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Much work has been devoted to studying percolation of networks and interdependent networks under varying
levels of failures. Researchers have considered many different realistic network structures such as scale-free
networks, spatial networks, and more. However, thus far no study has analyzed a system of hierarchical
community structure of many networks. For example, infrastructure across cities is likely distributed with nodes
tightly connected within small neighborhoods, somewhat less connected across the whole city, and even fewer
connections between cities. Furthermore, while previous work identified interconnected nodes, those nodes with
links outside their neighborhood, to be more likely to be attacked or to fail, in a hierarchical structure nodes can
be interconnected in different layers (between neighborhoods, between cities, etc.). We consider here the case
where the nodes with interconnections at the highest level of the hierarchy are most likely to fail, followed by
those with interconnections at the next level, etc. This is because nodes at higher levels of the hierarchy have the
longest links as well as having more flow passing through them. We develop an analytic solution for percolation
of both single and interdependent networks of this structure and verify our theory through simulations. We find
that, depending on the number of levels in the hierarchy, there may be multiple transitions in the giant component
(fraction of connected nodes), as the network separates at the various levels. Our results show that these multiple
jumps are a feature of hierarchical networks and can affect the vulnerability of infrastructure networks.
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I. INTRODUCTION

The robustness of infrastructure systems can be understood
through the frameworks of complex networks, percolation,
and interdependent networks [1–12]. The initial research on
network robustness was later expanded to include various net-
work structures such as different degree distributions [13–15],
clustering [16–18], spatial embedding [19–21], and, quite re-
cently, community structure [22,23]. Additional research has
considered various types of attacks on these networks such as
degree-based attacks [24,25], localized attacks [26,27], and at-
tacks based on nodes linking across communities [22,23,28].

Despite these advances, there remain network structures
that are likely relevant for robustness that have not yet been
studied. Among these is a hierarchical structure, which we
study here, where communities connect loosely with one
another to form larger communities, which then connect to
one another, and so on [29–32] (see Fig. 1). In the context
of infrastructure robustness these hierarchical modules likely
describe real neighborhoods overlapping to form cities, which
then overlap to form states, etc., which are then interconnected
among themselves.

Furthermore, in this model, the nodes at the highest level of
the hierarchy (e.g., between states) are likely more vulnerable
to failure or attack than those at the next highest level, which
are in turn more vulnerable than those at an even lower level,
etc. This is because the nodes at higher levels have longer
distance links between them which are more likely to fail or
be attacked [33] and also have higher betweenness [22], which
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yields an additional load on them [34,35]. Moreover, recent
work by da Cunha et al. [28] showed that attacks on these
‘interconnected nodes’ are an optimal form of attack on the
US power grid, an infrastructure system of critical interest.

II. FAILURE AND ATTACK IN COMPLEX NETWORKS

We now provide a short review of the analytic methods for
studying the effects of various attacks on complex networks.
In the next sections we make use of these methods to find
an analytic solution describing the fractional size of the giant
component in our model under attack. We recall the defini-
tions from Callaway et al. [25] for the generating function of
a variable x,

G(x) =
∞∑

k=0

Pi (k)xk, (1)

where k is the number of links and Pi (k) is the likelihood that
a node has exactly k links.

For targeted attack, they also define

F0(x) =
∞∑

k=0

rkPi (k)xk, (2)

where the symbols are as before, except that rk represents the
likelihood that a node with exactly k links fails. Next, the
generating function of the branching process, F1(x), is given
by

F1(x) = F ′
0(x)/G′(1), (3)

where F ′
0(x) means the derivative of F0(x) with respect to x,

and likewise for G′(1).
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Given the above, the distribution of sizes of clusters of
connected nodes reached by following a randomly chosen
edge is given by

H1(x) = 1 − F1(x) + xF1(H1(x)). (4)

Similarly, the distribution of sizes of clusters from a randomly
chosen node is given by

H0(x) = 1 − F0(1) + xF0(H1(x)). (5)

It was noted that above the percolation threshold, this refers
to the sizes of clusters that are not in the giant component and
thus H0(1) gives the fraction of nodes that are not in the giant
component [25]. The fraction of nodes in the giant component,
P∞, can thus be found by

P∞(x) = 1 − H0(1) = F0(1) − F0(u), (6)

where u is given by

u = 1 − F1(1) + F1(u). (7)

When a 1 − p fraction of nodes is removed randomly
from an Erdős-Rényi network (Poisson distribution of links)
with average degree 〈k〉 per node, it is found that G(x) =
e〈k〉(x−1) [36] and F0(x) = pG(x), where p is the fraction
of surviving nodes. Continuing the derivation leads to the
classical result from Erdős-Rényi, P∞ = p(1 − e−〈k〉P∞ ).

For the case of modular networks with Poisson-distributed
inter- and intraconnections, where the average degree of inter-
connections is kinter, the average degree of intraconnections is
kintra, and r is the fraction of interconnected nodes that survive,
the generating functions are [22]

G(x) = e(kintra+kinter )(x−1), (8)

F0(x) = ekintra (x−1)−kinter (1 − r ) + rG(x), (9)

F1(x) = F ′
0(x)/G′(1). (10)

Following the above derivation leads to the formula for P∞ in
modular networks [22]

P∞ =
{
e−kinter (1 − r )(1 − e−kintraP∞ ) + r (1 − e−(kintra+kinter )P∞ ), 0 < r < 1,
p

m
(1 − e−mkintraP∞ ), r = 0,

(11)

where kinter is the average degree of interconnections, kintra is
the average degree of intraconnections, and r is the fraction
of interconnected nodes that remain. Once r = 0, all inter-
connected nodes are removed and the model continues with
removal of the remaining nodes randomly.

Note that for r = 0, the value of P∞ is divided by m since
at this point the modules are separated and thus the fraction
of nodes in the giant component is scaled by 1 over the
number of modules. We note that the earlier study [22] found
that the network may segregate into separate modules before
collapsing or it may collapse all together as a single network.
It has also been found that if nodes are targeted entirely
randomly (i.e., no preference for attacking interconnected
nodes), then P∞ is the same as for an Erdős-Rényi network
with degree kinter + kintra. [22]

More details on the above derivations can be found in Refs.
[22,23,25].

III. MODEL

We now develop and analyze a stochastic block model [37–
40] with overlap among the various blocks (modules). We first
define a vector �m describing the number of distinct modules or
communities (blocks) in each layer of the hierarchy. In the first
layer we always consider the entire network as a single com-
munity, thus m1 = 1. The next layer, m2, counts how many
modules are in the second layer. Next is the total number of
modules in the third layer, followed by the number of modules
in the fourth layer, etc. We also assume, for simplicity, that
all of the mj modules in layer j are broken down into the
same fixed number of mj+1 modules. For example, for
the network shown in Fig. 1, we define �m = [1, 3, 12, 36];
since the top layer is a connected graph, in the next layer we
have 3 modules, then a total of 12 modules (i.e., each of the 3

is broken down into 4 smaller modules), and, finally, 36, since
each of the 12 modules is broken down into 3 additional ones.

We next define the vector �k, which describes the average
degree between nodes connected in each layer of the network.
Thus, if in the highest layer the nodes have an average of 0.1
link to nodes in other modules, this will be the first entry, k1,
in �k. If the average degree in the next layer is 0.3, then that

FIG. 1. Model illustration. For this realization, the model has
four hierarchical layers. In the top layer there are three modules,
each of which is broken down into four modules, each of which is
then broken down into three modules, which are not broken down
further. We can describe this configuration of hierarchical modules
by the vector �m = [1, 3, 12, 36].
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will be the second entry, k2, etc. We assume that the entries
in �k should be strictly increasing since we expect there to
be more links within communities in a lower layer than in a
higher layer (e.g., neighborhoods are more tightly connected
than cities).

In our model, we carry out a targeted attack on the nodes
of the network, assuming that nodes that are interconnected
in the top level are most likely to fail, followed by those
connected in the second level, etc. To do so, we must deter-
mine how many nodes are connected in each level and convert
from the survival likelihood of nodes in a given layer, ri ,
to the overall survival likelihood, p. First, we must estimate
the fraction of nodes that are connected in level i. We note
that the distribution of links in each layer is Poisson, with
the likelihood of a node’s having k links being given by
P (k) = kk

i e
−ki /k!, where ki is the average degree in layer

i. We can then find the likelihood of not having any links
as P (0) = e−ki and thus the likelihood of having at least
one link (being interconnected) is 1 − e−ki . We define ri as
the survival probability of interconnected nodes in layer i.
For the top layer of interconnections we can find how the
1 − p overall fraction of nodes removed from the network
corresponds to the 1 − r1 fraction of interconnected nodes
removed using [22]

p = r1(1 − e−k1 ) + e−k1 . (12)

This equation can be understood by recognizing that the
likelihood of a node’s not having an interlink (i.e., not being
interconnected) in layer 1 is given by e−k1 and therefore the
likelihood of being interconnected is 1 − e−k1 . Since r1 is
the fraction of interconnected nodes that survive, the overall
survival probability is given by multiplying r1 by the fraction
of nodes that are interconnected and adding the fraction of
nodes that are not interconnected (since all noninterconnected
nodes survive the attack).

After we have removed all interconnected nodes in the
top level, we then begin removing interconnected nodes in
the next level of the hierarchy. In order to convert from the
survival probability of nodes in this next level, r2, to the
overall survival probability, p, we must take into account that
some of the nodes removed from the previous layer were
likely interconnected in this layer too, but as they have already
been removed we must remove them from our calculation.

We do so by first finding the value of p for removing all
interconnected nodes in each respective layer. For the first
layer, this is when r1 = 0 and thus the value of p at which all
interconnected nodes in layer 1 are removed is pco1 = e−k1 ,
where we have defined pco1 as the cutoff value for layer
1. For the next layer the cutoff at which all interconnected
nodes are removed is given by recognizing that the fraction
of interconnected nodes in this next layer is 1 − e−k2 , but we
have already removed a 1 − pco1 fraction of nodes. We must
recognize that some nodes are also likely to be interconnected
in both layers and we must make sure not to double-count
them. We can thus find pco2 using the inclusion-exclusion
principle as

pco2 = 1 − (1 − e−k2 + 1 − e−k1 − (1 − e−k2 )(1 − e−k1 ))

= e−k2−k1 , (13)

where in the top line (1 − e−k1 ) is the fraction of intercon-
nected nodes in layer 1 and (1 − e−k2 ) is the fraction of in-
terconnected nodes in layer 2, and we subtract (1 − e−k2 )(1 −
e−k1 ), which is the fraction of interconnected nodes in both
layers that were double-counted. To get the cutoff at which all
interconnected nodes in either layer 1 or layer 2 are removed,
we take 1 minus the fraction of nodes that are interconnected
in either of our two layers. Simplifying terms gives the bottom
line in Eq. (13).

Another, simpler way to arrive at Eq. (13) is to note that
we now remove all nodes with an interlink in either the first
layer or the second layer. The total degree in these layers is
just the sum k1 + k2. Given, as we can immediately recognize
based on the Poisson distribution for k1 + k2, that e−(k1+k2 )

is the fraction of nodes that will not be connected in either
layer, if we remove all nodes that are interconnected in either
of these layers, we will be left with exactly a fraction e−(k1+k2 )

of nodes.
We can continue along the above lines to recognize that

as we move farther down the layers, we must include an
additional ki for each layer i. Thus, for a given layer i, the
cutoff value of p for which all interconnected nodes in that
layer are removed is

pcoi = e− ∑i
j=1 kj . (14)

Having solved the case where all nodes in a given layer are
removed, we can now consider the values of p for which only
some fraction, 0 < ri < 1, of nodes in layer i survives. We can
then convert from ri , the survival probability in layer i (after
all nodes in higher layers have been removed), to p using

p = ri

(
pcoi−1 − pcoi

) + pcoi , (15)

which can be understood by noting that the pcoi fraction of
nodes will always survive since they are not interconnected in
layer i (or any higher layer) and the ri (pcoi−1 − pcoi ) fraction
of interconnected nodes in layer i survives.

IV. ANALYTIC THEORY FOR A SINGLE
HIERARCHICAL NETWORK

We now present a theory for hierarchical networks, gener-
alizing the results in Eq. (11). For the top layer, we can make
use of the previous results on modular networks by setting our
average interconnected degree to the degree in the layer we
are attacking, namely, k1. To determine the intra degree, we
note that all connections below the layer we are attacking
are randomly distributed and thus the average intra degree will
be replaced with the sum of the degrees below the layer we are
attacking,

∑l
i=2 ki , where l is the number of layers. We thus

obtain

P∞ = e−k1 (1 − r1)
(
1 − e−(

∑l
i=2 ki )P∞

)
+ r1

(
1 − e−(

∑l
i=1 ki )P∞

)
, pco0 < p. (16)

Note that the result in Eq. (16) is only accurate until we have
removed all the nodes that are interconnected in the top layer,
i.e., as long as pco0 < p. Also note that Eq. (16) is the same
as Eq. (11) when r > 0, with kinter = k1 and kintra = ∑l

i=2 ki .
Once we have removed all interconnected nodes in the

first layer, we then move on to removing nodes that are
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interconnected in the second layer. In this case, the average
degree of interconnections is now k2 and the average degree of
intraconnections is

∑l
i=3 ki . Furthermore, we must recall that

the survival probability has already dropped to pco1 , which
is distributed randomly from the perspective of these lower
layers. We also must note that at this point the network is
already split into m2 separate modules and nodes that are
interconnected in layer 2 survive with a probability of only
r2. Accounting for this gives

m2P∞ = pco1

[
e−k2 (1 − r2)

(
1 − e−(

∑l
i=3 ki )m2P∞

)
+ r2

(
1 − e−(

∑l
i=2 ki )m2P∞

)]
, pco2 < p < pco1 .

(17)

Note that this equation is only accurate for values of p for
which all interconnected nodes in layer 1 are removed, but not
all interconnected nodes in layer 2 are removed, i.e., pco2 <

p < pco1 .
We can generalize the above results for all values of p to

find

mjP∞ = pcoj−1

[
e−kj (1 − rj )

(
1 − e−(

∑l
i=j+1 ki )mj P∞

)
+ rj

(
1 − e−(

∑l
i=j ki )mj P∞

)]
, pcoj

< p < pcoj−1 .

(18)

To apply Eq. (18) for a given p one must first examine the pcoj

values to determine between which two cutoffs p is and then
convert p to a corresponding rj value. Finally, one plugs rj ,
pcoj−1 , and the other parameter values into Eq. (18).

We compare in Fig. 2 the theory of Eq. (18) and simulations
of a corresponding network, observing excellent agreement
between them. The figure shows multiple discontinuities in
P∞ as a function of p. Such multiple transitions have previ-
ously been observed in a few models that consider bootstrap
percolation or percolation on interdependent networks [41–
43], however, to the best of our knowledge, multiple (more
than two) transitions have not been observed under targeted
attack with ordinary percolation as in our model. As all
interconnected nodes in a particular layer are removed, the
system experiences a discontinuous jump. We note that the
number of layers minus 1 serves as an upper bound on the
number of potential jumps, as there may not be more jumps
than that, however, there may be fewer jumps, depending on
the parameters. This generalizes the results in Ref. [22], where
only for certain sets of parameter values did the network
separate into distinct communities before collapsing entirely,
while for other parameter values there was only a single
collapse where all the communities failed in tandem. In the
next section we assess the number of discontinuous jumps for
a given set of parameters. While one could of course examine
this by plotting the results of Eq. (18) and then observing
how many jumps take place, we provide more intuition into
the underlying process by considering the number of jumps
explicitly via analytical considerations.

A. Number of abrupt jumps

Here we evaluate the expected number of jumps that will
take place using our analytic theory from above. The key

FIG. 2. Comparison between simulation results and theory. In
both (a) and (b) there are six layers, with each layer splitting a module
into two other modules; thus there are �m = [1, 2, 4, 8, 16, 32] mod-
ules in each layer, with the average degrees between nodes in each
layer given by the vector �k in the legend. We have different values for
the degree in each layer as given in the legends to (a) and (b). Lines
represent the theory of Eq. (18) and points are simulations averaged
over 10 runs on networks of N = 106 nodes.

insight is to note that jumps will occur when all interconnected
nodes in a particular layer are removed, yet there remain
enough total surviving nodes that the network in the next
lower layer remains connected. For the limiting case where
all nodes are connected in a particular layer, then the network
will collapse before lower layers are reached since all nodes
will already have been removed.

This condition can be expressed mathematically by recog-
nizing that we need the value of pc, the critical threshold of
the remaining intralinks, to be lower than the value of p for
which all interconnected nodes in a given layer i are removed.
The classical result of Erdős-Rényi informs us that there will
remain a giant component as long as p > 1

〈k〉 , where 〈k〉 is the

average degree, which for our case is 〈k〉 = ∑l
j=i+1 kj or the

sum of the degrees at all lower levels. The point at which all
interconnected nodes in layer i are removed is given by the
cutoff value defined in Eq. (14). Overall, the condition that
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FIG. 3. (a) RHS and LHS of Eq. (19) for the network in Fig. 2(a).
We observe that for the first l � 5 layers the value of p for which all
interconnected nodes are removed [LHS of Eq. (19)] is greater than
the value at which network intraconnectivity breaks down [RHS of
Eq. (19)]. However, for the sixth layer this is no longer true and we
observe the continuous percolation transition of a random network.
(b) Values of the ith critical points for both the network described
in Fig. 2(a) and another network which has a smaller degree in its
bottom layer. We note how changing the degree in the bottom layer
affects the number of jumps since, for the network with a lowest layer
average degree of 2, before removing all interconnected nodes in the
fifth layer, the network already breaks apart.

there will be a jump once all interconnected nodes in layer i

are removed is

e− ∑i
j=1 kj � 1∑l

j=i+1 kj

. (19)

We note that, assuming all ki > 0, then e− ∑i
j=1 kj is strictly

decreasing as i increases. Furthermore, the above assumption
also implies that 1/

∑l
j=i+1 kj is strictly increasing as i in-

creases (since the denominator must decrease, as there are
fewer kj terms). Therefore, once the condition of Eq. (19)
is first violated for a particular layer, we know that it will
continue to break down for lower layers and thus we can be
sure that our number of jumps is the number of layers for
which Eq. (19) is valid.

We plot the two sides of Eq. (19) in Fig. 3(a), where for
l � 5 we see that the left-hand side (LHS) of the equation
is larger than the right-hand side (RHS). Compared to the
number of jumps in Fig. 2(a) we see that the network indeed

experiences five abrupt jumps as expected (see inset for the
fifth jump).

B. The p values of the jumps

Having predicted above the number of jumps that the
network will undergo, we can now analyze the multiple
values of pc, the critical thresholds at which the transitions
occur. We first note that as long as the LHS of Eq. (19) is
greater than the RHS of the same equation, there will be a
transition at the point of the LHS of the equation. After these
i transitions, there will be one final i + 1st transition, which
will be continuous as opposed to abrupt. We can find the point
at which this final transition occurs by generalizing Eq. (21)
from [23], which gives a form for the critical transition point
of a modular network that has experienced both targeted
attack of the type proposed here and random failures on all
nodes. The formula found there was

r2
c

(
p2

randkintrakintere
−kinter

) + rc

(
prandkinter + prandkintra

−prandkintrae
−kinter − p2

randkintrakintere
−kinter

)
+ (prandkintrae

−kinter − 1) = 0, (20)

where prand represents the survival probability due to the
random failures, rc represents the critical threshold, and kintra

(kinter) represents the degrees of intraconnected (intercon-
nected) nodes, respectively.

For our case of hierarchical networks, the random failures
are represented by the attacks on nodes that were intercon-
nected in higher layers. Overall, the probability of surviving
the random attacks is pcoi , thus prand is replaced by pcoi .
Furthermore, the inter degree kinter is now given by ki+1 and
the intra degree kintra is

∑l
j=i+2 kj . Thus, we can find the point

of transition, which we call ri+1, by solving Eq. (21), which is
a quadratic formula for ri+1:

r2
i+1

⎛
⎝p2

coi

⎛
⎝ l∑

j=i+2

kj

⎞
⎠ki+1e

−ki+1

⎞
⎠ + ri+1

⎛
⎝pcoiki+1

+ pcoi

⎛
⎝ l∑

j=i+2

kj

⎞
⎠ − pcoi

⎛
⎝ l∑

j=i+2

kj

⎞
⎠e−ki+1

− p2
coi

⎛
⎝ l∑

j=i+2

kj

⎞
⎠ki+1e

−ki+1

⎞
⎠

+
⎛
⎝pcoi

⎛
⎝ l∑

j=i+2

kj

⎞
⎠e−ki+1 − 1

⎞
⎠ = 0. (21)

After finding ri+1 we can convert it to a value of p using
Eq. (15). We note a slight subtlety in this system, in that
even for the case where the hierarchical network is completely
isolated in the lowest level, we do not precisely recover the
critical threshold of a random network with k = ki+1. This is
because we are targeting only those nodes which have at least
one link. This leads to a slight correction where we obtain
ri+1 = 1/ki+1 (and then convert this to a value for the last pc),
rather than obtaining the usual pc = 1/ki+1. In most cases
this correction will be quite small, as for any reasonable value
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of k at the lowest level, there will be very few nodes that do
not have even a single link. For example, for the case of the
network represented by the top line of the legend in Fig. 3(b),
the transition for the sixth layer takes place at pc ≈ 0.201 as
opposed to 1/k6 = 0.2. Nonetheless, it is worth noting this
discrepancy.

V. INTERDEPENDENT NETWORKS

Much recent research has also explored the resilience of
interdependent networks where the nodes of one network de-
pend on nodes in another network [5,6,12,36,44–49]. One ex-
ample is that of a communication network that is interdepen-
dent with a power grid, yet more complex interdependencies
are also possible [50,51]. Many of these interdependent net-
works will likely possess the hierarchical structure described
above. Therefore we now extend our theory from a single
hierarchical network to the case of networks of interdependent
networks (NONs).

We assume that each network in the interdependent system
is formed of the same hierarchical structure, i.e., there is the
same number of modules in each level. Again, this is realistic
since the numbers of cities, neighborhoods, etc., that exist for
the power grid are likely the same as those for a communi-
cations network as well as for other infrastructures. Further,
we assume that nodes are dependent on other nodes within
the same module in the lowest level. This corresponds to the
assumption that nodes are most likely dependent on resources
from nodes in their own neighborhood, i.e., a power station
depends on a communication tower in the same neighborhood,
and vice versa.

In the case of interdependent networks formed of n net-
works with n > 2, the structure of the dependencies can take
various shapes. Among these are both treelike structures,
where networks depend on one another such that their depen-
dencies form a tree, or looplike structures, where the depen-
dencies form loops. Here we consider (i) treelike structures
and (ii) a random-regular (RR) network of networks where
each network depends on exactly z other networks. Further-
more, one can allow for differing levels of interdependence
where only some fraction q of nodes between two networks
is interdependent, whereas the 1 − q fraction of nodes is
autonomous, with no dependency. This could be the case,
for example, if some communications towers have their own
generators for power supply [52].

For the case of interdependent networks, it was noted [23]
that the framework described above for failure and attack on
complex networks can be extended by noting that each node
now has an additional random probability pdep of failure due
to the presence of the dependency links. The precise expres-
sion for pdep will depend on the number of dependent net-
works, the amount of the dependencies (q), and the structure
of the dependencies (treelike, looplike, etc.). Equations (6)
and (7) can be rewritten generally for any pdep as [23]

P∞(x) = pdep(F0(1) − F0(u)) (22)

and

1 = pdep
F1(u) − F1(1)

1 − u
. (23)

A. Treelike network formed of hierarchical networks

Here we introduce the theory for a NON formed of n

interdependent networks such that they form a tree. We also
note that Eqs. (15) and (16) remain valid as for the single-
network case, as we still target the nodes using the same
procedure.

We assume that all nodes between pairs of interdependent
networks have dependency links (q = 1). Further, we assume
the no-feedback condition, meaning that if node a in network
n1 depends on node b in network n2, then node b also depends
on node a. We restrict the dependencies to be within the
smallest community (i.e., the lowest layer of the hierarchy)
for each set of interdependent networks. Finally, we attack the
nodes of only one of the networks and let the attack propagate
to the other networks as well as back to the original one.
We note that the results are not dependent on the structure
of the tree or the network in the tree from which the nodes are
originally removed [36].

To include the effects of the interdependencies, we must
add an additional likelihood of failure based on the in-
terdependence. For a treelike network of n interdependent
networks with the dependencies within the neighborhoods,
the likelihood that all of a node’s interdependent nodes will

survive is pdep = (1 − e−(
∑l

i=j ki )mj P∞ )
n

[23,36]. For a node
to survive, it must survive and its dependent nodes must
survive, thus pdep is multiplied by our previous result from
Eq. (18). This gives us the following solution for the treelike
NON:

mjP∞ = pcoj−1

[
e−kj (1 − rj )

(
1 − e−(

∑l
i=j+1 ki )mj P∞

)
+ rj

(
1 − e−(

∑l
i=j ki )mj P∞

)](
1 − e−(

∑l
i=j ki )mj P∞

)n−1
,

pcoj
< p < pcoj−1 . (24)

We note that numerical simulations show excellent agreement
with the theory of Eq. (24) (Fig. 4). We also note that in the
case of interdependent networks, the final transition is now
also abrupt [5,6,36]. The abruptness of this transition is caused
by a long cascade process that takes place in interdependent
networks and that has been previously found for different
models [53].

B. Random-regular network formed of hierarchical networks

Finally, we consider the case of an RR NON where each
network depends on exactly z other networks. We assume
that for each pair of interdependent networks only a fraction
q of the nodes is interdependent and we allow feedback (in
contrast to what was done for the treelike NON). However,
we still restrict the dependencies such that they must be
within the same community in the lowest level of the hi-
erarchy. We also carry out the attack on all the networks,
as opposed to attacking only one of them in the treelike
case.

The effects of the dependencies now imply that the like-
lihood of a node’s surviving all interdependencies is pdep =
(1 − q + qmjP∞)z [36,54]. Again, a node must survive in its
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FIG. 4. (a) The case of two interdependent networks with the
values of the degree in each layer as given in the legend. Points are
simulations averaged over 10 realizations of networks with N = 106

nodes and lines are theory from Eq. (24). (b) Variation of the number
of networks, with the degree vector fixed to �k = (0.05, 0.1, 6).

own network as well, so combining this with Eq. (18) yields

P∞ = pcoj−1

[
1

mj

e−kj (1 − rj )
(
1 − e−(

∑n
i=j+1 ki )mj P∞

)

+ rj

(
1 − e−(

∑l
i=j ki )mj P∞

)]
(1 − q + qmjP∞)z,

pcoj
< p < pcoj−1 . (25)

For the RR NON the last transition will be continuous (for
low values of q), as for an RR NON formed of Erdős-Rényi
networks the transition may be continuous [54]. We observe
excellent agreement between the theory of Eq. (25) and the
simulations in Fig. 5.

VI. REALISTIC EXTENSIONS

Here we consider two basic extensions of the framework
developed above. One type of extension involves considering
degree distributions that are not Poisson and uncorrelated in
each layer, while the second considers trade-offs between
adding links in different layers of the hierarchy. We also
discuss several other possible extensions but leave them for
future work.

FIG. 5. Random-regular network of networks where each net-
work depends on z other networks such that they form loops. We
vary both (a) q, the level of interdependence between the networks
(with z = 1), and (b) z, the number of networks each network
depends on (with q = 0.3). Symbols are simulations averaged over
10 realizations on networks with N = 106 nodes, and lines are theory
from Eq. (25).

A. Varying the degree distributions

The first extension we consider is a degree distribution
that is not Poisson in each layer of the hierarchy. For this
purpose we use a power-law distribution, with the likelihood
of a node having k links given by P (k) ∼ k−λ. This type
of degree distribution is common to many networks such as
social networks, biological networks, and others [55].

We consider the case where the lowest layer of our hier-
archy has a power-law distribution, while the links in higher
layers have a Poisson distribution as in the above versions of
our model. In Fig. 6(a) we present results for two different
hierarchical networks with different degree distributions in
higher layers and a scale-free distribution in the lowest layer.
In both cases we still observe the characteristic multiple jumps
as in our earlier models. In fact, in the case of scale-free
networks, since pc → 0 for an isolated scale-free network
with λ < 3, we expect that the number of jumps will nearly
always approach its upper bound of 1 less than the number of
layers (l − 1), which will be followed by a final transition at
pc → 0. Relating back to Eq. (19) a scale-free distribution
with λ < 3 would imply that the RHS of the equation is
always near 0 and thus for every layer the LHS will be greater.
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FIG. 6. (a) Two distinct hierarchical networks (n = 1) with a
scale-free distribution in the lowest layer of the network. In the
higher layers, the degree distribution is Poisson, with the average
given by the entries in �k. For the scale-free distribution we set
λ = 2.5, kmin = 2, and kmax = 1000. Results are averaged over 10
realizations with N = 106, and we note that the lines here are not
theory but, rather, only a visual guide, as all results are from simu-
lations. (b) A single network with a hierarchical structure composed
of three layers, each with a Poisson distribution. However, we vary
the degree in each layer according to a fixed equation and fixed
maximum degree. We assume that in the highest layer the degree
is given by x, the next layer is given by 2x, and the final layer is
given by 4 − 3x. We then plot the locations of pci

vs x. We highlight
with dashed vertical lines the two critical values of x where we move
from having three transitions to two (x ≈ 0.35) and from having two
transitions to a single one (x ≈ 1.05). All solid lines are based on the
theory from Eq. (18).

Our results in Fig. 6(a) indeed confirm this, as we find that for
the case shown of l = 4 there are always three jumps.

Furthermore, if we consider the case where the scale-free
distribution is not in the lowest layer, we expect that all
nodes in the scale-free layer would have to be removed before
the network would segregate and thus there would be no
jumps past the layer where the scale-free distribution existed.
Alternatively, one could restrict a priori a specific set of nodes
to have interlinks between them in the given layer according
to a scale-free distribution. In this case once all such nodes
were removed, the network would presumably segregate into
distinct communities as long as the chosen set was not overly
large.

A second extension involving degree distributions could re-
late to having the same nodes be interconnected in each layer.
In this sense, one would first choose some set of nodes to be
interconnected in the next-to-lowest layer and then choose a
subset of those nodes to be interconnected in the above layer,
followed by a subset of those nodes interconnected in the next
higher layer, etc. If all the layers remained Poisson distributed,
the main effect of these correlations between interconnections
would be that the cutoff values of p in Eq. (14) would
change. In this case, rather than having the cutoff be given
by the sum of the degrees in all the layers, it would be given
by pcoi = e−ki , as only nodes that are interconnected in the
given layer have been removed since those with interlinks in
higher layers also must have interlinks in the lower layers
(note that we assume that the ki values are decreasing as one
moves up the layers). The remainder of our original derivation
would remain virtually unchanged. Interlinks between layers
could also simply be correlated rather than the absolute nature
suggested above and then the calculation of the cutoff values
would be more complicated.

B. Trade-offs between links in different layers

Another extension we consider is trade-offs among adding
links in various layers. Ideally, to consider such trade-offs one
should specify the costs of failures in connectivity in each
layer of the hierarchy and also specify the cost of adding a
link in each layer. A framework for considering costs similar
to these can be found in a recent work [56].

To give an example of a simpler version, we consider a
hierarchical network of three layers with a fixed total degree.
Furthermore, we place a condition stating that the number
of links in the second layer must be twice (or, more gen-
erally, any factor of) the number of links in the first layer.
Using Eqs. (19) and (21) we then find the critical point(s) of
transition for the given network. In Fig. 6(b) we show how
the critical points vary with the average degree in the first
layer (defined as x). We find that there exist several possible
critical values of x where the system moves from having
three transitions to two and where it moves from having two
transitions to a single one. These critical values of x represent
what could be considered optimal trade-offs in preserving
connectivity in specific layers. If we consider, for example,
the first critical point in x, x1, we note that this is the lowest
value of x for which the middle layer does not segregate
into communities and instead its connectivity is preserved as
long as the overall network remains connected. Likewise, the
second critical point in x represents the first point at which the
network does not separate in the highest layer and instead the
entire hierarchical network collapses all at once. This simple
analysis shows that indeed trade-offs do exist between adding
links in the different layers and provides some basic intuition
into the more general case where costs are assigned to links in
the different layers.

VII. DISCUSSION

In this work, we have studied the robustness of networks
and networks of interdependent networks with a hierarchical
structure. This structure is very common for many infrastruc-
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ture networks, biological networks, and others. We have found
analytical solutions and confirmed these solutions through
simulations for isolated hierarchical networks and for two
different structures of interdependent hierarchical networks.
The resilience of the network depends on the number of
communities in each layer of the hierarchy, the degree in
each layer of the hierarchy, the fraction of nodes removed,
and also the parameters governing the interdependence (if
present). We have also extended our framework to consider
the more realistic case of a scale-free distribution and different
trade-offs between adding links in the various layers.

Our results show that hierarchical networks can undergo
multiple abrupt transitions depending on the above parame-
ters and that these transitions represent the separation of the

network in different layers of the hierarchy. These results
have potential applications in optimization of the resilience
of networks in infrastructure and other fields.
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