Spontaneous recovery and metastability in single and interacting networks

Collaborators:
B. Podobnik
S. Havlin
S. V. Buldyrev
D. Kenett
S. V. Buldyrev
I. Vodenska
C. Curme
S. Levy-Carciente
T. Lipic
D. Horvatic

PhD Committee:
W. Skocpol
L. Sulak
I. Vodenska
R. Bansil
H.E. Stanley

Advisor:
H. E. Stanley
1. Introduction: failures & recoveries

2.1 Single networks phase diagram

2.2 Finite size effects (single networks)

3.1 Interacting networks phase diagram

3.2 Finite size effects & empirical support
MOTIVATION
Let’s start with one mystery:

Phenomenon:
Some networks, after they fail, are able to become spontaneously active again.

Examples:
- TRAFFIC NETWORK: traffic jams suddenly easing
- BRAIN: people waking from a coma, or having seizures
- FINANCIAL NETWORKS: flash crashes in finance

→The process often occurs repeatedly: collapse, recovery, collapse, recovery,...

We need: metastable states and nontrivial phase diagrams
We need a network model with failures and recoveries.

2.1. SINGLE NETWORK

• Each node in a network can be active or failed.

• We suppose there are **TWO possible reasons for the nodes’ failures:** INTERNAL and EXTERNAL.

 1. **INTERNAL failure:** intrinsic reasons inside a node

 2. **EXTERNAL failure:** damage “imported” from neighbors

RECOVERY: A node can also recover from each kind of failure.

LET’S SPECIFY/MODEL THE RULES.
1. INTERNAL FAILURES

p- rate of internal failures (per unit time, for each node).
During interval dt, there is probability pdt that the node fails.

Recovery: A node *recovers from an internal failure after a time period* τ.
2. EXTERNAL FAILURES – if the neighborhood of a node is too damaged

IF: “CRITICALLY DAMAGED neighborhood”: less than or equal to m active neighbors, where m is a fixed threshold parameter.

THEN: There is a probability $r \, dt$ that the node will experience externally-induced failure during dt.

r - external failure rate

A node recovers from an external failure after time τ'.
<table>
<thead>
<tr>
<th>FAILURE TYPE</th>
<th>RULE</th>
<th>RECOVERY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal failure</td>
<td>With rate p on each node</td>
<td>After time τ</td>
</tr>
<tr>
<td>External failure</td>
<td>IF($\leq m$ active neighbors) THEN Extra rate r on each node</td>
<td>After time τ'</td>
</tr>
</tbody>
</table>

Out of these 5 parameters, we fix three of them: $m=4$, $\tau =100$ and $\tau' =1$.

We let (p,r) to vary.

It turns out it is convenient to define $p^* = \exp(-p\tau)$.
So we use (p^*,r) instead of (p,r).

We measure activity Z of the network as a function of (p^*,r).
Phase diagram (single network, random regular)

In the hysteresis region both phases exist, depending on the initial conditions or the memory/past of the system.

Blue line: critical line (spinodal) for the abrupt transition $I \rightarrow II$

Red line: critical line (spinodal) for the abrupt transition $II \rightarrow I$

GREEN; High activity Z

ORANGE: Low activity Z
Model simulation [Random regular networks]

We fix r, and measure $<z>(p^*)$.

For some values of r we have a hysteresis loop.

$<z>$ - average fraction of active nodes (Z fluctuates)
Let’s pick point A, take a small system N=100, and run the simulation.
Finite size effects

Sudden transition!

1. Why? How?

2. Is there any forewarning?

(Remember : $Z = \text{Fraction of active nodes} $)
It turns out it can be predicted.

Trajectory \((r_x(t), p_x^*(t))\) in the phase diagram (white line, see below).

The trajectory crosses the spinodals (critical lines) interchangeably, and causes the phase flipping.
Second finite size phenomenon: Flash crashes

An interesting (and unexpected) by-product of the model:

Sometimes the network rapidly crashes, and then quickly recovers (green circles).
Model predicts the existence of “flash crashes”.

Explanation: Unsuccessful transitions to a lower state.

Real stock markets also show a similar phenomenon.

Q: Possible relation?

“Flash Crash 2010”
3.1. Interacting networks
<table>
<thead>
<tr>
<th>FAILURE TYPE</th>
<th>RULE</th>
<th>RECOVERY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal failure</td>
<td>With rate p on each node</td>
<td>After time τ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External failure</td>
<td>IF($\leq m$ active neighbors) THEN Extra failure rate r'</td>
<td>After time τ'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dependency failure</td>
<td>IF(comppanion node from the opposite network failed) THEN Extra failure rate r_d</td>
<td>After time τ''</td>
</tr>
</tbody>
</table>
Elements of the phase diagram

- 2 critical points
- 4 triple points
- 10 allowed transitions
- 2 forbidden transitions
Two interacting networks: phase switching (MODEL)
CDS
(real data)
• Thank you for your time.
BONUS: Problem of optimal treatment