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Data 
Market returns 
News sentiments 

40 countries, 80 nodes  
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Statistically-validated network 

News  Markets: 12 links 
Markets  News: 174 links   
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Finding bipartite substructure 

A = U Σ VT 

Singular value decomposition: 

Eigenvectors 
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Restricting to network inputs 
boosts accuracy 
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Elements of V2 



Elements of V3 

Using communities to recommend inputs 



Recommender system interpretation 

Bolster against missing links 



...and spurious links. 

Recommender system interpretation 
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Thank you! 

Questions? 


