
PHYSICAL REVIEW E 90, 012809 (2014)

Robustness of a network formed of spatially embedded networks
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We present analytic and numeric results for percolation in a network formed of interdependent spatially
embedded networks. We show results for a treelike and a random regular network of networks each with
(i) unconstrained dependency links and (ii) dependency links restricted to a maximum Euclidean length r .
Analytic results are given for each network of networks with spatially unconstrained dependency links and
compared to simulations. For the case of two fully interdependent spatially embedded networks it was found
[Li et al., Phys. Rev. Lett. 108, 228702 (2012)] that the system undergoes a first-order phase transition only
for r > rc ≈ 8. We find here that for treelike networks of networks (composed of n networks) rc significantly
decreases as n increases and rapidly (n ! 11) reaches its limiting value of 1. For cases where the dependencies
form loops, such as in random regular networks, we show analytically and confirm through simulations that
there is a certain fraction of dependent nodes, qmax, above which the entire network structure collapses even if a
single node is removed. The value of qmax decreases quickly with m, the degree of the random regular network of
networks. Our results show the extreme sensitivity of coupled spatial networks and emphasize the susceptibility
of these networks to sudden collapse. The theory proposed here requires only numerical knowledge about the
percolation behavior of a single network and therefore can be used to find the robustness of any network of
networks where the profile of percolation of a singe network is known numerically.
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I. INTRODUCTION

As network science expanded researchers became aware of
the fact that systems often consist of multiple interdependent
networks [1–34]. Examples of such systems are power grids
that depend on communication networks, individuals who
participate in multiple social circles, and metabolic networks
that depend on other biological functions. Previous research on
networks of networks provided a mathematical framework for
understanding the stability of these systems [3,5,10,16]. They
found that under many circumstances, these systems undergo
a first-order percolation transition rather than the second-order
transition which occurs for single networks. Recent work
expanded the idea of interdependent networks to a pair of
spatially embedded networks [1,35,36]. This represents an
important step because many interdependent systems are spa-
tially embedded [10,23,37–46]. Here we generalize the study
of percolation of a pair of interdependent spatial networks to
percolation of a network of interdependent spatial networks.

In our model, for each pair of interdependent networks a
fraction qij of nodes in network i are assigned a dependent
node in network j . The dependencies either follow the “no
feedback condition,” where if node a in network i depends
on node b in network j , then b depends on a as well,
or the “feedback condition,” where such a constraint is not
enforced [31]. For our simulations and theory we applied
the “no feedback condition” and note that the “feedback
condition” yields an even more vulnerable system [31].

When n > 2 the network of networks can assume various
topologies. We show some examples of possible configurations
in Fig. 1(a). To study the robustness of the network of networks
we remove a random fraction 1 − p of the nodes from a
subset of the networks. This leads to a dynamic cascade where
removed nodes cause dependent nodes to be removed in the
other networks. The fraction of surviving nodes at the end of
the cascade is defined as x. We then find P∞(x), the mutual

giant connected component where all remaining nodes are
in their networks’ respective giant component and where the
dependencies of all nodes remaining are also still functional.

In order to simplify the study, we follow the method of
previous studies [1,35] where square lattices were used for
developing the theoretical framework for spatially embedded
networks since any other two-dimensional spatial network
with finite characteristic link length belongs to the same
universality class [47–49]. In the case of spatially embedded
networks the dependencies are often restricted such that depen-
dent nodes are within some distance, r , of one another [35].
This quantity r is called the dependency length and forces
two dependent nodes in two networks, i and j , with positions
(xi,yi) and (xj ,yj ) to obey |xi − xj | " r and |yi − yj | " r ,
where x and y represent the positions of the nodes [see
Fig. 1(b)].

It has been shown that for a pair of coupled lattices with no
restrictions on the length of dependency links (r = ∞) there
is a first-order percolation transition for any q > 0 [1]. If r is
finite, then for each value of q there is a critical dependency
length, rc, above which the percolation transition shifts from
second order to first order. For two fully interdependent
networks (q = 1) it was found rc ≈ 8 [35] and for lower values
of q there is a higher value of rc [50]. Since lower r values
are expected for physical systems, it is of interest whether a
higher number of interdependent systems could decrease rc.

Here we show simulation results for a network of spatially
embedded networks with treelike dependencies and for a
random regular network of spatial networks, each with
(i) no restrictions on the length of dependency links and
(ii) dependency links of a maximum finite length, r . The
differences between the dependencies assumed in treelike
networks of networks and in looplike networks of networks
(such as random regular networks) are illustrated in Fig. 2.
We also rederive the theory from Gao et al. [4,16,31] yet we
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FIG. 1. (Color online) (a) Several examples of possible structures of the network of networks. Within the networks we have connectivity
links and between the networks we have dependency links. Examples include a line (top left), a tree (top center), a star (top right), a random
regular network of networks where each network has m = 2 dependencies (bottom left), and a random regular network of networks with m = 3
(bottom right). (b) A graphical representation of r , the length of the dependency links.

generalize the equations to use the percolation profile of a
single lattice, P∞(x), rather than g(x) which is derived from
the generating function. In our case this profile is obtained
from simulations of percolation on a N = 4000 × 4000 square
lattice averaged over 100 realizations. Our theory is accurate
for interdependent networks with no restrictions on the length
of the dependency links. While we apply these equations to a
lattice, we note that they can be used for any system composed
of identical networks if P∞(x) is known for the percolation of
a single network.

II. TREELIKE NETWORK OF INTERDEPENDENT
SPATIALLY EMBEDDED NETWORKS

A. Dynamics of cascading failures

We begin by examining the cascading dynamics for a
treelike network of networks [in Fig. 1(a) the top structures]
where the length of dependency links is unconstrained. Li
et al. [31] derived P∞ of the cascading failure of two
interdependent networks as a function of iteration count. If
a fraction 1 − p of nodes is removed from each network,
then pi , the fraction of survived nodes at the ith iteration,
is pi = p2 P∞(pi−1)

pi−1
. For n networks in a treelike configuration

a node is in the mutual giant component if it and the n − 1
nodes it depends on are all in their respective networks’ giant
components. Thus g(pi) = P∞(pi−1)/pi−1 is the probability
for a node to be in the giant component after 1 − pi fraction
of nodes are removed. Now g(pi) must be raised to the n − 1
power since each node has n − 1 dependencies. This gives

pi = pn

(
P∞(pi−1)

pi−1

)n−1

. (1)

Each iteration represents reducing all networks to their giant
components and removing nodes which have dependencies
outside the giant component. The next iteration then factors
in the nodes removed due to having dependencies outside the
previous giant component and again reduces each network to
its giant component. The process repeats until a steady state
is reached [see Fig. 3(a)]. In the limiting case of only a single

network, n = 1, we get pi = p and there is no cascading effect.
Further, if n = 2, we obtain the same result as in Ref. [35].

An alternate method of counting involves observing how
the failures propogate across the links in the network of
networks [21]. The initial attack on each network occurs at
t = 1. A node which depends on a failed node then fails
at t = 2 and in general for a node that failed at t = tn, its
dependent nodes fail at t = tn + 1 [see Fig. 3(b)].

B. Size of the giant component after the cascade

We examine what happens to pi when i → ∞ and the
system reaches steady state. We define x ≡ pi→∞ and note
that x represents the total fraction of nodes removed after the
cascade including those removed due to interdependencies. For
a given 1 − p fraction of nodes removed from the network of
networks, 1 − x is the fraction that would have to be removed
from a single network to obtain an equivalent giant component.
Solving for x we get

x = p
n
√

P∞(x)n−1. (2)

In Fig. 4(a) we observe that the theory of Eq. (2) shows
excellent agreement with the simulations for all values of
p. We also see there that close to pc, the percolation
threshold, the system collapses through a long plateau (see
Fig. 3). The mechanism behind this cascade, identified by
Zhou et al. [51], is a second-order percolation transition
occurring simultaneously with the first-order transition during
the plateau. The number of iterations at pc and the value of
pc both increase as the number of networks increases [see
Fig. 4(b)].

To calculate pc we must find where the two sides of Eq. (2)
are tangent at their intersection. We take the derivatives of both
sides and get

n

n − 1
P∞(xc) = xcP

′
∞(xc), (3)

pc = xc

P∞(xc)(n−1)/n
, (4)

where xc is the x value which corresponds to pc based on
Eq. (2) and P ′

∞(xc) is the derivative of P∞(x) at xc.

012809-2



ROBUSTNESS OF A NETWORK FORMED OF SPATIALLY . . . PHYSICAL REVIEW E 90, 012809 (2014)

(a)

(b)

(c)

FIG. 2. (Color online) Illustration of treelike network of net-
works and looplike network of networks. (a) In this treelike network
of networks the mutually interdependent nodes are distinguished by
color and the treelike topology guarantees that the size of a mutually
interdependent set be exactly n (assuming full interdependency,
q = 1, as in this example). (b) In this network of networks with
loops the dependency behavior is identical to (a) because the added
dependency links are redundant and do not change the partition to sets
of mutually interdependent nodes. Thus, with respect to dependency
and cascading failures, (b) can be regarded as a treelike network of
networks. (c) In contrast, if the loops are not closed, a situation can
emerge in which all of the nodes are dependent upon one another,
i.e., the size of the set of mutually interdependent nodes can be up
to N × n. Cases (a) and (b) are described in Sec. II and case (c) is
described in Sec. III.

If a fraction 1 − p is removed from only a single network,
then the fraction remaining after the initial removal is p instead
of pn, therefore pn in Eqs. (2) to (4) must be replaced with p.
This gives

x = n
√

pP∞(x)n−1. (5)

pc=
xn

c

P∞(xc)(n−1)
, (6)

and Eq. (3) remains the same after the substitution. Results for
n networks according to Eqs. (3) and (6) are shown in Fig. 5
as the top curve (q = 1.0).

(a) (b)

FIG. 3. Theory for P∞(x), the size of the giant component, after
a number of iterations is shown as the thick black curve and 40
simulated realizations on lattices of size N = 500 × 500 are shown
as the lighter curves at p = 0.942 < pc = 0.944. (a) P∞ as a function
of the number of iterations, i, is shown to fit well with the theory of
Eq. (1). These results are for five networks in a line, yet for this
method the shape of the tree has no effect on the number of iterations.
(b) P∞ as a function of t iterations according to the method in Gao
et al. [21] for five networks in a line fits well with the theory.

C. Starlike network of spatially embedded networks with q < 1

If we examine a starlike network of spatial networks with
dependency links of unrestricted lengths [see Fig. 1(a)] we
can also present an analytic solution for percolation for any
value of the coupling q. Rederiving the equations in Ref. [16]
for P∞(x) instead of g(x) we find that the size of the giant
component after a fraction 1 − p of nodes is removed from

FIG. 4. (Color online) (a) Theory (lines) and simulations (sym-
bols) of the size of the giant component, P∞(x), as a function of
the fraction of surviving nodes p, for networks of interdependent
lattices of size N = 250 × 250 with treelike structure are shown.
These results are again for a network of networks in a line yet the
results are the same for any other tree formation. Results are shown
for n = 2 (red stars), n = 3 (blue triangles), n = 5 (green circles),
n = 7 (purple squares), and n = 10 (yellow-green x’s). As shown, all
of the transitions are first order and the simulations fit well with the
theory. Further, increasing the number of networks is seen to quickly
increase pc, indicating that the system becomes more vulnerable as
n increases. (b) Here we observe that the number of iterations (NOI)
it takes for the system to arrive at steady-state diverges at the critical
threshold pc. The number of iterations at pc increases both with the
number of networks, n, and the size of the networks, N [51].
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(a) (b)

FIG. 5. (Color online) (a) The critical threshold pc as a function
of the number of networks, n, in a star formation is plotted for q = 0.5
(red x’s), q = 0.6 (blue diamonds), q = 0.7 (green squares), q = 0.8
(purple circles), and q = 1.0 (yellow-green stars). A fraction 1 − p

of nodes are removed only from the central network. Simulations
on lattices with N = 250 × 250 (n > 2) or N = 500 × 500 (n = 2)
show excellent agreement with the theory. (b) P∞(pc), the size of the
giant component at criticality, is shown as a function of the number
of networks (symbols are as before). Simulations on lattices of size
N = 500 × 500 fit well with the theory.

the central network can be described by

x1 = p

[
q

P∞2 (x2)
x2

− q + 1
]n−1

,

(7)

x2 = pq
P∞1 (x1)

x1

[
q

P∞2 (x2)
x2

− q + 1
]n−2

− q + 1,

where the subscript 1 refers to the central network and the
subscript 2 refers to all the other networks. Results of theory
and simulations for pc and P∞(pc) can be seen in Fig. 5. Note
that when q = 1 Eqs. (7) reduce to Eq. (5).

D. Dependency links of finite length r

We now examine a network of spatial networks with treelike
dependencies but now with a finite maximum dependency
length, i.e., r < ∞. Due to the finite r , the dependency-induced
damage is not distributed uniformly and the analytic theory is
not valid and we are limited to simulations. We randomly
remove a fraction 1 − p of the nodes from each network and
note that the results can be converted to a case where nodes are
removed from just a single network using pn → p. Previous
research on a pair of interdependent lattices found that when r
is small, pc increases monotonically until r reaches rc. At this
point pc is at a maximum and the percolation transition changes
from a second-order transition to a first-order transition. As
r increases further, pc decreases and approaches its limiting
value at r = ∞ [35,50].

First, we analyze the giant component as a function of p
for different numbers of interdependent networks in a tree. In
Fig. 6(a) we observe that the system now undergoes a first-
order transition even for r = 2(< 8) if there are a sufficient
number of networks. Our simulations reveal that the results
are the same (for q = 1) regardless of whether the network of
networks is in a star or a line, i.e., the results are independent
of the shape of the tree. The critical dependency length above
which the collapse becomes first order, rc, is also where pc is
at a maximum, thus by looking at the graph of pc vs r we can
find rc. In the inset of Fig. 6(b) we observe that this critical

(a) (b)

FIG. 6. (Color online) (a) Simulations of P∞, the fractional size
of the giant component as a function of the fraction of surviving
nodes p for n fully interdependent (q = 1) spatial networks of size
N = 100 × 100 in a tree formation with r = 2 are shown. As the
number of networks increases the transition becomes first-order (here
at n = 5). (b) The percolation threshold pc is plotted as a function
of r (number of lattice units) for lattices with N = 250 × 250 with
symbols as defined in Fig. 6(a). The change from a second-order to
a first-order transition occurs at rc, when pc reaches a maximum.
The inset shows how this critical value, rc, varies with the number
of networks n. The critical dependency length can reach as low as
rc = 1 if there is a sufficient number of interdependent networks (here
n = 11). Note that already at r = 30 the pc becomes very close to
the theory of Eqs. (3) and (4) for r = ∞. In this case since a fraction
1 − p was removed from all networks, we must take p1/n

c in order to
get results that agree with Eqs. (3) and (6) and Fig. 5(a). The lines in
this figure are a guide to the eye.

dependency length decreases significantly as we increase the
number of networks in the tree. When n = 11, we get rc = 1
which is its limiting value, i.e., for any n > 11, rc = 1.

III. RANDOM REGULAR NETWORK OF
INTERDEPENDENT SPATIALLY EMBEDDED NETWORKS

A. Unconstrained dependency links

Our previous results (Sec. II) were only valid when the
network of networks configuration does not contain loops
(treelike structures). This is not always realistic and thus we
now derive results for a random regular (RR) network of
spatial networks (which include loops). These results are also
accurate for any network of networks with fixed degree such
as a lattice of networks. Gao et al. [4,31] showed that for such
a dependency configuration the actual number of networks, n,
is irrelevant, and, instead, the results depend only on m, the
number of networks each network depends on. In this case if
all nodes are interdependent (q = 1) a failure of a single node
can propogate from network to network unhindered due to the
the loops and eventually lead the entire system to collapse. If
the dependency path forms a closed loop (i.e. node a depends
on b which depends on c which depends on a), then the fact
that the network of networks topology has loops does not affect
the dependency behavior and the behavior is the same as for
treelike networks above (see Fig. 2). We therefore study the
case q < 1 and remove a fraction 1 − p of the nodes from all
the networks. Gao et al. [4,31] obtained

x = p[qyg(x) − q + 1]m
(8)

y = p[qyg(x) − q + 1]m−1,
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(a) (b)

FIG. 7. (Color online) The fraction of nodes in the giant com-
ponent, P∞(x) as a function of p according to both theory (lines)
and simulations (symbols) for interdependent lattice networks of size
N = 250 × 250 with random regular dependencies where r = ∞
are shown. As seen all of the transitions are first order and the
simulations fit well with the theory. We use n = m + 1 networks
in the simulations, but the results depend only on m, the number of
dependencies, each network has and not on n, the total number of
networks in the system. Results for (a) different values of q and (b)
different values of m are shown.

where y represents the percolation damage from the other
networks. The system in Eq. (8) can be solved by eliminating
y from the second equation and obtaining a single equation for
x. After substituting g(x) = P∞(x)/x we obtain

P∞(x)p2/mq = x2/m + (xp)1/m(q − 1), (9)

which can be solved self-consistently for x to obtain P∞(x).
Simulations and theory according to Eq. (9), based on the
numerical form of P∞(x) for a single lattice, are shown in
Fig. 7. Note that when m = 1 and q = 1 Eq. (9) reduces to the
equation for a pair of interdependent lattices.

From Eq. (9) we can get pc by rearranging Eq. (9) to

pc =
[

x
1/m
c

2qP∞(xc)
(q − 1 ±

√
(q − 1)2 + 4qP∞(xc))

]m

(10)

by noting that Eq. (9) is quadratic in p1/m. To calculate xc we
take derivatives of both sides of Eq. (9) and obtain

mxcqP ′
∞(xc)p2/m

c = 2x2/m
c + p1/m

c (q − 1)x1/m
c . (11)

We then substitute Eq. (10) into Eq. (11) to arrive at

mxcP
′
∞(xc)(q − 1 ±

√
(q − 1)2 + 4qP∞(xc))2

= 8qP∞(xc)2 + 2(q − 1)P∞(xc)

× (q − 1 ±
√

(q − 1)2 + 4qP∞(xc)), (12)

which can be solved numerically for xc. Simulations and theory
according to Eq. (10) are shown in Fig. 8(a).

B. Maximum coupling, qmax

From the curves of pc in Fig. 8(a) it is clear that for each
value of m there is some maximum coupling qmax above which
pc = 1 and removing even a single node will lead the entire
network to collapse. We can solve for qmax by using Eq. (9)
and setting p = 1. This gives

qmax = x
2/m
max − x

1/m
max

P∞(xmax) − x
1/m
max

. (13)

(a) (b)

FIG. 8. (Color online) (a) The critical threshold pc for an RR
network of spatial networks is plotted as a function of m, the
number of dependencies each network has for several fractions of
interdependent nodes q. The lines represent the theory according to
Eq. (10) and the symbols represent simulations. It is worth noting that
once the number of dependencies reaches a certain value, pc → 1
for a given q value. This q value represents qmax, the maximum
dependency the system can sustain. (b) The maximum coupling
fraction between networks, qmax, above which pc → 1 is plotted as
a function of m. As seen, qmax decreases rapidly with m, indicating
that as each network has more dependencies less coupling is required
for the network to fail after even the smallest attack. Simulations
(symbols) on lattices of size N = 250 × 250 are shown to fit well
with the theory of Eqs. (13) and (14) (lines).

We can then solve for xmax using Eq. (12). Explicitly,

mxmaxP
′
∞(xmax)

(
x2/m

max − x1/m
max

)

= −x3/m
max + P∞(xmax)

(
2x2/m

max − x1/m
max

)
. (14)

After we have xmax we substitute it into Eq. (13) and obtain
qmax, which is plotted in Fig. 8(b). If m = 1 we obtain a value
of qmax > 1 which is unphysical for our system implying that
for this case there is no qmax that will lead to a collapse.

C. Dependency links of finite length r

We now analyze random regular networks of networks
where dependency links are of a finite maximum length, r .
We observe in Fig. 9 that the shape of the pc-r curve is similar
to that of trees and the transition switches from second order
to first order above rc which is the value of r when pc is
at a maximum. As the number of neighbors m increases, the

(a) (b)

FIG. 9. (Color online) The shift from a second-order to first-
order transition at rc (number of lattice units) occurs where the critical
threshold pc reaches a maximum. This maximum is seen to occur for
smaller r as (a) the number of dependent networks increases (with
q = 0.4) and (b) the interdependent fraction, q, between the networks
increases (with m = 3). Simulations are performed on lattices of size
N = 250 × 250. The lines are a guide to the eye.
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critical dependency length rc decreases significantly for any
value of q. Further, for high values of q the transition is first
order, even for m = 2 and r = 1. Thus a system with as few
as three networks, fully interdependent (m = 2), experiences
a first-order percolation transition for high q. In Fig. 9 we
observe that rc decreases as m increases and also as q increases.

Analogous to the results for r = ∞ we find that for finite r
there also exists a qr

max above which the system collapses for
even a single failure. For small m values qr

max > q∞
max but qr

max
converges quickly to q∞

max as m increases, and for m # 15 they
are essentially equivalent. Thus networks of spatial networks
with many dependencies are extremely vulnerable, even for
small q and small r .

IV. DISCUSSION

In summary, we have applied the percolation framework of
a network of networks [5,16,28,31] to the case of networks
formed of n spatially embedded networks [1,35]. We provide
analytic results for a treelike network of networks and a
random regular network of networks where no restrictions
are applied on the length of the dependency links. Further
we provide simulations for these two cases and find excellent
agreement with the theory. We also study simulations for each
case when dependency links are of a finite length, r . For
n networks in a tree configuration we find that the critical
dependency length, rc, above which a first-order transition

occurs decreases significantly as more networks are added and
with enough interdependent networks the system undergoes a
first-order transition even for r = 1, i.e., with nearest-neighbor
dependencies.

For both finite and infinite r , if the dependencies contain
loops we find that there exists a critical value of coupling qmax
above which the system will collapse even if a single node is
removed. This qmax decreases significantly as m increases and
for high values of m this qmax is extremely low, regardless of
the length of the dependency links.

Our framework for a general network of networks does not
require analytic knowledge of P∞(x) for a single network;
instead, numerical results are sufficient. Therefore our method
is useful for empirical systems where the single network
topology does not conform to a simple mathematical rule.

These results emphasize the vulnerability of interdependent
spatially embedded networks and show that many colocalized
interacting systems can collapse suddenly. Our model here can
help explain sudden failures seen in many real-world systems
such as power grids.
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