps as follows:

R 2

R 1

r i

Ignored loop lines

Infinitely

Distant Nodes

C

Branch i

A B

Figure 2.1: Schematic Iteration model. In this example R1 is infinite, so it is not taken into
account in the sum in Ri of Eq. (2.2).

First we calculate the distribution of resistivities of the branches connecting node A with

C. We start with N branches having resistivities R
(0)
i = 0 (i = 1, 2, ...,N ), where N is an

arbitrary large number. Thus, initially the histogram of these resistivities P0(R) = δ(R).

At the iterative step n + 1, we compute a new histogram Pn+1(R) knowing the histogram

Pn(R). In order to do this we generate a new set of resistivities R
(n+1)
i by connecting in

parallel k−1 outgoing branches coming from a randomly selected node of degree k obtained
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from the distribution p̃k = pk · k/ 〈k〉. Then we compute the resistivity of a branch going

through this node via an incoming link with a random resistivity r
(n)
i taken from the link

resistivity distribution,

R
(n+1)
i = r

(n)
i +

1
∑k−1

j=1 1/R
(n)
j

. (2.2)

In Eq. (2.2), if at least one of the terms R
(n)
i = 0, we take R

(n+1)
i = r

(n)
i . Thus after the

first iterative step P1(R) coincides with the distribution of link resistivities.

According to the theorem proved in,64 as n → ∞, Pn(R) converges to a distribution of

the resistivities of a branch connecting a node to the infinitely distant nodes. The resistivity

between a randomly selected node of degree k and the infinitely distant nodes is defined by

R̃(i) =
1

∑k
j=1 1/Rj

, (2.3)

where k is selected from the original degree distribution pk andRj is selected from Pn→∞(R).

Finally, to compute the resistivity Rij between two randomly selected nodes i and j

(for example A and B in Fig. 2.1), we compute Rij = R̃(i) + R̃(j), where R̃(i) and R̃(j)

are randomly selected resistivities between a node and the infinitely distant nodes. If N

is a sufficiently large number, we find the conductance distribution P (σ) between any two

randomly selected nodes.

2.3 Results

In Figs. 2.2(a) and 2.2(b) we show the results of P (σ) using the traditional method of solving

Kirchhoff’s equations for different values of N and the iterative method with N → ∞ for

both ER and SF networks. We see that the main part of the distribution (low conductances)

does not depend on N , and only the high conductance tail depends on N .

The behavior of the two regimes, low conductance and high conductance, can be under-

stood qualitatively as follows: For strong disorder a≫ 1 all the current between two nodes

follows the optimal path between them. The problem of the optimal path in a random graph
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Figure 2.2: Plots of P (σ) for several values of N . The symbols are for the Kirchhoff method
and the solid line is for the iterative method with N → ∞. (a) ER networks with fixed
〈k〉 = 3 and a = 15. (b) SF networks with fixed λ = 3.5, kmin = 2, 〈k〉 ≈ 3.33 and a = 20.
The dashed line slopes are from the prediction of Eq.(2.11) or (2.13).

in the strong disorder limit can be mapped onto a percolation problem on a Cayley tree

with a degree distribution identical to the random graph and with a fraction p of its edges

conducting.65 However, the conductance on this path is determined by the bond with the

lowest conductance e−axmax , where xmax is the maximum random number along the path.

In the majority of cases xmax > pc, where pc is the critical percolation threshold of the net-

work, and only when the two nodes both belong to the incipient infinite percolation cluster

(IIPC),57 xmax < pc. Since the size of the IIPC scales as N2/3, the probability of randomly

selecting a node inside the IIPC is proportional to N2/3/N = N−1/3.22,57 Then the prob-

ability of randomly selecting a pair inside the IIPC is proportional to (N−1/3)2 = N−2/3.

These nodes contribute to the high conductance range σ > e−apc of P (σ). The low con-

ductance regime is determined by the distribution of xmax, that follows the behavior of the

order parameter P∞(p) (for p > pc) in the percolation problem which is independent of N .65

(This will be explained later in the theoretical approach for the low conductance regime.)

We call the low conductance regime a non-percolation regime and the high conductance

regime a percolation regime. In contrast, the property of existing two regimes does not show

up in the optimal path length66,67 and only the scaling regime with N appears. This is

since the path length for almost all pairs is dominated by the IIPC.67
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In Figs. 2.3(a) and 2.3(b) we plot for a given N only the non-percolation part of P (σ)

as a function of σ for fixed values of 〈k〉 /a and different 〈k〉 and a values for ER networks.

We see that it obeys a power law with the slope 〈k〉 /a− 1 for σ < e−apc . Note that for ER

networks pc = 1/ 〈k〉.22 In Fig. 2.3(c), we plot the conductance distribution for SF networks

for fixed values of 〈k〉 /a. We can see the non-percolation part seems to obey a power law

as do the ER networks.
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Figure 2.3: Plots of P (σ) for fixed 〈k〉 /a. The symbols are for the Kirchhoff method and
the solid line is for the iterative method. For the same 〈k〉 /a, the iterative method for
different a shows the same P (σ) except that the lower cutoff is different. (a) ER network
with 〈k〉 /a = 0.2. (b) ER network with 〈k〉 /a = 1.5. (c) SF network with 〈k〉 /a ≈ 0.35,
λ = 2.5. The dashed line slopes are from the prediction of Eq.(2.11) or (2.13).
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2.4 Analytical approach for P (σ)

Next we present an analytical approach for the form of P (σ) for low conductance regime.

The distribution of the maximal random number xmax along the optimal path can be ex-

pressed in terms of the order parameter P∞(p) in the percolation problem on the Cayley

tree, where P∞(p) is the probability that a randomly chosen node on the Cayley tree belongs

to the IIPC.65 For a random graph with degree distribution pk, the probability to arrive at

a node with k outgoing branches by following a randomly chosen link is (k + 1)pk/ 〈k〉.68

The probability that starting at a randomly chosen link on a Cayley tree one can reach the

ℓth generation is

fℓ(p) ≡ fℓ = 1 −
∞
∑

k=1

pkk (1 − pfℓ−1)k−1

〈k〉 , (2.4)

where f0 = 1. Slightly different from fℓ is the probability that starting at a randomly

chosen node one can reach the nth generation,

f̃n = 1 −
∞
∑

k=0

pk(1 − pfn−1)k. (2.5)

In the asymptotic limit fℓ converges to P∞ for a given value of p,

fℓ → P∞(p) = 1 −
∞
∑

k=1

pkk (1 − pP∞)k−1

〈k〉 . (2.6)

In this limit we have a pair of nodes on a random graph separated by a very long path of

length n. The probability that two nodes will be connected (conducting) at given p, can be

approximated by the probability that both of them belong to the IIPC:64

Π(p) =

[

P̃∞(p)

P̃∞(1)

]2

, (2.7)

where P̃∞(p) ≡ limn→∞ f̃n = 1 − ∑∞
k=0 pk(1 − pP∞)k. Note that the negative derivative

of Π(p) with respect to p is the distribution of xmax and thus gives P (σ) in the SD limit.

In our case σ = e−ap, so replacing p by p = − lnσ/a in Eq. (2.7) and differentiating with
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respect to σ, we obtain the distribution of conductance in the SD limit when the source

and sink are far apart (n→ ∞),

P (σ) = − d

dσ
Π(σ) =

2P̃∞(p)

σa[P̃∞(1)]2
· ∂P̃∞(p)

∂p
|p=− ln σ/a . (2.8)

For ER networks the degree distribution is a Poisson distribution with pk = 〈k〉ke−〈k〉/k!22

and thus P∞(p) satisfies

P∞(p) = 1 − e−〈k〉pP∞(p), (2.9)

which has a positive root P∞ for p > pc = 1/ 〈k〉. And P̃∞(p) = P∞(p), thus

P (σ) =
2P∞(p)

σa[P∞(1)]2
· ∂P∞(p)

∂p
|p=− lnσ/a, (2.10)

where P∞(p) and P∞(1) are the solutions of Eq. (2.9).

We test the analytical result Eq. (2.10) by comparing the numerical solution of Eqs. (2.9)

and (2.10) with the simulations on actual random graphs by solving Kirchhoff equations

(Figs. 2.2 and 2.3). The agreement between the simulations and the theoretical prediction

is perfect in the SD limit, i.e. when 〈k〉 /a is small.

10
-4

10
-3

10
-2

10
-1

10
0

σ

10
-2

10
0

10
2

10
4

P
p(σ

)

N=256
N=1024
N=4096

a/N
1/3

=1.5

e
-9.45p

ce
-15p

ce
-23.8p

c

(a)

10
0

10
1

10
2

σ/〈σ〉

10
-2

10
0

〈σ
〉P

p(σ
)

a/N
1/3

=0.5
a/N

1/3
=1.5

a/N
1/3

=2.5

(b)

Figure 2.4: Kirchhoff method results of the percolation part of ER networks with the same
value of pc = 1/ 〈k〉 = 0.33. (a) Normalized Pp(σ) for fixed a/N1/3 = 1.5. (b) Scaled plot
of 〈σ〉P (σ) as function of σ/ 〈σ〉 for three values of a/N1/3. For each value of a/N1/3, the
thick line is for N = 256 and the thin line is for N = 1024.
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Next we simplify P (σ) from Eq. (2.10). Assuming that P∞(1) ≈ 1 which is true for

large 〈k〉 and approximating a slow varying function P∞(p) by P∞(1) we obtain

P (σ) ≈ 2
〈k〉
a
σ〈k〉/a−1, (2.11)

for the range e−a ≤ σ ≪ e−apc with pc = 1/ 〈k〉. In Figs. 2.2 and 2.3 we also show the

results predicted by Eq. (2.11). For an infinite network, for p ≤ pc = 1/ 〈k〉, P∞(p) = 0,

and hence, the distribution of conductances must have a cutoff at σ = e−apc . Indeed, in

Fig. 2.2(a) and Figs. 2.3(a) and 2.3(b) we see that the upper cutoff of the iterative curves

for ER networks is close to e−apc .

As discussed above, the range of high conductivities corresponds to the case where both

the source and the sink are on the IIPC. Previously we found this percolation part to scale

as N−2/3. Using Fig. 2.2(a), we compute the integral for each P (σ) from e−apc to ∞, and

find that indeed
∫ ∞
e−apc P (σ)dσ ∼ N−2/3, in good agreement with the theoretical approach.

To show how the percolation part of P (σ) is related to the parameters N , a and pc, we

analyze the conductance between pairs on the IIPC, i.e., each link on the optimal path

from source to sink has x less than pc. We compute Pp(σ) of these pairs on the IIPC.

When we simulate this process, we have only N−2/3 probability to find this part from the

original normalized distribution P (σ). Thus, we normalize Pp(σ) by dividing by N−2/3.

Figures 2.4(a) and 2.4(b) show the normalized Pp(σ) of pairs on the IIPC. In this range,

we see that Pp(σ) is dominated by high conductivities and we find 〈σ〉 ≈ e−apc and

〈σ〉Pp(σ) = f

(

σ

〈σ〉 ,
apc

N1/3

)

, (2.12)

that is, for fixed apc/N
1/3, 〈σ〉Pp(σ) scales with σ/ 〈σ〉 as seen in Fig. 2.4(b). The scaled

distributions have the same shape for the same apc/N
1/3 which specifies the strength of

disorder similarly to the behavior of the optimal path lengths.59,66, 67, 69 The explanation

of this fact for the distribution of conductances is analogous to the arguments presented

in Refs.65,66 for the distribution of the optimal path. Thus the position of the maximum



of the scaled curves in Fig. 2.4(b), and the whole shape of the distributions, depend on

apc/N
1/3.

We also find that the extreme high conductivities correspond to the case where source

and sinks are separated by only one link. In this case, P (σ) = 〈k〉
aNσ ∼ σ−1, (σ < 1).

2.5 Conclusions

In summary, we find that P (σ) exhibits two regimes. For σ < e−apc , we show both analyt-

ically and numerically that for ER networks P (σ) follows a power law,

P (σ) ∼ σ〈k〉/a−1. (2.13)

We also find that for SF networks, Eq. (2.13) seems to be a good approximation, consistent

with numerical simulations. The distributions of optimal path length and the path length

of the electrical currents in complex weighted networks66,67 have been found to depend on

N for all length scales and all types of networks studied. In contrast, here we find that

the low conductance tail of P (σ) does not depend on N for both ER and SF networks.

However, the high conductance regime (σ > e−apc) of P (σ) does depend on N , in a similar

way to the optimal path length and current path length distributions.66,67



Chapter 3

Towards Design Principles for Optimal Transport

Networks

3.1 Overview

Complex web-like structures have been the subject of intensive research in several fields,

including those focusing on social relationships, biological resources, and transportation

systems.6,9, 10, 12, 19, 20, 70 The topological features of these systems, which go beyond the

standard regular lattice geometry, have been described in terms of complex network struc-

tures. In this way, the theory of random graphs as well as concepts like “small-worldliness

and “scale-freeness” have been consistently used to characterize and classify the diverse

complex networks found in nature,1,2, 22, 25, 32 providing interesting insights about their un-

derlying structure and functionality. Generally speaking, the geometrical features of com-

plex networks are not necessarily associated or restricted to a given topological dimension

in space. However, a large number of real transport networks can be geographically rep-

resented or spatially embedded,71–75 such as the US airport network,43 networks of streets

and highways,76 physical systems,77 mobile agents78 and also the network of activity in the

brain.79,80

In science, nature and technology, the transport of information, energy, or even people,

can be optimized by adding long-range connections (shortcuts) to an underlying geograph-
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ical network. In recent studies,27,81 it has been shown that the optimal design of transport

networks can be associated with the presence of special “critical” correlations between the

local structure and the long-range connections, added in such a way as to generate gradi-

ents that permit the information to flow efficiently from source to target in the network.

In several real systems, however, transport is usually constrained by some involved cost.

In a subsequent study,82 it has been shown that, without loss of generality, transport with

local and global knowledge on a square lattice with cost limitation on the additional links

can be optimized through the inclusion of long-range connections between pairs of nodes

following a probability distribution that decays as a power law of their Manhattan distance,

namely the the distance counted as the number of connections separating nodes in the reg-

ular lattice. Efficient transport is then obtained when the exponent α of the power law

distribution is tuned to 3 for a two-dimensional lattice, in sharp contrast with the previous

results for unconstrained local27,81 and global83 navigation, where the optimal value is α = 2

and 0, respectively. Considering the results for a one-dimensional and a two-dimensional

lattices, it is then conjectured that optimal transport is achieved when α = αe = d + 1

for a d-dimensional lattice. Subsequently, power law distributions of long-range connec-

tions on geographical networks have also been used to study navigation and other types of

processes.48,76, 84–88

In this work, we propose a new real-time algorithm for efficient study of the global nav-

igation. Using this algorithm, simulation results could be obtained for large system sizes,

up to the order of 109 nodes. This is carried out by memorizing only the neighbors of a

particular node at each time step of the algorithm. Initially, optimal exponents have been

obtained using this algorithm, reproducing previous numerical estimates of both uncon-

strained and constrained global navigation for one and two dimensions.27,81–84 In addition,

we present here results of simulations for three-dimension global navigation and constrained

global navigation processes on a fractal lattice of dimension df , reinforcing the conjectured

optimal navigation exponent, αe = d+ 1.
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3.2 Navigation without cost

r
i j

ij

Figure 3.1: Two-dimensional square lattice with long-range connections. Each node has
4 short-range connections to its nearest neighbors. A long-range connection is added to a
randomly chosen node i with probability proportional to r−α. Here r = 2, there are 8 nodes
(on dashed square box) with the same lattice distance r to node i, and we randomly choose
the node j from these 8 nodes to be connected to node i.

Using local information and a decentralized algorithm, the problem of efficient navigation

in small-world networks was recently studied by Kleinberg.27 Figure 3.1 shows a regular

two-dimensional square lattice with N = L × L nodes, where L is the linear size of the

lattice. Accordingly, each node i has a random long-range connection to a node j with

probability P (rij) ∼ r−α
ij , where rij is the lattice (Manhattan) distance between node i and

j. This model follows the small-world paradigm, i.e., it is rich in short-range connections

and but has only few long-range connections. The optimal navigation by a decentralized

algorithm based on the local information occurs when the exponent α = 2.27

The probability P (rij) that nodes i and j will have a long-range connection can be

mapped on a density distribution p(r), where r = rij. The number of nodes separated by a

lattice distance r from a given node in a d-dimensional lattice is proportional to rd−1 (see
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Fig. 3.1). Thus we have

p(r) ∼ r−αrd−1. (3.1)

The normalization factor of Eq. (3.1) scales as

∫ L

1
r−αrd−1dr ∼























Ld−α, α < d

lnL, α = d

(α− d)−1, α > d

(3.2)

where L = N1/d.

In order to improve the transport property of a lattice network, it is not necessary to

assign every node a long-range connection – which would be a high-cost strategy. Instead,

we assign a long-range connection to a small fraction of randomly selected nodes. This leads

to a dramatic improvement in the transport properties of the network, but at a much lower

cost. This model can be generated using the following steps:

(i) A regular d-dimensional lattice with N nodes is created with each node connected to

its 2d nearest neighbors.

(ii) A node i is randomly selected from the total N nodes to receive a long-range connec-

tion. The length of the long-range connection r is randomly generated using Eqs. (3.1)

and (3.2).

(iii) Another node j is also randomly selected from those nodes with the same lattice

distance r to node i. We then connect node i and node j. For example, Fig. 3.1 shows

eight nodes (on the dashed square box) that have the same lattice distance to node i

(r = 2). We randomly take node j from these eight nodes and connect it to node i.

(iv) Repeat steps (ii) and (iii) until the total number of long-range connections Nl reaches

a preset value, e.g., 10% of the total number of nodes N .
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3.3 The Real-Time Algorithm for global navigation

In many real-world optimal navigation problems, one has access to global information when

designing the optimal transport network. With global information, between any two ran-

domly selected nodes a and b, we can compute the shortest path length ℓab. In the next

section we will show that ℓ follows approximately a Gaussian distribution. The average

shortest path length 〈ℓ〉 is thus the most important parameter when evaluating the trans-

port efficiency of the entire network. The usual method of calculating 〈ℓ〉 is first to build

the model with long-range connections, and then measure the shortest path length ℓ for

every pair of nodes. This method is fast and effective for small systems, however, given

the present-day computer resources, it is not practical nor efficient to pre-build such a big

system and then add long-range connections.

Hence, we introduce a real-time algorithm to calculate 〈ℓ〉 for large systems, which gives

us the same results as the common method previously described, but much faster. To

evaluate 〈ℓ〉 for a network, the usual procedure is to calculate the shortest path length for

every pair of nodes. If we have many realizations of a network, however, we can randomly

pick one pair of nodes in one realization and calculate ℓ of this pair. Then, in another

realization, we randomly pick another pair of nodes and calculate ℓ again. After a large

number of realizations, we are then able to determine 〈ℓ〉. Since for every realization the

network is created by using the same parameters, 〈ℓ〉 from many different realizations reflects

the result from different pairs of nodes in a single network.

For a single realization of the real-time algorithm, it is not necessary to create the entire

network. Starting from a randomly-selected node a, we generate its neighbors in real time

(time step). For example, in a square lattice, node a always has 4 nearest neighbors (or

2d nearest neighbors on a d-dimensional lattice), if node a is on the boundary, we generate

its neighbors using a periodic boundary condition. After that, we consider the additional

long-range connections of node a, the one that it receives according to step (ii), and the

others that eventually start from another node, according to step (iii). As long as we have
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all the available neighbors of node a (including connections to both the nearest- and long-

range neighbors), we record and classify them as shell one nodes, meaning that they are

one link apart from node a. After that, we generate all the neighbors of the shell one nodes

not generated yet and classify them as shell two nodes. We repeat this process until we

reach the destination node b, which is also randomly selected. We count the number of

steps from node a to b during this process. In this way, we find ℓab between node a and b.

We repeat many realizations to find the average 〈ℓ〉, until we generate a smooth curve 〈ℓ〉

vs α for different values of α.

A crucial step of this algorithm is when we consider the additional long-range connections

of node a. When we add long-range connections to the network we always randomly select

two nodes with the lattice distance r, thus the number of additional long-range connections

kl for each node obeys a Poisson distribution,

f(kl) =
λkle−λ

kl!
, (3.3)

where λ is the average number of long-range connections for each node, and is calculated

as

λ = 〈kl〉 =
2Nl

N
, (3.4)

where Nl is the total number of long-range connections, which can be a preset value.

Using the Poisson distribution (3.3), we generate the number of long-range connections kl

for node a. It must be noted that kl can be greater than one, this means we do not limit the

number of long-range connections for each node. This is a little different from the original

model of Kleinberg. From Eqs.(3.1) and (3.2), we assign r to each long-range connection of

node a. Finally, as described in step (iii), we choose all the long-range neighbors for node

a.

In this real-time algorithm, we do not build the entire network, but only generate the

neighbors needed for each step. This algorithm saves computer resources and produces

exactly the same results as those from the more usual method of building the entire network.
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This real-time algorithm makes the simulation of very large systems possible (e.g., 109

nodes).

3.4 Navigation with cost constraint

0 1 2 3 4
α

20

30

40

50

〈〉

d=1
d=2
d=3

ℓ

Figure 3.2: A fraction of 10% of nodes in a regular d-dimensional (d = 1, 2 and 3) lattice
with linear size L = 1000 are randomly selected to receive long-range connections with
different α. As seen, the optimal 〈ℓ〉 is achieved for α = 0. The results are averaged
over 4,000 realizations for each network. Note, when α increases above the value of d, 〈ℓ〉
increases dramatically. For the dependence of 〈ℓ〉 on L for different α, see Refs.51,87

We note that when 〈ℓ〉 is based on the global information of the network it does not

demonstrate the uniqueness of the navigation based on local information described by Klein-

berg. In this case, the optimal 〈ℓ〉 is achieved at αe = 051 which can be understood from

a simple analysis. When α = 0, the length of the long-range connections does not depend

on the distance, and thus the process of adding long-range connections is simply the same

as the procedure used to create a Watts- Strogatz (WS) network1 or even an Erdős-Rényi

(ER) network.22 In this situation, the average shortest path length scales as a logarithm

function of the network size, 〈ℓ〉 ∼ lnN .

Figure 3.2 shows 〈ℓ〉 for three different lattices (d = 1, 2, and 3) with the same linear size
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L = 1000, in which a fixed fraction (10%) of nodes receive long-range connections. We find

that the optimal 〈ℓ〉 indeed emerges at αe = 0. Moreover, when α < d (for d = 1, 2, and 3),

〈ℓ〉 appears almost the same as the results for α = 0, which means in this regime 〈ℓ〉 ∼ lnN ,

and that the transport property behaves as small-world networks, see also Ref.51,87

In real-world situations, however, the financial cost of adding links always plays an

important role when improving the transport in an existing network. Consider the case

of an existing transport network which needs improvements.89 The financial cost to build

up a large number of new direct connections between distant stops (i.e., non-neighboring

sites) can make it prohibitive, since only limited resources are normally available for this

task. These types of problems can be modeled in the following way, which is similar to the

formulation presented in Ref.27 In a two-dimensional regular square lattice, with all N = L2

sites present, each site i is connected with its four nearest neighbors. The sites represent

the stops and the bonds represent the routes of the transport system (see Fig. 3.1). The

distinctness from Kleinberg navigation is that the addition of long-range connections to

the system stops when their total length (cost),
∑

rij , reaches a given value Λ. We further

assume that the total cost Λ will be proportional to the size N of the network, i.e., Λ = AN ,

where A is a constant.82 This assumption is justified since bigger systems should obtain

proportionally larger budgets for improvement. Moreover, the total length of the links in

the original lattice is proportional to N (number of nodes).

Since α controls the average length of the long-range connections, we obtain that, for

a fixed value of Λ, and small values of α, longer connections, but fewer in number can be

added due to the imposed total length limit. We therefore expect that an optimal navigation

condition must be revealed as a trade-off between the length and the number of long-range

connections Nl added to the system. Here we show that a rather different behavior can be

observed when realistic constraints on total length are imposed on the process of adding

long-range connections, regardless if navigation is based on local or global knowledge of the

network structure.

When the total cost is fixed at Λ = AN = ALd,82 the available number of long-range
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connections will be

Nl = Λ/ 〈r〉 , (3.5)

where 〈r〉 is the average length of long-range connections, which can be calculated from

(3.1) for a given α as,

〈r〉 ∼
∫ L

1
rd−αdr ∼















































L, α < d

L/ lnL, α = d

Ld+1−α, d < α < d+ 1

lnL, α = d+ 1

1, α > d+ 1.

(3.6)

Note that in Eq. (3.6), 〈r〉 decreases and Nl increases, when α increases. When α is small

(α 6 d), 〈r〉 ∼ L and Nl = Λ/ 〈r〉 ∼ Ld−1, only a small fraction (in fact zero fraction in

the limit L → ∞) of nodes are needed to have long-range connections in order to improve

the transport of the network. When α > d + 1, however, a large number of long-range

connections are available (Nl ∼ Ld) to improve the transport of the network, but each long-

range connection is short, thus, these long-range connections do not efficiently improve

transport. Thus, the intermediate regime of α can be expected to be useful and optimize

the transport on the network, i.e., d < α 6 d+ 1.

Figure 3.3 shows the distribution P (ℓ) of shortest path length ℓ for different α on a two-

dimensional lattice with additional long-range connections of total length N = L2. Note

that P (ℓ) follows an approximate Gaussian distribution for different α. Consequently, since

〈ℓ〉 has its minimum value when α = d+ 1 = 3, the optimal navigation is achieved at that

α value. Figure 3.4 shows the normalized distribution P (ℓ) for different α. The different

curves in Fig. 3.3 approximately collapse to a single curve when scaled appropriately.

We extract more quantitative information about this navigation problem by performing

extensive simulations for different values of α and different system sizes N . We assume

that the total length (cost) is proportional to the total length of the links in the underlying
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Figure 3.3: Distribution of the shortest path length ℓ for two-dimensional lattice (L = 1000)
with additional long-range connections where the total length Λ of the added long-range
connections is limited to N = L2. Note, the non-monotonic behavior with respect to α.
For α = d+ 1 = 3 the location of the peak of the distribution is the smallest. We sampled
100,000 network realizations for each α.

network, i.e., Λ = ALd, where A is a constant. That is, the budget to improve the system

is a fraction of the cost of the current network (without long-range connections).90 We first

focus on identifying the optimal transport conditions on regular lattices, i.e., d = 1, d = 2

and d = 3. In each case, we simply add long-range connections to the regular lattice. The

procedure is almost the same as in the Kleinberg navigation model, except that in step (iv)

we stop adding the long-range connections when the total length of long-range connections

∑

rij reaches a preset value Λ = AN , instead of a fixed number of long-range connections.

After that, we calculate the average shortest path 〈ℓ〉 over all realizations of pairs of nodes.

From the results in Figs. 3.5 (a), (b) and (c), we see the presence of a minimum 〈ℓ〉 for

different system sizes at the same value of the exponent α = d + 1, when N → ∞. Thus,

based on the global knowledge of the network structure, the most efficient navigation occurs

at αe = d+ 1.

To further test the optimal navigation condition, αe = d+1, we plot 〈ℓ〉 vs L for different

α. Figures 3.6 (a), (b) and (c) clearly show that for α 6= d+ 1 the shortest path length 〈ℓ〉
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Figure 3.4: Normalized distribution of the shortest path length ℓ for two-dimensional lattice
(L = 1000) with additional long-range connections where the total length Λ of the added
long-range connections is limited to N = L2. In the figure, 〈ℓ〉 is the mean ℓ and σ is the
standard deviation for each curve. We sampled 100,000 network realizations for each α.

follows a power law with L. For α = d+ 1, 〈ℓ〉 follows power law with a smaller exponent

when d = 1 (Fig. 3.6 (a)), and it appears to be less than a power law for d > 1 (Figs. 3.6

(b) and (c)).

Figures 3.5 (d) and 3.6 (d) show the analogous optimal navigation results when the

substrate is a fractal. Specifically, the fractal is generated from an original two-dimensional

regular lattice. We randomly remove the nodes with a probability 1 − p = q. We increase

q from 0 until a critical percolation occurs.21,57 In this critical condition, q = qc ∼= 0.4 a

giant cluster extends from top to bottom and from left to right across the lattice, which is a

fractal. The dimension of this giant cluster is df
∼= 1.9. In Ref.81 it is shown that, for local

navigation and without constraints on total length, the optimal transport is for α = df . In

order to improve the transport with global knowledge on this fractal, we append additional

long-range connections to the cluster using the same procedure as in a two-dimensional

regular lattice. The difference here is that the total length of long-range connections is

fixed to be ANf , where Nf is the number of nodes in the giant component of the fractal,
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Figure 3.5: Average shortest path length 〈ℓ〉 as a function of α for (a) one-, (b) two-,
(c) three-dimensional lattices and (d) fractal (d = df

∼= 1.9) with additional long-range
connections taken from the power law distribution, Eq.(3.1) as a function of α. The total
length Λ of the added long-range connections is limited to 10N for one-dimensional lattice,
N for two- and three-dimensional lattices and Nf for the fractal. The plots suggest that
the optimal shortest path length is achieved at α = d+ 1 for regular lattices and α = df + 1
for the fractal. Note that (b) is similar to Fig. 3 in Ref.82 but with larger system sizes.
The results are averaged over 4000 realizations for the three smaller L and 400 realizations
for the largest L.

which can be calculated as Nf = Ldf . From Figs. 3.5 (d) and 3.6 (d), we see that optimal

navigation occurs at df + 1 ∼= 2.9 when N → ∞. We also tested another fractal lattice,

i.e., the Sierpinski carpet91 with df = 1.89 and find that the optimal navigation is achieved

at df + 1 ∼= 2.89 when N → ∞. Note that the real-time algorithm can not be used on

these critical percolation lattices because the shortest path length is calculated on the giant

cluster which must be pre-built up.

Figure 3.6 (a) suggests that in a one-dimensional lattice 〈ℓ〉 always follows a power law
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Figure 3.6: Average shortest path length 〈ℓ〉 as a function of system linear size L with
different α for (a) one-, (b) two-, (c) three-dimensional and (d) fractal (df

∼= 1.9) lattices
with additional long-range connections taken from the power law distribution, Eq.(3.1). The
total length Λ of the added long-range connections is limited to 10N for one-dimensional
lattice, N for two- and three-dimensional lattices and Nf for the fractal. The plots suggest
that the optimal shortest path length is achieved at α = d + 1 for regular lattices and
α = df +1 for the fractal. For d = 1, the slope of the fitting line δs ∼= 0.54 for α = d+1 = 2,
δs ≈ 0.84 for α = 1.5 and 2.5, and δs ≈ 1 for α = 0, 1 and 3. For d = 2, δs ≈ 0.60
for α = 0 and 1, δ ∼= 0.71 for α = 4, however for α = d + 1 = 3, 〈ℓ〉 seems to follow a
weaker dependence from a power law, more likely a logarithmic law (see Fig. 3.7 (b)). For
d = 3, δs ≈ 0.46 for α = 0, 1 and 2, δs ∼= 0.40 for α = 3, δs ∼= 0.45 for α = 5, however for
α = d + 1 = 4, 〈ℓ〉 seems to follow a logarithmic law. For d = 1.9, δs ≈ 0.75 for α = 0
and 1, δ ∼= 0.89 for α = 4, however for α = df + 1 = 2.9, 〈ℓ〉 seems to follow a logarithmic
law. The results are averaged over 4000 realizations for each α for d = 1, 2 and 3 and 1000
realizations for d = 1.9.

dependence as a function of system sizes. For d > 1, as seen in Figs. 3.6 (b), (c) and (d),

however, 〈ℓ〉 scales as a power law with the system linear size L for all values of α except for

α = d+ 1 for which the scaling seems to be less than a power law. For d > 1, we test two
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possible forms for 〈ℓ〉 vs L, (i) a power law and (ii) a logarithmic law. Figure 3.7 (a) shows

the successive slopes δs obtained from ln 〈ℓ〉 vs lnL for d = 2, testing whether 〈ℓ〉 follows

a power law or not. Here we assume 〈ℓ〉 ∼ Lδs and see that δs remains approximately

constant when α 6= d+ 1, but decreases when α = d+ 1 = 3. This suggests that 〈ℓ〉 follows

a power law only when α 6= d+ 1. Similar results have been obtained for d = 3 and d = df

in Fig. 3.8 (a) and (b) respectively. We next assume that 〈ℓ〉 vs L follows a logarithmic law

with exponent γs, i.e., 〈ℓ〉 ∼ lnγs L. In Fig. 3.7 (b) we plot the data assuming this function

in a double logarithmic plot. As can be seen, apart from the case α = 3, which fits quite

well as a straight line, for the other values of α, 〈ℓ〉 increases faster. Indeed, we plot in Fig.

3.7 (c) the successive slopes γs obtained from the plot of ln 〈ℓ〉 vs ln lnL for d = 2 (Fig. 3.7

(b)). We see that γs keeps almost a constant value when α = d + 1 = 3 but it increases

when α 6= d+ 1. This suggests that 〈ℓ〉 follows a power of a logarithmic dependence when

α = d + 1. Similar results have been obtained for d = 3 and df = 1.9 in Fig. 3.8 (c) and

(d) respectively.

3.5 Analytic Arguments

Besides the support from simulation results, we present analytic arguments suggesting that

for N → ∞ the optimal navigation is achieved for α = d + 1. Figure 3.6 (a) shows the

one-dimensional case in which the scaling of 〈ℓ〉 with L is a power law for different α, and

that the power law is smallest when α = 2. Li et al.88 provides an exact solution for the

optimal navigation with a total cost restriction for the one-dimensional case. They conclude

that, for d = 1, the optimal navigation occurs at α = 2 when N → ∞.

Next, we suggest a simple analysis showing that, for d > 1, α = d+ 1 is indeed the only

case for which a logarithmic scaling of 〈ℓ〉 with L can occur while for α 6= d+ 1 a power law

with L must hold. For a fixed total cost Λ = ALd, the density of long-range connections

is defined as ρ = Nl/N , where Nl is the available number of long-range connections in the

lattice. From Eq. (3.5) and Λ = AN , we find that ρ = A 〈r〉−1. From Eq. (3.6), it follows
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Figure 3.7: Successive slopes for d = 2 of (a) δs obtained from ln 〈ℓ〉 vs lnL (of Fig. 3.6
(b)), (b) 〈ℓ〉 as a function of lnL in a double logarithmic plot and successive slopes of (c) γs

obtained from ln 〈ℓ〉 vs ln lnL taken from (b). The total length Λ of the added long-range
connections is limited to N = L2. Note that in (a) for α = d+ 1 = 3, δs decreases with L
while for other values of α, δs is roughly constant. In (c) for α = d+1 = 3, γs keeps roughly
constant and for other values of α, γs increases with L. This suggests that for α = 3 the
relation between 〈ℓ〉 and L is a function that increases less than a power law and more likely
that 〈ℓ〉 increases logarithmically with L.

that for d ≤ α < d+ 1, ρ ∼ Lα−d−1 and, for α < d, 〈r〉 ∼ L, leading to ρ ∼ L−1. So when

α < d + 1, the density ρ of long-range connections decreases as a power law with L. As a

consequence of this power law decrease in density, 〈ℓ〉 must increase as a power of L. To

verify this, we bound 〈ℓ〉 by the relation 〈ℓ〉 > ρ−1/d. Here ρ−1/d is from the small world

model in which α = 0, with a fixed concentration of links 〈ℓ〉 ∼ ρ−1/d lnL.92 Since, for

0 < α < d+ 1, 〈ℓ〉 decreases with increasing α, the bound 〈ℓ〉 > L(d+1−α)/d is rigorous and

〈ℓ〉 in this range must scale as a power of L. For α > d + 1 and N → ∞, from Eq. (3.6)

〈r〉 ∼ 1 and the density becomes independent of the system size, i.e., ρ ∼ 1. When this
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Figure 3.8: Successive slopes of δs obtained from ln 〈ℓ〉 vs lnL for (a) three-dimensional
lattice d = 3 and (b) fractal d = 1.9, and successive slopes of γs obtained from ln 〈ℓ〉 vs
ln lnL for (c) three-dimensional lattice d = 3 and (d) fractal d = 1.9. The total length Λ of
the added long-range connections is limited to N for (a) and (c), and Nf for (b) and (d).

is the case, the effect of the constraint Λ on navigation is negligible. Thus the navigation

on the networks is similar to the original lattice without additional long-range connections,

therefore 〈ℓ〉 ∼ L. Thus we conclude that, as Figs. 3.6 (b), (c) and (d) show, when α = d+1,

the increase with L of 〈ℓ〉 is less rapid than a power law and may scale logarithmically with

L.

It is important to note that our global navigation scheme with 〈ℓ〉 can be considered as

a lower bound to any other transport navigation process. For example, a strategy based

on purely local knowledge of the network structure will necessarily perform worse than any

other with global information. In Ref.,27 for example, the greedy (decentralized) algorithm

is introduced as a paradigm based on local information, where the traveler, when leaving a
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node, chooses to move to the one among its neighbors which has the smallest Manhattan

distance to the target. Kleinberg found that α = 2 is the optimal value in the navigation

with the greedy algorithm27 for two-dimensional lattice. We next ask, what would be the

optimal α for the greedy algorithm when cost restriction Λ = AL2 is imposed? We find also

for the greedy algorithm that the optimal value is α = 3. This is shown in Fig. 3.9, where

we plot the average delivery length 〈ℓg〉 that a message travels with only local information

of the system geometry. The message is sent from the source node s to the target node

t through a network generated with the constraint Λ = AL2. Remarkably, the presence

of a minimum also at α ≈ 3 shows that the type of information (local or global) used by

the message holder to pass it through the system during the navigation process becomes

unimportant if the network is constructed under length (cost) limitations. However, the two

mechanisms display very different and distinct behaviors regarding the scaling with system

size. While we observe logarithmic growth for the optimal condition α = 3, in the case of



global information, the time to reach the source, with the greedy algorithm and with cost

constraint, appears to increase linearly with size for all values of α. The linearity of 〈ℓg〉

with L is observed in the scaling collapse (Fig. 3.9) of the curves of 〈ℓg〉 /L vs α.

3.6 Conclusions

In summary, our results suggest that, regardless of the strategy used by the traveler, based

on local or global knowledge of the network structure, the best transportation condition is

obtained with an exponent α = d+1, where d is the topological dimension of the underlying

lattice. Our results hold for d = 1, 2 and 3 for regular d-dimensional lattices and df for

fractal. The results recently reported by Bianconi et al. 43 on the U.S. airport network

yield an exponent α = 3, which is similar to our optimal exponent for d = 2. The fact that

the probability of a flight connection within U.S. decays as a power law with the distance

between airports, r−α, where α = 3.0 ± 0.2, seems to reveal the optimized aspect of the

network under the conditions of geographical availability (for customer satisfaction) and

cost limitations (for airline company profit). Furthermore, recent studies by Gallos et al.

measured empirically α in the brain and found α = df + 1 ≈ 3.1 which may suggest that

the brain is optimizing connections with a cost constraint.79,80

The result α = d + 1 is in sharp contrast with the results obtained for unconstrained

systems with global and local information, where the optimal conditions are α = 083 and

α = d ,27,81 respectively. The contrast between the optimal results is even more dramatic.

While in the unconstrained case the mean length of a link diverges, we find that when cost

is considered the mean length is finite. In the case where the traveler has global knowledge

of the network, and is able to identify the shortest path for navigation, we obtain a slow

(logarithmic) growth with size for the transit time at the optimal condition. A different

picture is obtained if the traveler has only local knowledge of the network. For example, in

the case where the transportation path is decided based on the Manhattan distance to the

target, we obtain a linear growth of the transit time with system size, for all values of the
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exponent α. Finally, our results suggest that the idea of introducing a cost constraint in

the navigation problem offers a different theoretical framework to understand the evolving

topologies of other important complex network structures in nature, such as subways, trains,

or the Internet. Of course, at this point we must emphasize that our approach represents

only one specific model within a larger family of models where design principles can be

tested to improve the performance of the transport system. In the case of airport networks,

for example, other variables than the particular cost function that we adopted can be used

for realistic optimization purposes.



Chapter 4

Percolation of Spatially Constrained Networks

4.1 Overview

In Kleinberg’s model, we assign additional long-range connections to a regular d-dimensional

lattice. Our objective is clear, i.e. to improve the transport of the network. However we

have not considered the underlying structure of the new formed small-world like network.

We know that the original d-dimensional lattice has a definite dimension. Obviously after

we introduce additional long-range connections, the dimension has been changed to an non-

integer dimension. And with adjustable number and length of long-range connections, we

are able to create any non-integer dimension networks.

Moreover, we want to understand the robustness of this new type of spatially constrained

network if it is under random attacks, which are like the percolation process. In complex

networks, percolation is another extremely important distinguishing feature besides trans-

port. In order to obtain percolation process based on Kleinberg’s model, we now consider

originally empty lattices embedded in d dimensions by adding long-range connections with

the same power law probability p(r) ∼ r−α, where α ≥ 0 is a variable which controls the

strength of spatial constant, and r is the Euclidean distance between the nodes, which is

a little different from the lattice distance rij in Chapter 3 because in a spatial embed-

ded network Euclidean distance is well defined.51 We choose a power law for the distance

distribution because it is supported recently from the findings in real networks, such as In-
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ternet,12,42 airline networks,38,43 human travel networks15,44 and other social networks.46–48

This model is simplified so that all the links are long-range connections.

In the beginning we add enough number of long-range connections until the average

degree of the network reaches 〈k〉 ∼ 4. In this condition, almost all the nodes are connected.

Then we randomly remove qN = (1−p)N nodes, leaving pN nodes remained. The remaining

nodes are still connected as a giant (spanning) cluster until q exceeds a critical point qc. The

proportion of the remaining nodes pc = 1 − qc at this critical point is called the threshold

of percolation. At the threshold, we have

M ∼ Nβ, (4.1)

where M is the number of nodes in the giant cluster and β is a constant independent of

the system size N . As mentioned in Chapter 1, for the special case, the percolation of ER

networks at the threshold, β = 2/3. And below the threshold, the giant cluster breaks into

small clusters, and it does not exist in the network. This percolation process of removing

nodes is called site percolation.

In this chapter, we study the percolation properties of spatially constrained networks

embedded in one- or two-dimensional space and find how spatial constraints affect the

percolation properties of the networks, i.e. how the parameter α influences the giant cluster

size M , the threshold pc or qc, cluster size distribution n(S) and even the chemical dimension

dℓ.
93,94 We find that, for α ≤ d, the percolation transition belongs to the universality

class of percolation in ER networks as mean field, while for α > 2d it belongs to the

universality class of percolation in regular lattices (only for two-dimensional lattice, for one-

dimensional lattice, there is no percolation transition found because network is a regular

linear chain). However for d < α < 2d, the percolation properties show new intermediate

behavior different from ER networks, with critical exponents that depend on α.
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4.2 Percolation Properties

4.2.1 Build the network

The algorithm to build the networks is almost the same as the pre-build algorithm intro-

duced in Chapter 3, however we can not use the real-time algorithm because we investigate

the percolation over the whole network and we need to pre-build the whole network. The

difference from Chapter 3 is that now we do not create the short-range connections which

connect a node to its nearest neighbors.

First we arrange the nodes in a d-dimensional regular lattice (d = 1 or 2), so we have

well-defined Euclidean distances. Then we randomly add ktN/2 long-range connections to

the network through the steps in Chapter 3. And at last we remove the duplicate links. If

there are no duplicate links, we are supposed to obtain the average degree of the network

〈k〉 = kt. But for different α, especially when α > 2d, most of long-range connections are

very short so that it is easier for each node to have duplicate links to its nearest neighbors.

Due to the generation process, the final network average degree 〈k〉 is actually less than kt.

To make all the nodes connected, we set kt = 4 and find that in the two-dimensional case,

3.6 < 〈k〉 ≤ 4 for all α, while in one-dimensional case, 3.1 < 〈k〉 < 4 for all α.

4.2.2 Critical threshold of percolation

Critical threshold is obtained by measuring the sizes of the giant (spanning) cluster and

2nd biggest cluster in the percolation process, i.e. M and M2 as function of p. Below the

critical threshold pc there is no spanning cluster, but when p > pc, M/N becomes finite.

At the threshold, the size of 2nd biggest cluster M2 reaches a maximum value according to

percolation theory.93,94

Figure 4.1 shows the critical thresholds for several typical values of α by determining

the size of 2nd biggest cluster. In table 4.1, pc is shown for different α in linear chain

(one-dimensional lattice) and two-dimensional square lattice percolation respectively. We

can see that when α ≤ d (d = 1 and 2), pc is very close to the known result pc = 1/kt = 0.25
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Figure 4.1: Sizes of the giant cluster M (black squares) and the second biggest cluster
M2 (red circles) as function of the fraction of remaining nodes p for several typical values
of α. M2 is re-scaled by appropriate factor for better visibility. In the linear chain plots
(N = 106), pc = 0.25 and 0.35 for α = 0.75 and 1.5 respectively, and in the square lattice
plots (L = 103), pc = 0.25 and 0.33 for α = 1.5 and 3 respectively.

for percolation in ER networks. For α > 2d in linear chain, percolation transition is not

observed because the network is a regular one-dimensional lattice, there is no percolation

in this case. While for α > 2d in square lattice, e.g. α = 5, pc = 0.57 is very close to

the known value of site percolation in the regular square lattice, pc = 0.59. However for

d < α < 2d, the percolation properties show new intermediate behavior different from the

percolation in ER networks or regular lattices, which depends on α.

Next we analyze how the mass (size) of giant cluster M scales with the system size N

at critical threshold. Generally the giant cluster has been found to be fractal so that its

mass M dependence with size is governed by a non-integer exponent,93,94 i.e. M ∼ Nβ (eq.

(4.1)). For the percolation of ER networks, β = 2/3 = 0.67.5,22 Table 4.1 and shows that in
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α pc β dℓ νℓ df de
df

de
1 + 1

β τ

0.75 0.25 0.67 1.79 0 ∞ ∞ / 2.50 2.50

1 0.25 0.67 1.80 0 ∞ ∞ / 2.50 2.50

1.25 0.27 0.70 1.81 0.60 3.05 4.45 0.69 2.43 2.44

1.5 0.35 0.77 1.82 1.14 1.63 2.12 0.77 2.30 2.30

1.75 0.49 0.86 1.79 1.46 1.26 1.45 0.87 2.16 2.15

α pc β dℓ νℓ df de
df

de
1 + 1

β τ

1.5 0.25 0.67 1.78 0 ∞ ∞ / 2.50 2.50

2 0.25 0.67 1.79 0 ∞ ∞ / 2.50 2.49

2.5 0.27 0.70 1.81 0.46 3.92 5.65 0.69 2.43 2.44

3 0.33 0.76 1.81 0.88 2.12 2.76 0.76 2.31 2.32

3.5 0.41 0.87 1.79 0.92 1.92 2.18 0.88 2.15 2.14

4 0.49 0.93 1.78 0.95 1.89 2.00 0.94 2.07 2.06

5 0.57 0.94 1.79 0.96 1.87 1.99 0.94 2.06 2.05

Table 4.1: Critical exponents and thresholds at percolation transition for the networks
embedded in linear chains (upper table) and square lattice (lower table). The results are
measured with system size N = 106 for linear chain and L = 103 for square lattice, except
that β is obtained from different system sizes.

both one- and two-dimensional lattices percolation, when α ≤ d, β = 0.67, the percolation

shows mean-field-like behavior like the percolation of ER networks. And for δ > 2d (only

in two-dimensional lattice percolation), where long-range connections are very rare, nodes

are connected locally, β ≈ 0.94, the percolation is a regular square lattice percolation.93,94

Figure 4.2 shows M vs N in a double-logarithmic plot for the percolation of one- and

two-dimensional lattices with several different α and p around pc. It is observed that only

when p = pc, M vs N shows a power law relation (straight line in a double-logarithmic

plot). While for p < pc and p > pc, the curve of M vs N bends down and up respectively.

These feature is a characteristic of the percolation transition.93,94

4.2.3 Fractal dimension of percolation

Let us consider the giant cluster at the critical threshold. Fractal dimension df describes

how the mass S within a sphere of radius r scales with r:

S(r) ∼ rdf , (4.2)
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Figure 4.2: Size of the giant cluster M as a function of the system size N for several typical
values of α and different fractions p of the remaining nodes in one-dimensional linear chain
and two-dimensional square lattice. In the plots, curves bend down for p < pc (black
squares), bend up for p > pc (green triangles) and follow a power law relation (straight line
in log-log plot) for p = pc (red circles). The slopes β of M vs N are: 0.67 and 0.77 for
linear chain when α = 0.75 and 1.5 respectively, and 0.67 and 0.76 for square lattice when
α = 1.5 and 3 respectively.

where df is the fractal dimension of the giant cluster. S(r) is obtained by averaging over

many cluster realizations. And above criticality S(r) ∼ rde , where de is the dimension of

the embedded network. Therefore, we have

M ∼ N
df
de . (4.3)

Combine with eq.(4.1), we have

β =
df

de
. (4.4)



43

df and de can be obtained from the network at criticality (p = pc) and above criticality

(p = 1). Then we compare
df

de
with the results of β from figure 4.2 so that we can evaluate

the accuracy of exponents at percolation.

Actually in the process of obtaining df and de, we first obtain the chemical dimension

dℓ,
93,94 which describes how the mass of the cluster within a chemical length, i.e. length of

the shortest path, ℓ scales with ℓ:

S(ℓ) ∼ ℓdℓ . (4.5)

Comparing with Eqs. (4.2), we can infer the relation between regular Euclidean distance r

and chemical distance ℓ:

r ∼ ℓdℓ/df ≡ ℓνℓ . (4.6)

The relation is often written as ℓ ∼ rdmin, where dmin ≡ 1/νℓ can be regarded as the fractal

dimension of the minimal path.

So df is obtained by the following steps:

(i) A node i is randomly selected from the giant cluster.

(ii) Find all the nodes with chemical distance ℓ (ℓ = 1, 2, 3...) from node i. Record the

number of these nodes as Mℓ.

(iii) Compute the radius Rℓ of these Mℓ nodes from step (ii).

(iv) Repeat steps (i) to (iii) for many realizations and get the average of Mℓ and Rℓ at the

same chemical distance ℓ over many networks.

We plot Mℓ vs ℓ from the results of step (ii) and Rℓ vs ℓ from step (iii) to obtain dℓ and νℓ

respectively. We plot Mℓ vs Rℓ from step (iv) to get df . For the dimension of embedded

network de, we follow the same steps above to obtain it but steps are performed on the

network without removing any nodes (p = 1).

Figure 4.3 shows M vs ℓ and R vs ℓ in percolation at the critical threshold. From the

plots, we can conclude that the chemical dimension, also known as the graph dimension
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Figure 4.3: Size of the giant cluster M and radius R as a function of the chemical distance
ℓ for several typical values of α in percolation at the critical threshold in one-dimensional
linear chain (left 2 plots) and two-dimensional square lattice (right 2 plots). Chemical
dimension dℓ is obtained from M vs ℓ (upper 2 plots): dℓ ≈ 1.8 for all α in percolation, and
νℓ is determined from R vs ℓ (lower 2 plots).

or topological dimension, dℓ ≈ 1.8 for all α. However, in the plots of R vs ℓ, νℓ can be 0

because when α→ 0, the radius R of giant cluster is independent of the chemical distance.

From figure 4.4 M vs R, we obtain df and de, which can also be determined from dℓ and

νℓ, i.e. df ≈ dℓ/νℓ. The difference between df and de is that df is fractal dimension which

is obtained in the percolation process at the critical threshold, while de is the dimension of

the embedded network with 〈k〉 ≈ 4 and it is obtained before removing the nodes. Table

4.1 shows all the values of df , de and
df

de
for different α. Eq. (4.4) claims that β =

df

de
,

and from table 4.1, we can compare both values and find that they agree with each other

completely.
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Figure 4.4: Size of the giant cluster M as a function of radius R for different values of α
in percolation at the critical threshold (left 2 plots) and above criticality on the embedded
networks (right 2 plots) in one-dimensional linear chain (upper 2 plots) and two-dimensional
square lattice (lower 2 plots). df and de are determined from M vs R in percolation and
above the criticality in the embedded networks respectively. The values of df and de are in
table 4.1. For linear chain, the symbols represent different α as followings: (◦) 0.75, (2) 1,
(⋄) 1.25, (△) 1.5, (⊳) 1.75, (∇) 2 and (⊲) 2.25. For square lattice, the symbols represent
different α as followings: (◦) 1.5, (2) 2, (⋄) 2.5, (△) 3, (⊳) 3.5, (∇) 4 and (⊲) 5.

To support these results more, we apply an independent approach to analyze the cluster

size density distribution n(S) at the critical threshold shown in figure 4.5. At criticality,

n(S) is expected to scale as n(S) ∼ S−τ ,93,94 where

τ = 1 +
1

β
. (4.7)

We are able to measure τ directly from the plots in figure 4.5 (slopes are −τ + 1), which are

complementary cumulative distributions of the cluster size S. We also have the values of β
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for different α, therefore we can compare both values in left and right side of Eq. (4.7). Table

4.1 shows that they are in very good agreement with the values of both sides in Eq. (4.7).

For linear chain and square lattice when α ≤ d, we obtain the classical mean-field value

τ = 2.5 known for ER networks.93,94 And for square lattice when α > 2d, we obtain the

same exponent as for percolation in regular two-dimensional lattices, τ = 2.05. For linear

chain when α > 2d, no percolation is observed. In the intermediate range (d < α < 2d), τ

varies with α, this leads to a new universality classes due to the competition between the

spatial constraints and the long-range connections.
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4.3 Conclusions

We have studied the percolation of spatially constrained networks embedded in one-dimensional

linear chain and two-dimensional square lattice with the length of links following a power

law probability p(r) ∼ r−α. We have identified that there are three distinct regimes where

different types of percolation transitions with different critical exponents exist. For linear

chain and square lattice in the first regime when α ≤ d, the giant cluster is characterized by

nodes connected with long links comparable to the system size and the transition belongs to

the universality class of percolation in ER networks. And in the second intermediate regime

when d < α < 2d, the giant cluster is comprised of localized cliques which are connected

by few long links and the critical exponents seem to change with α in a continuous way.

Finally, in the last regime when α > 2d, the giant cluster has only short-range connections

and the transition belongs to the universality class of percolation in two-dimensional square

lattice with no percolation observed in one-dimensional linear chain. We have compared

the percolation exponents at the critical threshold: β vs
df

de
and τ vs 1 + 1

β . The results

show that they are in very good agreement with the values. And recently analogous effects

have been found for long-range links on fractal networks.95 Finally, we like to note that

although our analysis has been performed on the linear chain and square lattice, for rea-

sons of universality we expect that the results will not change for different two-dimensional

lattice or continuum structures. Moreover, we expect that similar three regimes will also

appear for percolation in ER networks embedded in three dimensions.



Chapter 5

Summary

We have mainly finished THREE projects related to transport and percolation in complex

networks:

(i) The conductance distribution on weighted resistor networks.

(ii) Optimal transport with cost constraint.

(iii) Percolation of spatially constrained networks.

In the first project, we study the conductance distribution P (σ) of the equivalent con-

ductance for ER and SF weighted resistor networks based on the study on unweighted

resistor networks by Lopéz. In our model of weighted networks, we introduce the disorder

on the links with conductance σ = e−ax, where a controls the strength of the disorder. For

a = 0, the networks simply returns to the unweighted case. We find that the conductance

distribution and the transport property have been significantly changed after we introduce

the disorder. With disorder, most links have large resistance and the transport efficiency

has been significantly decreased. P (σ) has been characterized by percolation transition

properties for different regimes. We find, both analytically and numerically, that P (σ) for

ER networks exhibits two regimes: (i) For σ < e−apc , P (σ) is independent of N and scales

as P (σ) ∼ σ〈k〉/a−1. Here pc = 1/ 〈k〉 is the critical percolation threshold of the network and

〈k〉 is the average degree of the network. (ii) For σ > e−apc , P (σ) has strong N dependence

and scales as P (σ) ∼ f(σ, apc/N
1/3).
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In the second project, we investigate the average shortest path length as the transport

property for a regular lattice after adding additional long-range connections to improve

the transport property. The model is base on Kleinberg’s navigation model in which that

the long-range connections follows a power law distribution: p(r) ∼ r−α. The purpose

is to find the optimal α so that in this condition the average shortest path length 〈ℓ〉

of the whole network reaches minimum. In Kleinberg’s model, each link has the same

chance to receive a long-range connection. It is not unexpected that in this model, 〈ℓ〉 gets

minimum when α = 0 because in this condition, the network is characterized by nodes

connected with long links comparable to the system size so that the network become a

small-world network with 〈ℓ〉 ∼ lnN , which is dramatically reduced compared to 〈ℓ〉 ∼ L

in the original lattice without additional long-range connections. Kleinberg’s navigation is

in the condition without considering cost constaint. We introduce a cost to the total length

of long-range connections because in real-world networks, there is always a cost to build

additional connections and it is reasonable that the cost is proportional to the length of the

connection. After introduce the cost, there is a trade-off between the number of long-range

connections and the length of them. This leads the optimal transport no longer occurs at

α = 0. Our results show that it is shifted to α = d+ 1, established here for d = 1, 2 and 3

for regular lattices and df for fractals.

In the last project, we examine the percolation transition of spatially constrained net-

works embedded in one-dimensional linear chain and two-dimensional square lattice with

the length of links following the same power law distribution p(r) ∼ r−α as in the second

project. The difference is that in this project we build the networks on the originally empty

lattices, i.e. the nodes have no local connections to their nearest neighbors. Because all

the long-range connections randomly connect the nodes with appropriate distance ruled by

the power law distribution, actually, the networks form an ER-like networks. We study the

percolation process by removing nodes from the pre-build ER-like networks embedded in

one-dimensional linear chain and two-dimensional square lattice. We find that there are

three distinct regimes where different types of percolation transitions with different critical
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exponents exist. For α ≤ d, the percolation belongs to the universality class of percolation

in ER networks. For α > 2d (only for two-dimensional square lattice), the percolation

belongs to the universality class of percolation in regular lattices. But for the intermediate

regime d < α < 2d, the percolation shows new behavior different from ER networks, with

critical exponents that depend on α. According to the limited computer resources and

the pre-build networks needed (so that we can not perform the real-time algorithm in the

second project), we have not tested our results in three-dimensional lattice. However we

expect that similar three regimes will also appear for percolation in the networks embedded

in three dimensions.
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Appendices

Appendix A: Solving Kirchhoff Equations

Consider a resistor network with N nodes and all the nodes are connected together so that

there are no isolated nodes. We impose an electric potential difference between any two

selected nodes A and B, i.e. VA = 1 and VB = 0, there must exist an electric current I

flowing from node A to B. We measure IAB and get the conductance between A and B,

σAB = IAB/(VA − VB) = IAB. (5.1)

If we know the topological structure of the network and the resistance of each link rij which

connecting node i and j, actually we are able to analytically solve a set of Kirchhoff linear

Equations based on Kirchhoff’s circuit law,63 i.e. the sum of all the currents flowing out

from a node i is equal to 0 (except node A or B):

k
∑

j=1

Iij = 0, (5.2)

where j sums over all the links connecting to node i and k is the the number of links

connecting to node i, i.e. the degree of the node. From Ohm’s law, the current form node

i to node j along link ij with resistance rij is given by

Iij =
Vi − Vj

rij
. (5.3)
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Therefore we have
k

∑

j=1

Vi − Vj

rij
= IAB(δiA − δiB), (5.4)

where δij is the Kronecker delta

δij =











0, i 6= j

1, i = j
(5.5)

this means the sum of all the currents flowing out from a node is equal to 0 except node

A or B. Since VA and VB are known, there are N − 2 unknown potential Vi, leading to

N −2 linear equations which need to be solved. Therefore, we can use an (N −2)× (N −2)

matrix equation to represent the linear equations

CV = D, (5.6)

where C,V and D are given by

C =



















∑N
j=1,j 6=1

1
r1j

− 1
r12

· · · − 1
r1N

− 1
r21

∑N
j=2,j 6=2

1
r2j

· · · − 2
r1N

...
...

...
...

− 1
rN1

− 1
rN2

· · · ∑N
j=1,j 6=N

1
rNj



















, (5.7)

V =



















V1

V2

...

VN



















, (5.8)
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and

D =



















VA

r1A
+ VB

r1B

VA

r2A
+ VB

r2B

...

VA

rNA
+ VB

rNB



















. (5.9)

Note that none of the matrices have A or B row and rij = rji, thus C is a symmetric matrix

C = CT. And rij = ∞ if node i and j are not connected. This results in that matrix C is

typically a sparse matrix and the matrix inversion is relatively fast.

Finally, we get potential of each node by

V = C−1D, (5.10)

and the conductance between node A and B

σAB = IAB =

k
∑

j=1

VA − Vj

rAj
. (5.11)
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Appendix B: Remarks “Transport and Percolation Theory of

Weighted Network”

I. EQUATIONS FOR DISTRIBUTION FUNCTIONS

In Chapter 2, the following equation is derived for the random variables r, ri, or, equiv-

alently, for σ = 1/r, σi = 1/ri. (Notations are changed a bit for convenience):

r = r0 +

[

q−1
∑

i=1

σi

]−1

. (5.12)

The meaning of the notations: r0 = 1/σ0 is a resistivity of a link, connecting two nodes of

the network. It is a predefined random variable, for which a concrete distribution function

is chosen. r = 1/σ and ri = 1/σi are resistivities of the branches of some random Bethe

lattice. All of them have the same distribution function pR(r), which connects with the

distribution of conductivities pΣ as pR(r)dr = pΣ(σ)dσ. Conductivities σi, i = 1, · · · q − 1,

are independent random variables. And q = 1, 2, · · · is a discrete random variable, the degree

of a node in our Bethe lattice, whose distribution Π1(q) is connected with distribution of

node degree in the infinite network with independent nodes Π(q) as Π1(q) = (q/q̄)Π(q),

where q̄ is the average degree in the network, q̄ =
∑

q qΠ(q). Replacement of the network

with Bethe lattice is determined by the thermodynamic limit: in an infinite random graph

with independent nodes (almost) any finite subgraph is a tree. The problem is set as

follows: given the distribution of node degrees Π(q), and the one of link resistivities, p
(0)
R (r),

to find, using relation (5.12), the distribution pR(r). If this problem is solved, one can find

the distribution of conductivities σ
(∞)
i , p

(∞)
Σ (σ), between a randomly chosen node i and a

“ground”, consisting of infinitely far nodes, using the relation:

σ
(∞)
i =

qi
∑

j=1

σij , (5.13)

where discrete random variable qi has the has the distribution function Π(q), and qi in-
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dependent statistically equal variables rij , distributed with probability density pΣ(s), are

the conductivities of qi branches, connecting the node i with the ”ground”. Finally, the

resistivity between two randomly chosen nodes of a graph is:

rij = r
(∞)
i + r

(∞)
j = 1/σ

(∞)
i + 1/σ

(∞)
j , (5.14)

where r
(∞)
i and r

(∞)
j are two random variables, independently distributed with probability

density p
(∞)
R (r). Eqs. (5.12-5.14) constitute a sequence, which allows to obtain the distri-

bution function of inter-node conductivity in the random graph P (R), provided, that the

distributions of links’ resistivities p
(0)
R (r) and node degrees are given.

The main disadvantage of the above scheme is that the formulas (5.12-5.14) are not

equations in the commonly accepted in statistical physics sense. They contain random

variables, while in the statistical mechanics people usually dealing with relations between

averaged quantities, such as e.g. probability densities, for example pR(r) = 〈δ(r − ri)〉,

where the random variable ri is a resistance of some branch between its root site and a

ground, and the average 〈· · · 〉 is the one over a chosen graphs ensemble (in our case it is an

ensemble of configuration model).

It appears to be possible to obtain the closed set of equations, resulting in the distribu-

tion function of inter-node resistivities, if to use the Laplace representation for distributions

of resistivities and conductivities. Assume, for example, that R(x) and S(x) are resistivity

r and conductivity σ distribution functions of a branch, resp., i.e.:

R(x) =
〈

e−xri
〉

=

∫ ∞

0
dre−xrpR(r), (5.15)

S(x) =
〈

e−xσi
〉

=

∫ ∞

0
dσe−xσpΣ(σ). (5.16)

Relation between these two functions can be established, if to use integral identity:

e−x/α = 1 −√
x

∫ ∞

0

dy√
y
J1(2

√
xy)e−αy, (5.17)
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where J1 is the Bessel’s function. For example, if to replace α with the random variable

ri = 1/σi, and to average both parts, we arrive at the relation:

S(x) = 1 −√
x

∫ ∞

0

dy√
y
J1(2

√
xy)R(y). (5.18)

The reverse relation is exactly the same, of course. From Eq. (5.12), using the identity

(5.17), it is easy to obtain:

R(x) =
〈

e−xri
〉

= R0(x)

〈

exp



−x





q̄−1
∑

j=1

σj





−1



〉

= R0(x)

{

1 −√
x

∫ ∞

0

dy√
y
J1(2

√
xy)

〈

[S(y)]q̃−1
〉

1

}

,

where the average 〈· · · 〉1 in the latter integral is the one over the random variable q̃, which

have the distribution function Π1(q) = 〈δ(q − q̃)〉1. Here R0(x) = 〈e−xr0〉 is the distribution

function of link’s resistivity in the Laplace representation. As a result, we have:

R(x) = R0(x)

{

1 −√
x

∫ ∞

0

dy√
y
J1(2

√
xy)ϕ1[S(y)]

}

, (5.19)

where we have introduced:

ϕ1(x) =
〈

xq̃−1
〉

1
=

∑

q

Π1(q)xq−1 =
1

〈Akl〉

〈

N
∑

i,j=1

Aijx
qj−1

〉

=
1

2L

N
∑

j=1

〈

qjx
qj−1

〉

=
1

q̄
ϕ′(x), ϕ(x) = 〈xqi〉 =

∑

q

Π(q)xq.

(5.20)

The meaning of ϕ and ϕ1 are Z-representations of the distribution functions of a node degree

qi, and of a branching coefficient qj − 1 of a randomly chosen link, respectively. Eqs. (5.28)

and (5.19) form a closed set of ones for the function R(x).

In the same manner, one can express the distribution S∞(x) =
〈

exp(−xσ(∞)
i )

〉

of

the conductivities σ
(∞)
i between a node i and the “ground” through S(x), using the rela-

tion (5.13) as:

S∞(x) = ϕ[S(x)],
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and the corresponding distribution of resistivities R∞(x) =
〈

exp
(

−xr(∞)
i

)〉

as:

R∞(x) = 1 −√
x

∫ ∞

0

dy√
y
J1(2

√
xy)ϕ[S(y)]. (5.21)

Finally, the distribution function R2(x) = 〈exp(−xrij)〉 of the resistivity rij between ran-

domly chosen pair of nodes i and j may be written, using Eq. (5.14) simply as:

R2(x) = R2
∞(x). (5.22)

In principle, it is possible to replace Eqs. (5.18), (5.19) and (5.21) with equivalent ones,

using instead of Eq. (5.17) another (but closely related) integral identity:

e−x/α =

√
x

2

∫ +i∞+δ

−i∞+δ

dy√
x
H

(2)
1 (2

√
xy)e−αy , (5.23)

where H
(2)
1 is the second Hankel function. These alternative form of equations are more

suitable, when one wants to use the saddle point approximation.

Of course, the system of equations (5.18,5.19), which one have to solve to reach the

final result is a very complicated one, — it has a nonlinear integral structure. So, there

is a little hope to find explicit form of R(x) or of S(x) for some nontrivial choice of Π(q)

and R0(x). However, we hope, that many interesting asymptotic results may be extracted.

As a simple example, let us show, how the asymptotic form of R2(x) at large positive x

can be found (which corresponds to the probability density of inter-node resistivity rij ,

p2(r) ≡ 〈δ(rij − r)〉, at small values of r) for power law distributions of node degrees,

Π(q) → q−γ at q → ∞.

II. LOW-RESISTIVITY ASYMPTOTIC

It appeared to be useful to include yet another representation of degree distribution, —

let us call it ψ-representation. It may be defined as an inverse Laplace transform of the
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distribution in Z-representation, namely of ϕ(1 − x):

ψ(z) =

∫ +i∞+δ

−i∞+δ

dx

2πi
exzϕ(1 − x). (5.24)

For a wide enough class of degree distributions the function ϕ(x) is analytic at x < 0, and

is such, that eǫxϕ(x) → 0 as x → −∞ for any ǫ > 0, which implies ψ(z) = 0 at z < 0.

If the degree distribution has an exponential tail, Π(q) ∼ aq, a < 0, at q → ∞, ϕ(x) has

a singularity at xs = 1/a. For a fat-tailed degree distributions Π(q), decaying slower than

any exponent, ϕ(x) has a singularity at x = 1. In particular, if Π(q) ∼ q−γ at q → ∞, its

Z-transform ϕ(x) has a singular part ∼ (1 − x)γ−1 as x → 1. The inverse relation to Eq.

(5.24) is:

ϕ(x) =

∫ ∞

0
dz e−(1−x)zψ(z). (5.25)

Taking into account the relation, which serves as an inverse of the large equality in Eq.

(5.20), we have:

Π(q) =

∮

|x|<1

dx

2πi
x−1−qϕ(x) =

1

Γ(q + 1)

∫ ∞

0
dz zqe−zψ(z), (5.26)

which may serve also as an analytic continuation of Π(q) to non-integer q. Then, the

relation, inverse to Eq. (5.26) is:

ze−zψ(z) =

∫ +i∞

−i∞

dq

2πi
z−qΓ(q + 1)Π(q). (5.27)

If the function Π(q) decays slow enough, e.g. slower, then any exponent, the integral at

large z may be calculated by the saddle point method, which gives simply: ψ(z) ≈ Π(z).

Using the integral expression for ϕ1(x) = ϕ′(x)/q̄, q̄ = ϕ′(1), one can rewrite Eq. (5.19)

as:

R(x) =
R0(x)

q̄

∫ ∞

0
dz zψ(z)

{

1 −√
x

∫ ∞

0

dy√
y
J1(2

√
xy) exp[−z(1 − S(y))]

}

. (5.28)
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Now we make two crucial assumptions: 1) The random variable σj (conductivity of a branch)

has a finite average σ̄, i.e. S(y) = 1 − σ̄y + o(y), and the main contribution to the integral

on z in Eq. (5.28) gives the region z ≫ 1. Then, replacing 1− S(y) with σ̄y, and using the

identity (5.17), we get:

R(x) ≈ R0(x)

q̄

∫ ∞

0
dz zψ(z) exp

(

− x

σ̄z

)

. (5.29)

Indeed, one can see, that if ψ(z) varies not very fast, e.g. slower than an exponent, the

main contribution to the integral gives the region z & x/σ̄. Assume, that at large enough

z we have: ψ(z) ≈ Π(z) ∼ z−γ . Then from Eq. (5.29) we immediately obtain:

R(x) ∼ R0(x)
(x

σ̄

)2−γ
. (5.30)

Assume, for example, R0(x) ∼ x−α, α > 0, at x → ∞. Then R(x) ∼ x2−γ−α. But we

assumed (see Eq. (5.18)):

σ̄ =

∫ ∞

0
dx R(x) <∞, (5.31)

which implies γ > 3−α. However, it is well known, that the graph can be treated as a locally

tree-like, if the second moment of its degree distribution converges, which automatically

implies σ̄ < ∞. In principle, all the calculations above were not necessary and served

simply as an illustration. It is enough to rewrite the expression (5.21) for R∞, using ψ-

representation of thee degree distribution as:

R∞(x) =

∫ ∞

0
dz ψ(z)

{

1 −√
x

∫ ∞

0

dy√
y
J1(2

√
xy) exp[−z(1 − S(y))]

}

. (5.32)

Again, making the replacements: 1−S(y) → σ̄y, ψ(z) ∼ zγ , we obtain R∞(x) ∼ x3−γ , and:

R2(x) = R2
∞(x) ∼

(x

σ̄

)6−2γ
as x→ +∞. (5.33)

Because the distribution function of inter-node resistances P (R) is connected with R2(x)
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through the Laplace transformation:

R2(x) =

∫ ∞

0
dR e−xRP (R), (5.34)

our result (5.33) is equivalent to:

P (R) ∼ (σ̄R)2γ−7 as R→ 0. (5.35)

This result is almost trivial, and may be obtained simply by the replacement in Eq.

(5.13):
qi

∑

j=1

σij → σ̄qi, (5.36)

which is justified for large qi. Then we arrive at the result (5.35) in a quite straightforward

way.
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[22] P. Erdős and A. Rényi, Publ. Math. 6, 290 (1959); Publ. Math. Inst. Hung. Acad. Sci.

5, 17 (1960).

[23] B. Bollobas, Random Graphs (Academic, London, 1985).

[24] R. Pastor-Satorras and A. Vespignani, Evolution and Structure of the Internet: a sta-

tistical physics approach (Cambridge University Press, 2006).

[25] A.-L. Barabasi and R. Albert, Science 286, 509 (1999).

[26] J. Kleinberg, Cornell Computer Science Technical Report 99 (unpublished, 1999).

[27] J. Kleinberg, Nature 406, 845 (2000).



64

[28] R. Albert, H. Jeong and A.-L. Barabási, Nature(London) 401, 130 (1999).

[29] R. Albert and A.-L. Barabási, Phys. Rev. Lett. 85, 5234 (2000).

[30] R. Albert, H. Jeong and A.-L.Barabási, Nature(London) 406, 378 (2000); 409, 542(E)

(2001).

[31] R. Kumar, P. Raghavan, S. Rajalopagan and A. Tomkins, Proceedings of the 9th ACM

Symposium on Principles of Database Systems, p.1 (1999).

[32] S. Milgram, The Small World Problem, Psychology Today 1 (1), 60 (1967).

[33] J. Travers and S. Milgram, An Experimental Study of the Small World Problem, So-

ciometry 32, 425 (1969).

[34] A. Barrat and M. Weigt, Eur. Phys. J. B 13, 547 (2000).
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