Communities in statisticallyvalidated networks Chester Curme

In collaboration with: Irena Vodenska H. Eugene Stanley

Big picture

Big picture

Big picture

Focus on one experimental setting:

• Associate time series to nodes

Focus on one experimental setting:

- Associate time series to nodes
- Interactions measured by lagged correlations
 A is asymmetric

Focus on one experimental setting:

- Associate time series to nodes
- Interactions measured by lagged correlations
 A is asymmetric
- Low signal-to-noise
 - -Statistical uncertainty is important

1) Methodology and applications

- Curme, Tumminello, Mantegna, Stanley, Kenett. Quantitative Finance (2014).
- 2) Extend to seasonal time series and use to explain a phenomenon in financial markets
 - Curme, Tumminello, Mantegna, Stanley, Kenett (in preparation).
- 3) Relate community structures to statistical model performance
 - Curme, Vodenska, Stanley (submitted).
- 4) Using topic models to explain market movements
 - Curme, Zhuo, Moat, Preis (in preparation).
 - Curme, Preis, Stanley, Moat. PNAS (2014).
 - Moat, Curme, Avakian, Kenett, Stanley, Preis. Scientific Reports (2013).
 - Moat, Curme, Stanley, Preis. Book chapter in Nonlinear phenomena in complex systems: from nano to macro scale (2014).

- 1) Methodology and applications
 - Curme, Tumminello, Mantegna, Stanley, Kenett. Quantitative Finance (2014).
- 2) Extend to seasonal time series and use to explain a phenomenon in financial markets

- Curme, Tumminello, Mantegna, Stanley, Kenett (submitted).

- 3) Relate community structures to statistical model performance
 - Curme, Vodenska, Stanley (submitted).
- 4) Using topic models to explain market movements
 - Curme, Zhuo, Moat, Preis (submitted).
 - Curme, Preis, Stanley, Moat. PNAS (2014).
 - Moat, Curme, Avakian, Kenett, Stanley, Preis. Scientific Reports (2013).
 - Moat, Curme, Stanley, Preis. Book chapter in Nonlinear phenomena in complex systems: from nano to macro scale (2014).

Data

Market returns News sentiments

Statistical validation

Statistically-validated network

Statistically-validated network

Community Structures

In undirected networks...

Community Structures

In directed networks...

Community Structures

In directed networks...

Singular value decomposition:

$A = U \Sigma V^{T}$

Singular value decomposition:

 $A = \bigcup \sum V^{T}$ Eigenvectors of AA^T

"Left singular vectors"

Singular value decomposition:

 $A = U \Sigma V'$ Eigenvectors of AA^T $AAT = \begin{bmatrix} i & \dots & 1, 1, 1, \dots \\ i & \dots & 0, 1, 1, \dots \end{bmatrix}$: 0, 1, "Left singular vectors"

Singular value decomposition:

Singular value decomposition:

"Left singular vectors" "Right singular vectors"

Singular value decomposition:

"Left singular "Singular "Right singular vectors" values" vectors"

Predict sign (+1 or
 -1) of time series
 one step ahead

0.0

()

.0

- Predict sign (+1 or 1.0
 -1) of time series
 one step ahead
- Logistic regression

0.0

 \bigcap

.0

- Predict sign (+1 or 1.0
 -1) of time series
 one step ahead
- Logistic regression
- Inputs given by network

Evaluation

- Divide data into training and test sets.
- Construct network and train logistic regressions using training set.
- Evaluate accuracy on test set.

Evaluation

- Divide data into training and test sets.
- Construct network and train logistic regressions using training set.
- Evaluate accuracy on test set.

Evaluation

- Divide data into training and test sets.
- Construct network and train logistic regressions using training set.
- Evaluate accuracy on test set.

Network captures predictive relationships

Network captures predictive relationships

Network captures predictive relationships

Restricting to network inputs boosts accuracy

Element of V¹

Element of V¹

Elements of V¹

Elements of V²

Elements of V³

Recommender system interpretation

Bolster against missing links

Recommender system interpretation

...and spurious links.

Summary

- SVN methodology reveals global network of interactions among market movements and financial news sentiment signals.
 - News responds to market movements.

Summary

• SVN methodology reveals global network of interactions among market movements and financial news sentiment signals.

- News responds to market movements.

• Community structures show collective interactions among groups of countries.

Summary

- SVN methodology reveals global network of interactions among market movements and financial news sentiment signals.
 News responds to market movements.
- Community structures show collective interactions among groups of countries.
- In this setting, community structures simultaneously form the basis of a "recommender system" for model inputs.

Thank you!

Questions?