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Outline

Cascading failures in Complex networks
What are cascading failures ?
How does complex networks approach it ?

First approach: k-core percolation
What is k-core percolation ? Cascading failure
Integer vs. fractional k-cores ?

Second approach: What are interdependent networks ?
What is interdependency ? How do we quantify it ?

What happens when we combine both ? (My work)




US Blackout 2003

Fig. 1.4 A satellite map of the US Northeastern blackout in 2003, (a) before blackout and (b) after
blackout. The satellite map represents a real image of the US on August 14, 2003, the night of a
major blackout that left an estimated 45 million people in eight U.S. states and another 10 million
in Ontario without




Cascading failure in Human Physiology

Bashan et al Nat.
Comm. (2012)
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How do we define failure in
complex network ?




Random node failure leads to
many network fragments




K-core percolation




What is k-core percolation ?

After the initial damage, remove all
nodes that do not have atleast 'K’
neighbors:

3-core percolation means all nodes that
have fewer than 3 neighbors are
removed

3 Is the local threshold




Example: 3-core percolation




Example: 3-core percolation




Example: 3-core percolation




Example: 3-core percolation




Example: 3-core percolation




Example: 3-core percolation




What is k-core percolation ?

Initial damage to nodes leads to
cascading failures in the network

The remaining nodes form the k-core




Interdependent Networks

Second reason for cascading failure




How interdependent are infrastructures?
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How does interdependency
cause cascade ?




How does interdependency
cause cascade ?




How does interdependency
cause cascade ?




How do we quantify coupling
between networks ?

Coupling q = fraction of nodes in one
network depending on nodes in another
network




K-core Percolation In
Interdependent Network




K-core percolation In
Interdependent networks




(K,K)-core percolation

In this talk, we take the average local
threshold ‘k’ to be same for both
networks

Both networks are same as Erdos-Renyi




Simulation vs theory
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Second order transition
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First order transition
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Complete Phase diagram
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k=1 line -> Regular percolation
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S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley,S. Havlin, Nature 464, 1025 (2010)
R. Parshani, S. V. Buldyrev, and S. Havlin, Phys. Rev.Lett. 105, 048701 (2010)




Complete Phase diagram
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Threshold k = 1.5, Tricritical point
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Complete Phase diagram
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Threshold k = 2.0 (Two-stage)
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Threshold k = 2.0 (Two-stage)
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Complete Phase diagram

g
o)

First order transition

N
o

g
'

Two-stage
transition

I
n

-
o0

ond order transition

-t
[*}]

3
S
o
N =
wn
Q
L
N =
=]
©
S 2
o
Q
(=]
©
L
S
<

—h
=

-t
N

—h

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Coupling(q)




Coupling g = 0.3
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Complete Phase diagram
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Coupling g = 0.7
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p. vS coupling(q)




p. vS coupling(q)




p. vs threshold (k)
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p. vs threshold (k)

Second Order —
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Conclusions

Combining two models leads to a richer
cascading failure properties as shown in the
phase diagram

Understanding the combined effect of k-core
percolation and interdependency leads to
better design rules for infrastructure networks

They also help to design a good recovery
process to salvage the network in case of
failure
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Back up Slides

More results




SF networks




Scale free network
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