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Motivation
* Why we study networks?

Computer Network (Internet, WWW) Social Network

Networks are everywhere around us!

Better understanding of networks helps to better utilize / protect
them.



Motivation
e Why we study INTERDEPENDENT networks?
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Infrastructures (actually, all networks) more or less depend and
interact with each other.

Same as single network?



Motivation
* How we study interdependent networks?

o Different dynamic models:
SI, SIS, SIR ... (Epidemic Model)
NCO model, majority rules model ... (Opinion Model)
Link / site removing Model ... (Percolation Model)

o Here we use Site Removing Percolation Model, because it’s a
better model to study the structural robustness of networks
under attack.



Background Knowledge
* Network :

Nodes and Links
Degree



Background Knowledge
* Degree k, average degree <k>

e Degree Distribution P(k)

 Two Major Kinds of Networks:
— Erdos-Renyi (ER) network

k
« P(k) ==~ Poisson Distribution
e Most nodes have about same number of links

— Scale-Free (SF) network
« P(k) = ck™*, Power-Law Distribution

* Most nodes have few number of links, but few nodes
(hubs) have large number of links (no-scale)



Background Knowledge

Random Network Scale-Free Network

Bell Curve Distribution of Node Linkages Power Law Distribution of Node Linkages
& — Typical node ™~
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Background Knowledge
* Assortativity (degree-degree correlation)

* Giant component (largest cluster)
S: Number of nodes in giant cluster
N: Total number of nodes
s=S/ N : fraction of nodesin S

* Under attack : a network with 13 nodes

R

$=13/13=1 S=5/13



Background Knowledge

* Cascade failure in interdependent networks
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Generating Assortativity Network
* Assortativity Coefficient r

(kiky), = | + kj)/2>e]2
((ki? +15%)/2), = (i + Ky)/ 2>e]2

e Define Hamiltonian H

H(G) = —]z klAl]k]
L,J

r =

* Monte-Carlo link swapping probability
Pswap (G) = e A



Generating Assortatmty Network
e Swap the link

B

 The P(k), and degree of each node are kept
constant

e risrelated to H, since H < (kik]’>

e If J >0, assortative ; J<O dis assortative
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Percolation Behavior

 Randomly attack (remove) 1-x fraction of nodes

* <s>as a function of fraction of remaining nodes, x
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Scale-Free network, <k> =6, A=3
N=10000; 100 networks for each r; 1000 realizations each network



Percolation Behavior
* Determine the position of critical point x,
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Percolation Behavior
* Use quadratic fit to find the peak position

e Verify
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Percolation Behavior
* X, as a function of r
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* SF networks are more sensitive to assortativity
change compare to ER network



Percolation Behavior
* First or second order?

e Size effect check o
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* No second-largest-cluster-peak around x,.

e Thus it’s a FIRST-order transition




Conclusion
 Random attacks to a interdependent two-layer

system cause cascade failure.

* The percolation phase transition is a first-
order transition when g=1.

* The percolation threshold decreases with
increasing assortativity (in a single network,
increasing assorativity makes it more robust).

* SF networks are less robust than ER
interdependent pairs.

D. Zhou, H. E. Stanley, G. D'Agostino, and A. Scala, "Assortativity Decreases
the Robustness of Interdependent Networks," Phys. Rev. E 86, 066103 (2012).



Future Work

Partial interdependence coupling g<1?

Interdependence links have assortativity
(inter-net)?

Analytical solutions

Interdependent Global Financial Networks



THANK YOU!
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Probability of a randomly choosing node has degree k : py,

the degree distribution for the vertex at the end of a
randomly chosen edge is kpy,

the distribution the number of edges leaving the vertex other
than the one we arrived alongis (k + 1)ps 41

Normalized distribution g; of the remaining degree is
_ (K+1D)Pk+1

Zj jDj
joint probability distribution of the remaining degrees of the
two vertices at either end of a randomly chosen edge ej;, we

have €ik= €kj Z]k €k — 1, Z] €ik = qdk
If no assortative/dis-assortative, independent, ej;= q;qx

Ak

If has, degree-degree correlation
(kY — GXk) = X jk(C e — qjqx)
Divide by maximum value (when e;,= q;9dji) :

i =3 = [ ]



e Assortativity coefficient

* For observed network

(kiley) = [((ec +1)/2) |

r =

((ki* + k%) /2), = (ki + kf)/2>e]2









