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Critical tipping point distinguishing two types of transitions in modular network structures
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Modularity is a key organizing principle in real-world large-scale complex networks. The relatively sparse
interactions between modules are critical to the functionality of the system and are often the first to fail. We
model such failures as site percolation targeting interconnected nodes, those connecting between modules. We
find, using percolation theory and simulations, that they lead to a “tipping point” between two distinct regimes. In
one regime, removal of interconnected nodes fragments the modules internally and causes the system to collapse.
In contrast, in the other regime, while only attacking a small fraction of nodes, the modules remain but become
disconnected, breaking the entire system. We show that networks with broader degree distribution might be highly
vulnerable to such attacks since only few nodes are needed to interconnect the modules, consequently putting
the entire system at high risk. Our model has the potential to shed light on many real-world phenomena, and we
briefly consider its implications on recent advances in the understanding of several neurocognitive processes and
diseases.
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I. INTRODUCTION

Network science has become a leading approach to the
study of emergent collective phenomena in complex systems,
with a wide range of applications to fundamental real-world
systems [1–4]. Many real-world systems have been shown to
exhibit a modular structure, where nodes in smaller groups
(called modules or communities) are connected more to each
other than to the network at large, which is key to their behavior
and functioning [5]. The modular organization of the Internet,
and other large-scale infrastructures, tremendously enhances
scalability and diffusion processes [6,7]. Modules of protein
complexes and dynamic functional units constitute the build-
ing blocks of molecular networks [8]. Social and geographical
regions with strong local ties promote the development of
socioeconomic systems [9]. Finally, the nonrandom modular
architecture of neural networks is considered crucial for the
brain’s functional demands of segregation and integration of
information [10–12].

Detecting modules in networks has been an active research
branch for many years, resulting in an extensive set of
algorithms ubiquitously used to analyze and visualize large-
scale data [13,14]. However, far less attention has been given
to the implication of modularity to the function of networks
and the physical mechanisms underlying such a structure. For
example, modular structure has been suggested to arise in
natural systems through the optimization of stability [15], effi-
ciency [12], and evolvability [16] among others. The division
of networks into modules has been suggested to enhance their
robustness to certain cascading dynamics [17,18], as well as
diffusion properties [19]. Several analytical frameworks have
been developed to study networks with assortativity structure,
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where group of nodes with similar properties constitutes
homogenous modules [20–22].

In the current study, we are interested in the implication of
modularity to the resilience of networks. In a recent work,
Bagrow et al. [23] showed that modular networks exhibit
surprising percolation properties, such as the decoupling of
modules (i.e., modules become nonoverlapping) as a result of
random failure of nodes well before the network falls apart.
Here we address analytically and by simulations the effect of
failures of interconnected nodes, those connecting different
modules.

Interconnected nodes play a key role in modular structures
and their removal can have a deleterious effect on the
network integrity [24], efficiency [25], and stability [26].
A recent study by da Cunha et al. empirically shows that
module-based attacks targeting interconnected nodes ordered
by betweenness centrality can be highly damaging, even
more than attacks based solely on betweenness [27]. Masuda
developed an efficient method to identify “globally important”
nodes (quantified by their contribution to the connectivity in a
coarse-grained network among modules) whose removal can
fragment networks into small parts, thus providing an efficient
immunization strategy [28]. In cases where transmissibility is
high and/or when communities are dense, it has been shown
that vaccinating interconnected nodes can be more efficient
in controlling the spread of an epidemic than vaccinating
high-degree nodes [29,30]. Moreover, the interconnected
nodes are often the first to fail, as, for example, the case
in the disruptive effect neurodegenerative diseases, such as
schizophrenia and Alzheimer’s disease, have on intermodular
connectivity [31,32]. Also, changes in the concentration
of interconnected nodes can be associated with functional
transitions, for example, between physiological states [33].
Finally, it is often the case that interconnected nodes are
considered to be important; for example, the New York City
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and London airports interconnect modules of cities in these
countries and provide an attractive target for attacks [7].

Utilizing recent advances in the understanding of in-
terdependent networks [34–37], we introduce an analytical
framework for studying the robustness of modular networks
under attacks on interconnected nodes. We study a percolation
process on networks consisting of a varying number of
modules, m, and a varying degree of interconnected nodes. The
analytical solution reveals two distinct percolation regimes
separated by a critical number of modules m∗: For m < m∗
the system collapses abruptly as a result of the modules
becoming disconnected from each another, while their internal
structure is almost unaffected. In contrast, for m > m∗, the
interconnected nodes play an important role also in the internal
structure of modules. Therefore, the attack causes the modules
themselves to collapse which in turn breaks continuously the
entire system. Put another way, m∗ represents the threshold
above which modular structure itself becomes diffuse and the
network returns to behaving as a single system.

II. MODEL

We consider a modular network with N nodes divided into
m modules and we define pintra and pinter as the intra- and
interlinks probabilities, respectively. Let βi denote the fraction
of nodes in module i, the average number of intramodule
(intermodule) links connected to a node in module i is then
given by

kintra = pintra(Nβi − 1), (1)

kinter = pinterN (1 − βi). (2)

We define α to be the ratio between the probabilities for an
intra- and intermodule link,

α = pintra

pinter
. (3)

In Figs. 1(a)–1(c) we present examples of modular networks
consisting of m = 5 equal-size modules and different values
of α. Note that the ratio between the number of intermodules
links and intramodule links depends not only on α but also on
the number of modules, in this case βi = 1

m
, yielding

kintra

kinter
= pintra

(
N
m

− 1
)

pinterN
(
1 − 1

m

) ∼ α

m − 1
. (4)

Thus, our model considers systems comprised of more
modules to have more interlinks, as illustrated in Fig. 1(d).

III. FORMALISM

Given the model for generating random modular networks
described above, we proceed to study their percolation proper-
ties. In particular, we use the multivariate generating functions
formalism [36] to derive the percolation threshold and the
size of the giant component. The formalism assumes a system
of interconnected modules described by a set of multidegree
distributions, {pi

k1k2...km
}, where pi

k1k2...km
is the fraction of all

nodes in the module i that have k1 links to nodes in module 1,
k2 links to nodes in module 2, etc. The multidegree distribution
for each module may be written in the form of a generating

function:

Gi(x1x2 . . . xm) =
∞∑

k1k2...km=0

pi
k1k2...km

x1
k1x2

k2 . . . xm
km. (5)

Note that this function is simply an extension of the single-
network generating function presented in Ref. [39]. The
partition of a node’s degree into m degrees, corresponding
to its number of connections in each module, allows a finer
analysis of heterogeneous systems, which is essentially the
objective of studying modular or interacting networks.

Following Leicht and D’Souza [36], the distribution of the
sizes of components reached by following a randomly chosen
link between modules j and i to a node in module i and is
generated by

Hij (x) = xiGij (H1i(x),H2i(x), . . . ,Hmi(x)) (6)

and the distribution of the sizes of components of a randomly
chosen i node is generated by

Hi(x) = xiGi[H1i ,H2i , . . . ,Hmi], (7)

where x = (x1,x2, . . . ,xm), 1 = (1,1, . . . ,1), and Gij (x) is the
generating function for the branching process defined as

Gij (x) =
[
∂Gi

∂xj

(1)

]−1
∂Gi

∂xj

(x). (8)

Finally, using the generating functions given in Eqs. (6) and (7),
the average number of nodes from module j in the component
of a randomly chosen node in module i is given by

〈si〉j = ∂Hi

∂xj

(x)
∣∣
x=1 = δij +

m∑
l=1

∂Gi

∂xl

(1)
∂Hli

∂xj

(1), (9)

where δij denotes the Kronecker δ.
In the case of a modular Erdős-Rényi (ER) network [40,41]

consisting of equal-size modules where both the intra- and

FIG. 1. (Color online) Visualization of the model for generating
random modular networks. [(a)–(c)] Illustration of the effect of α on
the obtained modular network using Gephi [38] on a Erdős-Rényi
(ER) network of size N = 10 000 with mean degree k = 8 divided
into m = 5 modules. (d) Illustration of the effect of the number of
modules m on the obtained network with a number of intermodule
links increasing with the number of modules. Interconnected nodes
and links are shown in red (light gray).
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interconnectivity are Poisson distributed with means kintra and
kinter, respectively, we can derive an exact solution for the
critical percolation. In particular, we obtain

Gi(x) = Gij (x) = ekintra(xi−1)e

kinter
m−1

∑
l �=i

(xl−1)
(10)

for any 1 � j � m. Thus, Eq. (9) can be written as

〈si〉j = δij + kintra
∂Hi

∂xj

(1) + kinter

m − 1

m∑
l = 1
l �= i

∂Hl

∂xj

(1), (11)

where

∂Hi

∂xj

(1) = δij + kintra
∂Hi

∂xj

(1) + kinter

m − 1

m∑
l = 1
l �= i

∂Hl

∂xj

(1). (12)

Solving the system for 〈s1〉1 we obtain

∂H1

∂x1
(1) = 1 + kintra

∂H1

∂x1
(1)

+ kinter

m − 1

[
∂H2

∂x1
(1) + · · · + ∂Hm

∂x1
(1)

]

= 1 + kintra
∂H1

∂x1
(1) + kinter

m − 1

[
kinter

∂H1
∂x1

(1)

1 − kintra − m−2
m−1kinter

]

⇒ ∂H1

∂x1
(1)

[
1 − kintra −

k2
inter

m−1

1 − kintra − m−2
m−1kinter

]
= 1

⇒ ∂H1

∂x1
(1)

= 1 − kintra − m−2
m−1kinter

(1 − kintra)
(
1 − kintra − m−2

m−1kinter
) − kinter

2

m−1

. (13)

Thus, ∂H1
∂x1

(1) diverges when (1 − kintra)[1 − kintra −
(m−2)kinter

m−1 ] − kinter
2

m−1 = 0. This is also where all ∂Hi

∂x1
(1)

diverges, and therefore the giant component emerges when
the following equation is satisfied:

(1 − kintra)

[
1 − kintra − (m − 2)kinter

m − 1

]
− kinter

2

m − 1
= 0. (14)

This condition yields k = kintra + kinter = 1 for every m,
recovering the standard result for single networks without
modules. Thus, in the case of random node failures, the
percolation threshold as well as the size of the giant component
only depends on the average degree, k, and the modular
structure has no effect on the percolation transition. The same
result holds for scale-free networks [42], as shown by Leicht
and D’Souza [36]; however, a closed form equation using the
generating function approach is not available.

A more realistic case of attacks on the network is the pref-
erential removal of interconnected nodes. This type of attacks
can be studied using Callaway et al.’s [43] approach developed
for studying the robustness of single networks to intentional
attacks. Here, we extend the formalism from single to multiple
networks in a similar manner that was done by Leicht and
D’Souza [36]. In this approach, the occupation probability of
nodes is not constant as before, but is a function of the node’s

degree. Let q denote the probability that a randomly chosen
interconnected node is occupied, and 1 − q the probability
that it is removed. For ER networks with average intra- and
interdegree kintra, kinter, respectively, this probability is related
to the general occupation probability, p, according to

q = p − e−kinter

1 − e−kinter
. (15)

In this case, the degree distribution of occupied nodes in
module i is given by

Fi(x) = e−kinterekintra(xi−1) + q[Gi(x) − e−kinterekintra(xi−1)]

= ekintra(xi−1)−kinter (1 − q) + qGi(x) (16)

and the average number of occupant nodes from module j in
the component of a randomly chosen node from module i is
given by

〈si〉j = δijFi(1) + kintraFi(1)
∂Jii

∂xj

(1)

+ q
kinter

1 − βi

m∑
l = 1
l �= i

βj

∂Jli

∂xj

(1). (17)

For equal-size modules where βi = 1
m

, Eq. (17) can be solved
analytically. Using similar algebra as before, we obtain

∂J11

∂x1
(1) + · · · + ∂Jmm

∂x1
(1)

= F1(1) + kintraF1(1) + q2 kinter

1 − q kinter

+ q2 kintra kinter
[

∂J11
∂x1

(1) + · · · + jmm

]
1 − q kinter

⇒ ∂J11

∂x1
(1) + · · · + ∂Jmm

∂x1
(1)

= F1(1)(1 − q kinter) + q2 kinter

[1 − kintraF1(1)](1 − q kinter) − q2 kintra kinter
. (18)

Thus, the critical occupation probability of interconnected
nodes, qc, above which a giant component emerges, is given by

(19a)
qc =

{
0 m < m∗(kinter),

−b+√
b2−4ac

2a
m > m∗(kinter), (19b)

where a = kintrakintere
−kinter , b = kintra + kinter − kintrae

−kinter −
kintrakintere

−kinter , and c = kintrae
−kinter − 1. Note that two

possible solutions emerge, one from Eq. (19) and one trivial
solution qc = 0, corresponding to the removal of all the
interconnected nodes. Each solution corresponds to a distinct
percolation regime, separated by a critical number of modules,
m∗, defined as the crossing of the two solution curves and is a
function of the degree of interconnections, see Eq. (4). From
these solutions, we obtain the critical occupation probability
pc, using Eq. (15).

The value of m∗ is obtained when qc = 0 is a solution of
Eq. (19); in other words, by setting q = 0 in the denominator
of Eq. (18), which yields

(k − k∗
inter)e

−k∗
inter = 1, (20)
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where k∗
inter is the mean interdegree at the point m∗. From

Eq. (4), k∗
inter is related to m∗ according to

k − k∗
inter

k∗
inter

= α

m − 1
⇒ k∗

inter = k(m∗ − 1)

α + m∗ − 1
. (21)

Replacing Eq. (21) in Eq. (20), we obtain the implicit equation

k

(
1 − m∗ − 1

α + 1 − m∗

)
e−k m∗−1

α+1−m∗ = 1 (22)

from which we can derive m∗ as a function of k and α.
Once the giant component emerges (p > pc), the fraction

of occupied nodes from module i in the giant component, Si

is given by

Si = e−kinter (1 − q)(1 − e−kintraSi )

+ q
[
1 − e

−(kintraSi+ kinter
1−βi

∑
j �=i

βj Sj )]
. (23)

Substituting βi = 1
m

in Eq. (23), yields

S = e−kinter (1 − q)(1 − e−kintraS) + q[1 − e−(kintraS+kinterS)]. (24)

For kintra = 0, only a fraction q of the nodes in the network
are connected, and one obtains S = q(1 − e−kS), and for
kinter = 0,S = (1 − e−kS), recovering the standard results for
percolation in single ER networks [40,41].

For nonequal module size, we can solve Eq. (23) numer-
ically. We obtain the same qc in this case, and in particular
that S = Si for every 1 � i � m, i.e., modules of different
sizes percolate at the same p. This result can be explained by
noting that the average inter- and interdegrees of nodes are
independent of modules size. Thus, the number of interlinks
connecting to a module (as well as the number of interlinks
connecting nodes inside the module) is proportional to its size,
see Eq. (23). Therefore, the fraction of nodes in the giant
component from each module is equal to the total fraction of
nodes in the giant component.

In the case of scale-free networks [1,2], the giant component
and qc can be obtained numerically from the analytical results.
In particular, we consider the case of scale-free networks
with average intra- and interdegree kintra, kinter, respectively,
generated by [44]

G(x) =
K∑

k=sintra

(k + 2)1−λ − (k + 1)1−λ

(K + 2)1−λ − (sintra + 1)1−λ
xk

+
K∑

k=sinter

(k + 2)1−λ − (k + 1)1−λ

(K + 2)1−λ − (sinter + 1)1−λ
xk, (25)

where sintra and sinter are the minimal degree cutoff (chosen such
that the desired mean degree is obtained) and K = 1000 is the
maximal degree cutoff. The degree distribution of occupied
nodes is then generated by

F (x) = pnot(1 − q)
K∑

‖=∫intra

(k + 2)1−λ − (k + 1)1−λ

(K + 2)1−λ − (sintra + 1)1−λ
xk

+ qG(x), (26)

where pnot is fraction of nodes with no interconnections. From
Eqs. (25) and (26), we obtain the size of the giant component

S = F (1) − F (u), where u = 1 − F ′(1) + F ′(u). (27)

By solving numerically the set of analytic Eqs. (25)–(27),
we obtain a critical occupation probability of interconnected
nodes, qc, for which u is smaller than 1. Comparing with the
trivial occupation probability qc = 0 for which the modules are
disconnected, we obtain the critical number of modules, m∗.

IV. RESULTS

In Fig. 2, we provide support to the analytical solution
given in Eqs. (15)–(25) by extensive numerical simulations
of ER modular networks of size N = 600 000 nodes. First,
we show the percolation threshold as a function of the
number of modules m for ER networks where the mean
degree is kept fixed k = 4 and α = 100, see Fig. 2(a). In the
regime m < m∗ the attack on interconnected nodes mainly
breaks the connectivity between the modules leaving their
internal structure intact. Therefore, only the removal of all
the interconnected nodes (qc = 0) breaks down the giant
component. Note that, as demonstrated in Figs. 2(c) and 2(d),
for m < m∗ the percolation transition is abrupt, while for
m > m∗ it is continuous. Note that for m < m∗, pc is defined
as the point where the discontinuous jump occurs, i.e., where
the modules become separated.

In order to demonstrate this phenomenon, in Fig. 3 we
visualize the giant component at S = 0.1 (close to full
collapse) with interconnected nodes shown in black and all
other nodes colored according to the module they belong
to. For a network with m = 4 < m∗, random node failure
destroys the internal structure of the modules evenly, see
Fig. 3(a). In this random failure case, all the modules always
appear in the giant component (i.e., there is always at least
one node from each module in the giant component) as

 0
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FIG. 2. (Color online) Two percolation regimes when attacking
interconnected nodes. (a) pc as a function of m calculated for ER
networks with k = 4, α = 100. Simulation points obtained from at
least 1000 simulation runs of networks of size N = 600 000. Solid
lines represent the analytical result obtained in Eqs. (15) and (19).
(b) Two-parameter (α, m) phase diagram for a fixed mean degree
k = 4. The black line corresponds to the critical number of modules
m∗ obtained from Eq. (22). [(c) and (d)] Fraction of nodes in the
largest cluster S and second largest cluster Ssecond, respectively, with
solid lines representing the analytical result obtained in Eq. (24) and
symbols are from simulations.
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    random        attack       random  attack

(a) (b) (c) (d)

m = 4 < m*                            m = 6 > m*         

FIG. 3. (Color online) Size of modules in the giant component at S = 0.1. Visualization is shown for networks of size N = 2000 with
mean degree k = 4 and α = 10, at the point where the giant component contains 10% of the nodes (S = 0.1) [(a) and (c)] for random node
removal and [(b) and (d)] for attack on interconnected nodes. [(e) and (f)] Distribution of the number of modules in the giant component and
second-largest component at S = 0.1. A module is considered to be part of a component if at least one of its nodes are part of the component.
(g) Distribution of the size of modules in the giant component at S = 0.1, normalized by the initial module size. Note that in (g), the size of
modules is measured by reconstructing the graph of each module in the giant component and counting its number of nodes in this graph. In
other words, interconnected nodes that have been detached from their original module are not considered. Results obtained by at least 1000
simulation runs of networks of size N = 600 000 with mean degree k = 4.

shown in Fig. 3(e), and the size of modules is very narrowly
distributed, see Fig. 3(g). In contrast to random failure, when
attacking the interconnected nodes (at S = 0.1), see Fig. 3(b),
not all the modules remain in the giant component [for
example, in Fig. 3(b) there are only two of them]. However,
the modules that do remain are almost intact, containing
14.6% of their initial nodes, significantly more than in the
random case (10%). Thus for m < m∗ the network collapses
by the breakdown of internally connected modules from the
network.

In contrast, for m > m∗, the interconnected nodes play an
important role also in the internal structure of modules and
therefore their removal breaks down both the internal and
external connectivity. Nevertheless, the attack still leaves them
slightly more complete than in the case of random removal, see
Fig. 3(c) and 3(d). Furthermore, in the case of attack, almost
all modules appear in the giant component [see Fig. 3(f)], and
thus their relative size is smaller compared to the m < m∗ case
[see Fig. 3(g)]. As m increases, the difference between the
attack and random cases becomes smaller since the network
becomes more homogeneous and in the very large m limit, the
modules stop being a factor at all, resulting in the convergence
of the percolation threshold to the one obtained for random
failures. When compared with degree-based attacks, studies
suggest a phase transition at which removing interconnected
nodes is more efficient when failure probability is low and/or
when modules are dense, but targeting high-degree nodes is
more efficient otherwise [29,30].

In Figs. 2(c) and 2(d) we show the size of the giant
component, S, and the second giant component, Ssecond, as
a function of p, observing an abrupt decrease in S due to

failures of entire modules for m < m∗. In addition, while for
m = 100 > m∗ we observe a regular second-order percolation
transition characterized by the continuous decrease of S and
the sharp peak in Ssecond, the case of m < m∗ demonstrates
an abrupt transition characterized by the sudden collapse of
Ssecond. Note that in this case, pc is considered as the point
where the discontinuous jump occurs.

Figure 2(b) shows the two-parameter (α, m) phase diagram
for a fixed mean degree k = 4. The black line corresponds
to m∗ as a function of α obtained from Eq. (22). Below the
black line, the percolation threshold is considerably higher,
indicating that systems with number of modules below m∗
can be very fragile. As the number of modules increase, the
system becomes more balanced, and pc values are decreasing
until converging to the percolation threshold of single ER
networks for large m.

In Fig. 4, we show analytical and numerical results for
scale-free networks with scaling exponent λ and α = 100, for
both intra- and interdegree distributions. Here the critical point,
m∗, is significantly larger compared to ER networks, with
m∗ = 169 for λ = 2.9, and m∗ goes to infinity for λ = 2.5,
see Figs. 4(a) and 4(b). In other words, for λ = 2.5, the
system always collapses as a result of the modules becoming
disconnected. This is due to the resilience of scale-free
networks, which makes them very hard to fragment the
modules internally. However, while the modules themselves
are robust, in scale-free networks, only a few nodes are needed
to interconnect the modules, consequently putting the entire
system at high risk, see Figs. 4(a)–4(d).

Finally, it is possible to investigate pc as a function of kinter

for fixed m and kintra. A similar transition in pc is observed
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FIG. 4. (Color online) Fragility of modular scale-free networks
[(a) and (b)] pc as a function of m calculated for scale-free networks
with mean degree k = 4, α = 100, and scaling exponents λ = 2.5
and λ = 2.9, respectively. Simulation points obtained from at least
1000 simulation runs of networks of size N = 600 000. Solid lines
represent the numerical solution for Eqs. (25)–(27). Two-parameter
(α, m) phase diagram for a fixed mean degree k = 4. The black line
in (d) corresponds to the critical number of modules, m∗ obtained by
solving Eqs. (25)–(27) numerically and finding the point where the
two possible solutions for pc cross. Note that in (c) there is no black
line since m∗ approach to infinite for λ = 2.5.

[see Figs. 5(a)–5(c)], but the critical point is now a function
of the concentration of interconnected nodes, k∗

inter. In order to
find k∗

inter we compare the value of pc when kinter = 0 to the pc

for a single-module network with mean degree k = kintra. For
ER networks we obtain

kintrae
−k∗

inter = 1. (28)

In other words, k∗
inter is the point where it is equally easy to dis-

connected the modules (by removing all interconnected nodes)
and to break the modules internally. For scale-free networks,
k∗

inter is obtained by solving Eqs. (25)–(27) numerically and

finding the point where the two possible solutions for pc cross.
In addition, we show the two-parameter (kintra, kinter) phase
diagram for a fixed number of modules m = 10, see Figs. 5(d)–
5(f). For ER networks, we obtain k∗

inter(1) = 0, meaning that
modules with mean intradegree 1 become fragmented as soon
as kinter is positive, in agreement with the known percolation
threshold for ER networks. Scale-free networks exhibit a high-
risk area depending almost solely on kinter and independent
of kintra. While broader degree distributions result in more
robust single-module networks, in this case the opposite is
true. The scale-free network with λ = 2.5 has a very large
high-risk area compared with the other more homogenous
networks. The reason is that a broader distribution with the
same average degree implies that there are more low-degree
nodes. Thus although the modules themselves remain robust,
there are less interconnected nodes, which make it easier to
break the network.

V. DISCUSSION

In summary, motivated by examples from real-world mod-
ular networks, we consider attack on interconnected nodes,
those connecting between modules. Unlike the case of random
failure, in such attacks we find that for each α there exists
a critical point m∗ below which the system first separates
abruptly into modules before being completely destroyed. Our
analysis reveals rich phase transition phenomena that could be
applied to a wide variety of systems, from the optimal design of
infrastructure, the efficient immunization approach in modular
networks (where epidemic spreading can be prevented at a low
cost by immunizing interconnected nodes), and new insights
and understandings of brain disorders. In particular, the
modular architecture of neural structural and functional net-
works is considered a fundamental principle of the brain [11],
and disrupted brain modular organization is related to neu-
ropathology [31,32]. For example, while schizophrenia has
been related to a breakdown in brain modules, AlzheimerÕs
disease has been related to disrupted connectivity between
modules [31]. Similarly, recent studies have empirically

FIG. 5. (Color online) Critical concentration of interconnected nodes [(a)–(c)] pc as a function of kinter calculated for (a) ER and [(b) and
(c)] SF networks with m = 10 and kintra = 2. Simulation points obtained from at least 1000 simulation runs of networks of size N = 600 000.
Solid lines represent the analytical result obtained in Eqs. (19), (25)–(27). [(d)–(f)] Two-parameter (kintra, kinter) phase diagram for a fixed
number of modules m = 10. The black line corresponds to the critical mean interdegree k∗

inter at which the two pc solutions cross.
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uncovered differences in the modular structure of semantic
networks of high versus low creative individuals, suggesting
a new perspective on the effect of modularity on memory
and language [45,46]. Thus, our findings of the two different
regimes may shed further light on the role modularity plays in
neurocognitive processes.
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