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* Low signal-to-noise
— Statistical uncertainty is important



Thesis overview
1) Methodology and applications

- Curme, Tumminello, Mantegna, Stanley, Kenett. Quantitative Finance (2014).

2) Extend to seasonal time series and use to
explain a phenomenon in financial markets

- Curme, Tumminello, Mantegna, Stanley, Kenett (in preparation).

3) Relate community structures to statistical
model performance

- Curme, Vodenska, Stanley (submitted).

4) Using topic models to explain market
movements

- Curme, Zhuo, Moat, Preis (in preparation).
- Curme, Preis, Stanley, Moat. PNAS (2014).
- Moat, Curme, Avakian, Kenett, Stanley, Preis. Scientific Reports (2013).

- Moat, Curme, Stanley, Preis. Book chapter in Nonlinear phenomena in
complex systems: from nano to macro scale (2014).
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Data

Market returns
News sentiments
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Singular value decomposition:
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Finding bipartite substructure

Ul Vl
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Chile Japan
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Making predictions

* Predict sign (+1 or 1o
-1) of time series i
one step ahead :

* Logistic regression

* Inputs given by
network
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Evaluation
» Divide data into training and test sets.

» Construct network and train logistic
regressions using training set.
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Network captures predictive
relationships

Receiver operating characteristics
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Network captures predictive
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Receiver operating characteristics
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Network captures predictive
relationships

Receiver operating characteristics

United States (area = 0.62)
United Kingdom (area = 0.60)
China (area = 0.62)
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Restricting to network inputs
boosts accuracy
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Using communities to recommend inputs
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Recommender system interpretation

Bolster against missing links



Recommender system interpretation
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...and spurious links.
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Summary

» SVN methodology reveals global network
of interactions among market movements
and financial news sentiment signals.

— News responds to market movements.

» Community structures show collective
interactions among groups of countries.

* In this setting, community structures
simultaneously form the basis of a
“recommender system” for model inputs.



Thank you!

Questions?



