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Anomalous biased diffusion in networks
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We study diffusion with a bias toward a target node in networks. This problem is relevant to efficient routing
strategies in emerging communication networks like optical networks. Bias is represented by a probability p of
the packet or particle to travel at every hop toward a site that is along the shortest path to the target node. We
investigate the scaling of the mean first passage time (MFPT) with the size of the network. We find by using
theoretical analysis and computer simulations that for random regular (RR) and Erdős-Rényi networks, there
exists a threshold probability, pth, such that for p < pth the MFPT scales anomalously as Nα , where N is the
number of nodes, and α depends on p. For p > pth, the MFPT scales logarithmically with N . The threshold
value pth of the bias parameter for which the regime transition occurs is found to depend only on the mean degree
of the nodes. An exact solution for every value of p is given for the scaling of the MFPT in RR networks. The
regime transition is also observed for the second moment of the probability distribution function, the standard
deviation. For the case of scale-free (SF) networks, we present analytical bounds and simulations results showing
that the MFPT scales at most as ln N to a positive power for any finite bias, which means that in SF networks
even a very small bias is considerably more efficient in comparison to unbiased walk.
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I. INTRODUCTION

Recently there has been growing interest in investigating
the properties of complex networks [1–5]. These include
systems from markedly different disciplines, as communica-
tion networks, the Internet itself, social networks, networks
of collaboration between scientists, transport networks, gene
regulatory networks, and many other examples in biology,
sociology, economics, and even linguistics, with new systems
being added continuously to the list [6–15].

Random regular (RR) networks are networks where all
nodes have exactly the same number of edges (connections).
They constitute a well-studied mathematical model, which is
suitable for exact analysis of its properties. The Erdős-Rényi
(ER) model [16–18] is a well-known simple model, which
generates random graphs by setting an edge between each
pair of nodes with a probability q, independently of the other
edges. This yields (in the limit N → ∞) a Poisson distribution
(for q < 1) of the node degree k: P (k) = 〈k〉k

k! e−〈k〉, with
〈k〉 = q(N − 1), with q = 1 giving the completely connected
graph. Scale-free (SF) networks, termed after the absence
of characteristic typical node connectivity, have been widely
studied during recent years, since they describe many real-
world structures [1–4]. This class of networks is defined
by having a degree distribution that follows a power law,
P (k) ∼ k−γ , where γ is a parameter that controls the broad-
ness of the distribution and is characteristic of the structure of
the network. An important property of networks is the average
shortest path length D between two nodes. For the case of RR
and ER networks, it has been shown that D scales as ln N .
This dependence is the origin of the well-known small world
phenomena in networks. For SF networks with 2 < γ < 3, the

distances between nodes are even more reduced. It has been
shown that in this case, D scales as ln(ln N ) and we then use
the term of ultra-small world [19,20].

Random walks have interesting properties that may depend
on the dimension and the structure of the medium in which
they are confined [21–28], e.g., lattices or complex networks.
Diffusion is a very natural mode of transport, where hopping
from one node to the next is unaffected by the history of the
walk [23,29]. A measure of diffusion that has been extensively
studied (see, e.g., Refs. [24,25,30–35]), is the first-passage
time (FPT), which is the time required for a random walker to
reach a given target point for the first time. The importance of
FPT originates from the crucial role played by first encounter
properties in various real situations, including transport in
disordered media, neuron firing dynamics, buying and selling
on the stock market, spreading of diseases, or target search
processes [24,30].

The properties of the first-passage time have been investi-
gated in a variety of networks. Baronchelli and Loreto [32],
using the concept of rings, have shown that the FPT probability
distribution in ER networks decays exponentially and FPT
versus the degree of the target node is a power law for various
networks, such as ER networks, the Barabási-Albert model
(BA) [1], as well as the Internet. An analytical formula has
also been derived for the mean first-passage time (MFPT)
of a random walker from one node to another, namely 〈Tij 〉
(mean transit time), on networks [36]. Note that in this case
a random walk motion from node i to j is not symmetric
with the motion in the opposite direction. The size scaling of
〈Tij 〉 has been studied in a variety of systems and geometries
[29]. The trapping problem on networks, which is closely
related to MFPT, was studied by Kittas et al. [37]. Biased
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random walks on networks have also been studied [33,38],
including local navigation rules (see, e.g., Refs. [39–42]). In
Ref. [33], the authors, using a different kind of bias than the one
considered here, showed that for ER networks, the mean return
time (MRT) of biased random walks to a randomly chosen
target node exhibits a localization-delocalization transition,
corresponding to a transition from recurrent to transient
behavior at a certain value of the bias parameter. In Ref. [43],
the authors gave an exact analytical solution for this kind of
biased walks on Galton Watson trees.

II. AIMS AND METHODS

Sending messages through a network in the form of packets
in an efficient way is one of the most challenging problems in
today’s communication technologies. It is obvious that a fully
biased walk (with probability to stay on the shortest path equal
to 1) would be the most efficient way to send a message, if the
exact structure of the network is known. But, quite often, as
in the case of wireless sensor networks [44], ad-hoc networks
[45], and peer-to-peer networks [46], due to the continuously
dynamically changing of the infrastructure, the application of
routing tables is not possible, and the so-called hot-potato
or random-walk routing protocol is preferable, because it
can naturally cope with failures or disconnections of nodes.
The problem with such a procedure, in which data packets
traverse the network in a random fashion, is a significant
increase of the hitting time. For this reason, new protocols
have been proposed recently [47] that are based on the idea
of biased random walks and that can significantly reduce the
hitting time in such networks. For example, the lukewarm-
potato protocol [48] is totally tunable (with the value of just
one threshold parameter) and can operate anywhere in the
continuum from the hot-potato or random-walk forwarding
protocol to a deterministic shortest-path forwarding protocol.
But also, in a more general manner, we can consider that every
routing protocol, which uses deflection (hot-potato) routing in
certain circumstances (e.g., insufficient storage space of the
node or a disconnected node), can be represented by a biased
random walk process since it uses the shortest path only if it
is possible. The probability of deflection routing is viewed in
our model as a noise for the path-length minimization process
of routing tables. This problem is also very relevant in optical
networks where optical switches pay a large price for packet
storing (with the conversion of light to electronic signals).
The result is a limited storing capacity of optical switches
that must route packages in a random direction in the case
the destination path is overloaded or they have reached the
storage limit. Therefore, the probability to stay on the shortest
path may, in certain cases, have a small value (optical switches
with insufficient storage capacity), and in other cases, a large
one (few disfunctioning nodes). It is consequently of great
interest, and it is the subject of this work, to understand how
the diffusion process is affected when a tunable bias along
the shortest path is used and to theoretically study the scaling
properties of such biased diffusion processes.

We use Monte Carlo computer simulations implemented by
the following algorithm: Initially, a source and a target node
are selected at random. The particle travels from the source
to the target node at each step either randomly, or along the

FIG. 1. Illustration of the biased diffusion process. The arrows
represent moves. Solid arrows represent movement along the shortest
path, while dashed arrows represent random steps. The destination
node is represented by a square.

shortest path (for a schematic demonstration, see Fig. 1). The
bias is expressed by a parameter p, which is the probability
that the particle at each time step travels toward the target node
using the shortest path to it. To calculate the shortest path, we
use the breadth-first-search (BFS) algorithm as described in
Ref. [49]. We use the target node as the BFS “source” denoted
as s and identify the geodesic distances from the target to every
node in the network, i.e., the number of links in the shortest
path from the target to any arbitrary node. Thus, each node
is assigned a number, which indicates its distance from the
target. When the particle moves, it jumps to one of its adjacent
nodes, which belong to the shortest path with probability p
or to a random node (including the ones in the shortest path)
with probability 1 − p. Consequently, for p = 1 the particle
always travels on the shortest path, while for p = 0 it performs
a stochastic random walk. We consider the process only on
the largest cluster of the network (also identified with the
BFS algorithm). We perform 105 total runs (1000 networks,
considering 100 pairs of random source-target nodes for each
network realization).

III. RESULTS AND DISCUSSION

First, we investigate the scaling of the MFPT, TD , with
system size N (number of nodes of the network) for RR
networks. We find that the value of p has a large effect on
the scaling of MFPT, with one range of large p having a
logarithmic scaling and another of small p having a power law
function of N (see Fig. 2). As p increases, the system size
becomes less relevant and the MFPT scales logarithmically
with the system size, similar to the diameter of the network
[16–18].

For the analytical approach of the case of RR networks,
we consider a walk on a finite tree of depth D with reflecting
boundary conditions at the leaves (ends). We go toward the
root with probability p and hop to a random neighbor with
probability 1 − p. Since there are k neighbors to each node,
there is a probability (1 − p)/k that we may choose the
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(a) (b)

(c) (d)

FIG. 2. (Color online) (a) Log-log and (b) Log-linear plots of MFPT (TD) vs. N for RR networks with k = 3, and (c) Log-log and
(d) Log-linear plots of MFPT vs. N for RR networks with k = 10 for various values of p. Solid lines represent analytical solutions and dashed
lines correspond to the threshold value, where TD ∼ D2, i.e., regular diffusion. The measured slopes (red) of the power law regime and the
prefactors (red) of the logarithmic regime are in excellent agreement with the values given by Eqs. (13) and (11), respectively.

link going toward the root. Eventually, this can be mapped
to a random walk on a finite segment {0,1, . . . ,D}. Since
the number of nodes at a distance d from the source is
approximately nd = k(k − 1)d−1, and the total number of
nodes is

N = 1 +
D∑

i=1

k(k − 1)d−1 = 1 + k
(k − 1)D − 1

k − 2
, (1)

it follows that

D = ln [1 + (k − 2)(N − 1)/k]
ln(k − 1)

≈ ln [(k − 2)N/k]
ln(k − 1)

(2)

is the average distance and the probability of going toward the
target is p′ = p + (1 − p)/k. Denote by Ti the average time it
takes the walker to reach the destination when it is at distance
i from it. The recurrence equations are

Ti = 1 + p′Ti−1 + (1 − p′)Ti+1, (3)

for 0 < i < D and

T0 = 0, (4)

TD = 1 + p′TD−1 + (1 − p′)TD. (5)

The solution of Eq. (3) is

Ti = i

2p′ − 1
+ c1 + c2

(
p′

1 − p′

)i

. (6)

Substituting in Eqs. (4) and (5), one obtains

c1 = −c2 = 1 − p′

(2p′ − 1)2

(
1 − p′

p′

)D

. (7)

Thus,

TD = D

2p′ − 1
+ 1 − p′

(2p′ − 1)2

[(
1 − p′

p′

)D

− 1

]

. (8)

A better approximation is obtained when taking into consid-
eration the probability of selecting a pair of nodes at distance
i from each other. The probability of choosing such a pair is
approximately

P (i) = k(k − 1)i−1

∑D
i=1 k(k − 1)i−1

. (9)

Thus, the expected time is

E[T ] =
D∑

i=1

P (i)Ti = D(k − 1)D+1 − (D + 1)(k − 1)D + 1
(k − 2)[(k − 1)D − 1]

+ c1 − c1

(k − 1) p′

1−p′

{[
(k − 1) p′

1−p′

]D − 1
}

[
(k − 1) p′

1−p′ − 1
]
[(k − 1)D − 1]

. (10)

Therefore, if p′ > 1/2 [i.e., p > (k − 2)/(2k − 2)], the first
term of Eq. (8) dominates and we have that the first passage
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time is approximately

TD ≈ D

2p′ − 1
≈ ln [(k − 2)N/k]

[2p + 2(1 − p)/k − 1] ln(k − 1)
. (11)

Whereas, if p′ < 1/2 the second term dominates and we have

TD ≈ 1 − p′

(2p′ − 1)2

(1 − p′

p′

)D

≈ 1 − p′

(2p′ − 1)2

(
1 − p′

p′

)ln[(k−2)N/k]/ ln(k−1)

∝ Nα, (12)

where

α =
ln 1−p′

p′

ln(k − 1)
. (13)

The minimum value for p′ is p′ = 1/k (obtained for p = 0).
In this case, 1 − p′ = (k − 1)/k and α = 1, i.e., on average the
walk moves randomly with no preferred direction and reaches
a large fraction of the nodes in the network before reaching
the target, as expected.

For the case p′ = 1/2, the solution for the equations
becomes

Ti = (2D + 1)i − i2, (14)

and therefore,

TD = D(D + 1) = ln[(k − 2)N/k]
ln(k − 1)

{
ln[(k − 2)N/k]

ln(k − 1)
+ 1

}
.

(15)

Thus, it behaves like normal diffusion, where the time needed
to reach distance D is of the order D2 [22–24].

From the above analysis, we clearly see that for RR
networks there exists an abrupt change from a power law
behavior to logarithmic dependence on N for the MFPT.
The boundary between these two radically different scaling
behaviors corresponds to the threshold value of the bias
parameter pth = (k − 2)/(2k − 2). In Fig. 2 we compare the
analytical solution, Eq. (8), with the results of the Monte Carlo
simulations for k = 3 and k = 10. The measured slopes of the
power law regime and the prefactors of the logarithmic regime
are in excellent agreement with the values given by Eqs. (13)
and (11), respectively.

In Fig. 3 we investigate the behavior of the standard
deviation σ , which is the second moment of the probability
distribution function of the FPT for RR networks. In Figs. 3(a)
and 3(b) we see that the scaling of the standard deviation with
the size of the network largely resembles that of the MFPT,
with two different regimes separated by the threshold value pth.
This resemblance and the existence of the regime transition for
the same threshold value pth is made more clear in Fig. 3(c),
where the scaling of the ratio σ/TD is presented. We see that
for p < pth, the scaling of the two quantities is the same,
while for p > pth, the standard deviation scales slower with
N than the MFPT. In Fig. 3(d), we see the dependence of the
standard deviation on the value of p for a fixed network size.
We see that the standard deviation decreases to reach a very
small value for a fully biased diffusion. This is expected since

(a) (b)

(c) (d)

FIG. 3. (Color online) (a) Log-log and (b) Log-linear plots of the standard deviation σ vs. N for RR networks with k = 3, (c) plot of σ/TD

vs. N for RR networks with k = 3 and (d) plot of σ versus the value of the bias parameter p for N = 20 000.
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(a) (b)

(c) (d)

FIG. 4. (Color online) (a) Log-log and (b) Log-linear plots of MFPT (TD) vs. N , and (c) Log-log and (d) Log-linear plots of σ vs. N for
ER networks with 〈k〉 = 10 for various values of p. Symbols are from simulations and lines are from theory.

for a fully biased walk the probability distribution function of
MFPT corresponds to a δ function.

We now investigate the case of ER networks. A notable
result is the fact that the MFPT in ER networks behaves
in the same way as in RR networks; i.e., the previous
analytical relations are also applicable for ER networks by
simply substituing k by 〈k〉. In fact, in Figs. 4(a) and 4(b)
we see that for ER networks there is also a very good
agreement between theoretical and simulated results, and
the threshold value of the bias parameter is given now by
pth = (〈k〉 − 2)/(2 〈k〉 − 2). This is an important result since
ER networks constitute a more general ensemble than RR
networks. In Figs. 4(c) and 4(d), we see the two regimes of
the scaling of the standard deviation σ of the FPT for ER
networks.

For scale-free networks having power law degree distribu-
tion P (k) = ck−γ with 2 < γ < 3 it was shown [19,20] that
the average and typical distances between nodes are

D ≈ 2 ln ln N

| ln(γ − 2)|
. (16)

In such networks some nodes have very high degrees, and
thus 1/k, the probability to randomly walk in direction of the
shortest path is very small. However, for any p > 0, we have
p′ = 1/k + p > p. Thus, using p′ = p yields an upper bound
on the first passage time. Using Eq. (8) in conjunction with

Eq. (16) and substituting p′ = p, one obtains

TD <
2 ln ln N

(2p − 1)| ln(γ − 2)|

+ 1 − p

(2p − 1)2

[(
1 − p

p

) 2 ln ln N
| ln(γ−2)|

− 1

]

= 2 ln ln N

(2p − 1)| ln(γ − 2)|

+ 1 − p

(2p − 1)2

[
(ln N )(2 ln 1−p

p
)/| ln(γ−2)| − 1

]
, (17)

which leads, for p < 1/2, to

TD < (ln N )c, (18)

for some constant c = (2 ln 1−p
p

)/| ln(γ − 2)|. For p > 1/2,
Eq. (17) leads to

TD <
2 ln ln N

(2p − 1)| ln(γ − 2)|
, (19)

since, on average, every step brings us closer to the target, and
thus the expected number of steps is proportional to the average
distance. These results are, in fact, overestimates, since almost
all shortest paths in a scale-free network pass through a dense
“core” of high degree nodes. Thus, in the first part of the walk,
each step with high probability brings us closer to the core,
and thus the effective p′ is close to 1. Furthermore, since the
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(a) (b)

FIG. 5. (a) Log-log plot of the simulation results for the MFPT (TD) vs. N for SF networks with γ = 2.5 and various values of p.
(b) Slopes of simulation results of Fig. 5(a). The decreasing slopes with N suggest that TD increases less than a power law with N for all p > 0
values as predicted by Eqs. (18) and (19).

core is dense there are many alternate, nearly shortest paths,
and each random step may decrease or leave unchanged the
distance to the target, also leading to an effective p′, which is
higher than p.

Figure 5(a) presents simulation results for biased random
walks on scale-free networks with γ = 2.5. As can be seen,
except for the case of p = 0, the MFPT is much lower than N
and does not scale as a power of N , but less. Indeed, careful
analysis of the cases p > 0 show that the derivative decreases
with N [Fig. 5(b)], indicating that TD is less than a power of N .
In fact, the average MFPT is considerably lower than the bound
given in Eq. (17). Even for a very small bias, there is a very
large decrease of the MFPT in comparison with the unbiased
diffusion case. This means that in real networks even a slightly
higher probability to stay on the shortest path, rather than in
any other randomly chosen direction, dramatically affects the
time to reach the target, making the diffusion process highly
efficient.

IV. CONCLUSIONS

A model was developed to study the efficiency of biased
random walks in networks. The bias is expressed by the
parameter p, which is the probability that the particle remains
in the shortest path to a target node, in the range between the
extreme values 0 (unbiased case) and 1 (fully biased case). In

both RR and ER networks, the MFPT scaling with the size
of the system shows a sudden transition from power law to
logarithmic dependence on N and this transition occurs for
the value of the bias parameter pth = (〈k〉 − 2)/(2 〈k〉 − 2).
This was shown by means of Monte Carlo simulations but
also demonstrated analytically with an exact solution for the
case of RR networks. A similar transition between two regimes
is also observed for the standard deviation. For SF networks
with 2 < γ < 3, as induced by the ln(ln N ) dependence of
their diameter, the biased diffusion becomes a highly efficient
process even for very small values of the bias parameter p.
Indeed, it was shown analytically and by simulations that the
scaling of the MFPT, for every p > 0, scales less than a positive
power of ln N .
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