DOCTORAL THESIS DEFENSE Mar 14, 2016

RECOVERY PROCESSES AND DYNAMICS IN SINGLE AND INTERDEPENDENT NETWORKS

Antonio Majdandzic Boston University

Advisor: H. E. Stanley

PhD Committee:

W. Skocpol L. Sulak P. Ivanov S. Havlin H.E. Stanley

Collaborators:

- B. Podobnik
- S. Havlin
- S. V. Buldyrev
- D. Kenett

T. Lipic

- L. Braunstein
- I. Vodenska
 - C. Curme
 - S. Levy-Carciente

1

D. Horvatic

1.1 Single networks: phase diagram

1.2 Phase flipping in single networks

2.1 Interacting networks: phase diagram

2.2 Problem of optimal repairing

2.3 Dynamics of interacting networks

1.1 Single networks: phase diagram

Fundamental processes: -failures -recoveries -damage spread

Connected phenomena and problems: -spontaneous recovery -optimal repairing

SINGLE NETWORKS: FRS MODEL

• Each node in a network can be **active** or **failed**.

• We suppose there are TWO possible reasons for the nodes' failures: INTERNAL and EXTERNAL.

1. INTERNAL failure: intrinsic reasons inside a node

2. EXTERNAL failure: damage "imported" from neighbors -->damage spread.

3. RECOVERY: A node can also recover from each kind of failure.

LET'S SPECIFY/MODEL THE RULES.

k- degree

1. INTERNAL FAILURES

p- rate of internal failures (per unit time, for each node).
During interval *dt*, there is probability *pdt* that the node fails.

Recovery: A node *recovers from* an *internal failure after a time period* $\mathbf{\tau}$.

2. EXTERNAL FAILURES – if the neighborhood of a node is too damaged

IF: "CRITICALLY DAMAGED neghborhood": less than or equal to *M* active neighbors, where *M* is a fixed treshold parameter.

THEN: There is a probability r dt that the node will experience externally-induced failure during dt.

I- external failure rate

A node recovers from an external failure after time τ '.

FAILURE TYPE	RULE	RECOVERY
Internal failure	With rate p on each node	After time τ
External failure	IF(<= m active neighbors) THEN Extra rate r on each node	After time τ '

Out of these 5 parameters, we fix three of them: m=4, $\tau = 100$ and $\tau' = 1$.

We let (p,r) to vary.

```
It turns out it is convenient to define p^*=exp(-p\tau).
So we use (p*,r) instead of (p,r).
```

We measure activity Z of the network as a function of (p^*,r) .

Phase diagram (single network, random regular)

GREEN; High activity Z ORANGE: Low activity Z

In the hysteresis region both phases exist, depending on the initial conditions or the memory/past of the system.

Blue line: critical line (spinodal) for the abrupt transition $|\rightarrow||$

Red line: critical line (spinodal) for the abrupt transition $|| \rightarrow |$

Model simulation [Random regular networks]

For some values of *r* we have a hysteresis loop.

0.8

* p

1.0

1.2 Phase flipping in single networks

Let's pick point A, take a small system N=100, and run the simulation

Finite size effects

A 0.8 0.6 Ν 0.4 \rightarrow Sudden transitions 0.2 1. Why? 0.0 2. Is there any 1000 2000 4000 5000 0 3000 6000 forewarning? timestep t

(Remember : Z = Fraction of active nodes)

It turns out it can be predicted.

Trajectory $(r_{\lambda}(t), p_{\lambda}^{*}(t))$ in the phase diagram (white line, see below).

The trajectory crosses the spinodals (critical lines) interchangeably, and causes the phase flipping.

(Observing the network on the micro-level: counting internal and external failures)

Second finite size phenomenon: Flash crashes

An interesting (and unexpected) by-product of the model:

Sometimes the network rapidly crashes, and then quickly recovers (green circles).

Model predicts the existance of "flash crashes".

Explanation: Unsuccessful transitions to a lower state.

Real stock markets also show a similar phenomenon.

Q: Possible relation?

"Flash Crash 2010"

Network B

Network A

MODEL

FAILURE TYPE	RULE	RECOVERY
Internal failure	With rate p on each node	After time τ
External failure	IF(<= m active neighbors) THEN Extra failure rate r	After time τ '
Dependency failure	IF(companion node from the opposite network failed) THEN Extra failure rate r a	After time τ "

Elements of the phase diagram

- 2 critical points
- 4 triple points
- 10 allowed transitions
- 2 forbidden transitions

TOTAL PHASE DIAGRAM

HYSTERESIS LOOPS

2.2 Problem of optimal repairing

PROBLEM

- Consider two interacting networks, both damaged (low activity).
- What is the most efficient strategy to repair such a system?
- We want **minimal intervention** (intervention might be expensive or invasive)
- Scenario common in medicine

Question: What is the **minimum number of repairs** to bring the system to the fully functional state, and **how do we allocate them** (repairs) between the two networks?

SOLUTION:

Explanation:

2.3 Dynamics of interacting networks

Collective dynamics in simulated interacting networks.

Activity z (simulation)

Activity z (real coupled networks)

Collective dynamics in real interacting networks.

Density plots

Corr. matrix

Measuring and estimating model parameters

Building the network

Correlation between individual CDS signals.

Estimating internal failure parameters (p*_EU and p*_LA): observing high activity states

Estimate:

 $p^*_{\rm EU} = 0.07 \pm 0.01~~{\rm and}~ p^*_{\rm LA} = 0.11 \pm 0.02$

Alternative method for measuring internal failure and recovery rates: observing micro dynamics (dynamics of individual nodes)

time of recovery, $\tau_{\rm EU}$ and $\tau_{\rm LA}$ crude failure rates $p_{\rm EU}$ and $p_{\rm LA}$

Estimating the external parameters r_EU and r_LA: **observing low activity states**

- Contribution from internal failures known
- Contribution from interdependent failures temporary neglected, we introduce a small correction later
- Small influence of thresholds m_EU and m_LA on the average value of activities z_EU and z_LA

By measuring $\langle z_i \rangle$ in the low states ($z_{\rm EU} < 1/2 \& z_{\rm LA} < 1/2$) and

already knowing p_i^* , we obtain estimates $r_{\rm EU} = 0.81 \pm 0.03$ and $r_{\rm LA} = 0.88 \pm 0.03$.

Estimating the thresholds m_EU and m_LA: visiting times

parameter m_{frac} shape of the potential barrier between the wells.

simulating decoupled $(r_d = 0)$ EU and LA networks

previously measured parameters $(p_{\rm EU}^*, p_{\rm LA}^*, \tau_{\rm EU}, \tau_{\rm LA}, r_{\rm EU}, r_{\rm LA})$

 $m_{\text{frac,EU}} = 0.57 \pm 0.02$ and $m_{\text{frac,LA}} = 0.50 \pm 0.02$ for $\langle k \rangle = 3$, to $m_{\text{frac,EU}} = 0.59 \pm 0.02$ and $m_{\text{frac,LA}} = 0.50 \pm 0.02$ for $\langle k \rangle = 7$ ($\langle k \rangle$

Estimating r_d : correlation between networks EU and LA

$\langle k \rangle$	$m_{frac,EU}$	$m_{frac,LA}$	$r_E U$	$r_L A$	r_d
3	0.55	0.43-0.49	0.78	0.87	0.16
4	0.55	0.43-0.49	0.79	0.87	0.14
5	0.57	0.43-0.49	0.79	0.87	0.13
6	0.57	0.43-0.49	0.79	0.87	0.11
7	0.57	0.43-0.49	0.79	0.87	0.10

Similarity in fluctuation size structure

• Thank you for your time.