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Many complex networks in nature have directed links, a property that affects the network’s navigability and
large-scale topology. Here we study the percolation properties of such directed scale-free networks with
correlated in and out degree distributions. We derive a phase diagram that indicates the existence of three
regimes, determined by the values of the degree exponents. In the first regime we regain the known directed
percolation mean field exponents. In contrast, the second and third regimes are characterized by anomalous
exponents, which we calculate analytically. In the third regime the network is resilient to random dilution, i.e.,
the percolation threshold is pc→1.
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Recently the topological properties of large complex net-
works such as the Internet, the World Wide Web ~WWW!, an
electric power grid, and cellular and social networks have
drawn considerable attention @1,2#. Some of these networks
are directed, for example, in social and economical networks
if node A gains information or acquires physical goods from
node B, it does not necessarily mean that node B gets similar
input from node A. Likewise, most metabolic reactions are
one directional, thus changes in the concentration of mol-
ecule A affect the concentration of its product B, but the
reverse is not true. Despite the directedness of many real
networks, the modeling literature, with few notable excep-
tions @3–5#, has focused mainly on undirected networks.

An important property of directed networks can be cap-
tured by studying their degree distribution, P( j ,k), or the
probability that an arbitrary node has j incoming and k out-
going edges. Many naturally occurring directed networks,
such as the WWW, metabolic networks, citation networks,
etc., exhibit a power-law, or scale-free degree distribution for
the incoming or outgoing links:

P in(out)~ l !5cl2l in(out), l>m , ~1!

where m is the minimal connectivity ~usually taken to be m
51), c is a normalization factor, and l in(out) are the in ~out!
degree exponents characterizing the network @6,7#. An im-
portant property of scale-free networks is their robustness to
random failures, coupled with an increased vulnerability to
attacks @8–12#. Recently it has been recognized that this fea-
ture can be addressed analytically in quantitative terms
@9–11# by combining graph theoretical concepts with ideas
from percolation theory @13–15#. Yet, while the percolative
properties of undirected networks are much studied, little is
known about the effect of node failure in directed networks.
As many important networks are directed, it is important to
fully understand the implications to their stability. Here we
show that directedness has a strong impact on the percolation
properties of complex networks and we draw a detailed
phase diagram.

The structure of a directed graph has been characterized
in @3,4#, and in the context of the WWW in @7#. In general, a
directed graph consists of a giant weakly connected compo-

nent ~GWCC! and several finite components. In the GWCC
every site is reachable from every other, provided that the
links are treated as bidirectional. The GWCC is further di-
vided into a giant strongly connected component ~GSCC!,
consisting of all sites reachable from each other following
directed links. All the sites reachable from the GSCC are
referred to as the giant OUT component, and the sites from
which the GSCC is reachable are referred to as the giant IN
component. The GSCC is the intersection of the IN and OUT
components. All sites in the GWCC, but not in the IN and
OUT components, are referred to as the ‘‘tendrils’’ ~see Fig.
1!.

For a directed random network of arbitrary degree distri-
bution the condition for the existence of a giant component
can be deduced in a manner similar to @9#. If a site, b, is
reached following a link pointing to it from site a, then it
must have at least one outgoing link, on average, in order to
be part of a giant component. This condition can be written
as

^kbua→b&5 (
jb ,kb

kbP~ jb ,kbua→b !51, ~2!

where j and k are the in and out degrees, respectively,
P( jb ,kbua→b) is the conditional probability given that site
a has a link leading to b, and ^kbua→b& is the conditional
average. Using Bayes rule we get

P~ jb ,kbua→b !5P~ jb ,kb ,a→b !/P~a→b !

5P~a→bu jb ,kb!P~ jb ,kb!/P~a→b !.

FIG. 1. Structure of a general directed graph.
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For random networks P(a→b)5^k&/(N21) and P(a
→bu jb ,kb)5 jb /(N21), where N is the total number of
nodes in the network. The above criterion thus reduces to
@3,4#

^ jk&>^k&. ~3!

Suppose a fraction p of the nodes is removed from the
network. ~Alternatively, a fraction q512p of the nodes is
retained.! The original degree distribution, P( j ,k), becomes

P8~ j ,k !5 (
j0 ,k0

`

P~ j0 ,k0!S j0

j D ~12p ! jp j02 j

3S k0

k D ~12p !kpk02k. ~4!

In view of this new distribution, Eq. ~3! yields the percola-
tion threshold

qc512pc5
^k&

^ jk&
, ~5!

where averages are computed with respect to the original
distribution before dilution, P( j ,k). Equation ~5! indicates
that in directed scale-free networks if ^ jk& diverges then qc
→0 and the network is resilient to random breakdown of
nodes and bonds.

The term ^ jk& may be dramatically influenced by the ap-
pearance of correlations between the in and out degrees of
the nodes. In particular, let us consider scale-free distribu-
tions for both the in and out degrees

P in~ j !;H Bc in j2l in, j5” 0

12B , j50
~6!

and

Pout~k !5coutk
2lout. ~7!

In Eq. ~6! we choose to add the possible zero value to the in
degree in order to maintain ^ j&5^k&. If the in and out de-
grees are uncorrelated, we expect ^ jk&5^ j&^k& . For several
real directed networks this equality does not hold. For ex-
ample, the network of Notre Dame University WWW @6# has
^k&5^ j&'4.6, and thus ^ j&^k&521.16. In contrast, measur-
ing directly we find ^ jk&'200, about an order of magnitude
larger than the result expected for the uncorrelated case. This
yields an estimate of qc'0.02, i.e., a very stable directed
network. We obtained similar results also for some metabolic
networks @16#, indicating that in real directed networks, the
in and out degrees are correlated.

To address correlations, we model it in the following
manner: we first generate the j values for the entire network.
Next, for each site with j5” 0 with probability A we generate
k fully correlated with j, i.e., k5k( j). Assuming that k( j) is
a monotonically increasing function then the requirement
coutk

2loutdk5c in j2l ind j—needed to maintain the distribu-
tions scale-free—leads to klout21

5 jl in21. With probability
12A , the degree k is chosen independently from j,

P~ j ,k !;H ~12A !Bc in j2l incoutk
2lout

1BAcoutk
2loutd j , j(k) , j5” 0

~12B !coutk
2lout, j50,

~8!

where j(k)5k (lout21)/(l in21). With this distribution, any fi-
nite fraction BA of fully correlated sites yields a diverging
^ jk& whenever

~lout22 !~l in22 !<1, ~9!

causing the percolation threshold to vanish ~see Fig. 2!.
In the case of no correlations between the in and the out

degrees, A50, Eq. ~8! becomes P( j ,k)5P in( j)Pout(k).
Then the condition for the existence of a giant component is
^k&5^ j&51. Moreover, Eq. ~5! reduces to

qc512pc5

1

^k&
. ~10!

Applying Eq. ~10! to scale-free networks one concludes that
for lout.2 and l in.2 a phase transition exists at a finite
qc . Here we concern ourselves with the critical exponents
associated with the percolation transition in scale-free net-
work of lout.2 and l in.2 which is the most relevant re-
gime ~Fig. 2!.

Percolation of the GWCC can be seen to be similar to
percolation in the non-directed graph created from the di-
rected graph by ignoring the directionality of the links. The
threshold is obtained from the criterion @9#

qc5
^k&

^k~k21 !&
. ~11!

Here the connectivity distribution is the convolution of the in
and out distributions

P8~k !5(
l50

k

P~ l ,k2l !. ~12!

Regardless of correlations, P8(k) is always dominated by
the slower decay exponent, therefore percolation of the
GWCC is the same as in nondirected scale-free networks,
with le f f5min(lin ,lout). Note that the percolation threshold
of the GWCC may differ from that of the GSCC and the IN
and OUT components @4#.

FIG. 2. Phase diagram of the different regimes for the IN com-
ponent of scale-free correlated directed networks. The boundary
between resilient and anomalous exponents is derived from Eq. ~9!

while that between anomalous exponents and mean field exponents
is given by Eq. ~24! for l!

54. For the diagram of the OUT com-
ponent l in and lout change roles.
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We now use the formalism of generating functions @17,18#
to analyze percolation of the GSCC and IN and OUT com-
ponents. In @3,4# a generating function is built for the joint
probability distribution of outgoing and incoming degrees,
before dilution:

F~x ,y !5(
k , j

P~ j ,k !x jy k. ~13!

Using the approach of Callaway et al. @10# let q( j ,k) be the
probability that a vertex of degree ( j ,k) remains in the net-
work following dilution. The generating function after dilu-
tion is then

G~x ,y !5(
k , j

P~ j ,k !q~ j ,k !x jy k. ~14!

From Eq. ~14! it is possible to define the generating function
for the outgoing degrees G0 :

G0~y ![G~1,y !5(
k , j

P~ j ,k !q~ j ,k !y k. ~15!

The probability of reaching a site by following a specific link
is proportional to jP( j ,k), therefore, the probability of
reaching an occupied site following a specific directed link is
generated by

G1~y !5

(
j ,k

jP~ j ,k !q~ j ,k !y k

(
j ,k

jP~ j ,k !

. ~16!

Let H1(y) be the generating function for the probability
of reaching an outgoing component of a given size by fol-
lowing a directed link, after a dilution. H1(y) satisfies the
self-consistent equation:

H1~y !512G1~1 !1yG1„H1~y !…. ~17!

Since G0(y) is the generating function for the outgoing de-
gree of a site, the generating function for the probability that
n sites are reachable from a given site is

H0~y !512G0~1 !1yG0„H1~y !…. ~18!

For the case where correlations exist, and assuming random
dilution: q( j ,k)5q , Eqs. ~17! and ~18! reduce to

H1~y !512q1

qy

^ j& (
k

@BA j~k !1~12A !

3^ j&#Pout~k !H1~y !k ~19!

and

H0~y !512q1qy(
k

Pout~k !H1~y !k. ~20!

If A→0, one expects that H0(y)5H1(y), since there is no
correlation between j and k, thus the probability to have k
outgoing edges is Pout(k) whether we choose the site ran-
domly or weighted by the incoming edges j.

H0(1) is the probability to reach an outgoing component
of any finite size choosing a site. Thus, below the percolation
transition H0(1)51, while above the transition there is a
finite probability to follow a directed link to a site which is a
root of an infinite outgoing component: P`512H0(1). It
follows that

P`~q !5qS 12(
k

`

Pout~k !ukD , ~21!

where u[H1(1) is the smallest positive root of

u512q1

q

^ j& (
k

@BA j~k !1~12A !^ j&#Pout~k !uk.

~22!

Here P`(q) is the fraction of sites from which an infinite
number of sites is reachable. Equation ~22! can be solved
numerically and the solution may be substituted into Eq.
~21!, yielding the size of the IN component at dilution p
512q .

Near criticality, the probability to start from a site and
reach a giant outgoing component follows P`;(q2qc)

b.
For mean-field systems ~such as infinite-dimensional sys-
tems, random graphs, and Cayley trees! it is known that b
51 @19#. This regular mean-field result is not always valid.
Instead, following @20# we study the behavior of Eq. ~22!
near q5qc ,u51, and find

b55
1

32l!
, 2,l!

,3

1

l!
23

, 3,l!
,4

1, l!
.4,

~23!

where

l!
5lout1

l in2lout

l in21
. ~24!

We see that the order parameter exponent b attains its usual
mean-field value only for l!

.4. As lout→l in the correlated
fraction BA of sites resembles nondirected networks @20,21#
~where there is no distinction between incoming and outgo-
ing degrees!. In this case we get l!

5lout5l in for any
amount of correlation A. The criterion for the existence of a
giant component is then ^k2&/^k&51, and not 2 as in the
nondirected case. The difference stems from the fact that in
the nondirected case one of the links is used to reach the site,
while in the directed case there is generally no correlation
between the location of the incoming and outgoing links.
Therefore, one more outgoing link is available for leaving
the site.

Without any correlations, A50, different terms prevail in
the analysis and

b5H 1

lout22
, 2,lout,3

1, lout.3.

~25!
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This is the same as Eq. ~23! but with l!
5lout11.

The GSCC is the intersection of the IN and OUT compo-
nents. Therefore, it behaves as the smaller of the two com-
ponents: bGSCC5max(bin ,bout). This can be also derived by
applying the same methods as for the IN and OUT compo-
nents to the generating function of the GSCC obtained in @4#.
The exponent for the GWCC, on the other hand, is indepen-
dent of the exponents of the other components, since the
transition point is different.

It is known that for a random graph of arbitrary degree
distribution the finite clusters follow the scaling form

n~s !;s2te2s/s*, ~26!

where s is the cluster size and n(s) is the number of clusters
of size s. At criticality s*;uq2qcu

2s diverges and the tail of
the distribution follows a power law.

The probability that s sites can be reached from a site by
following links at criticality follows p(s);s2t, and is gen-

erated by H0, where H0(y)5(sp(s)y s. As in @20#, H0(y)
can be expanded from Eq. ~18!. In the presence of correla-
tions we find

t55 11

1

l!
22

, 2,l!
,4

3

2
, l!

.4.

~27!

The regular mean-field exponents are recovered for l!
.4.

For the uncorrelated case we get

t5H 11

1

lout21
, 2,lout,3

3

2
, lout.3.

~28!

Now the regular mean-field results are obtained for l.3.
In summary, we calculate the percolation properties of

directed scale-free networks. We find that the percolation
critical exponents in scale-free networks are strongly depen-
dent upon the existence of correlations and upon the degree
distribution exponents in the range of 2,l!

,4. This regime
characterizes most naturally occurring networks, such as
metabolic networks or the WWW. The regular mean-field
behavior of percolation in infinite dimensions is recovered
only for l!

.4. A connection is found between nondirected
and directed scale-free percolation exponents for any finite
correlation between the in and out degrees. In the uncorre-
lated case, i.e. P( j ,k)5P in( j)Pout(k), the probability to
reach an outgoing component does not bear any dependence
upon P in( j). The results are summarized in Table I.
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TABLE I. Values of l! for the different network components for
both correlated and uncorrelated cases.

Uncorrelated Correlated

GWCC min(lout ,lin)11 min(lout ,lin)

IN lout11 lout1
lin2lout

lin21

OUT l in11 lin1
lout2lin

lout21

GSCC min(lout ,lin)11 min(lout* ,lin*)
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