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Current network models assume one type of links to define the
relations between the network entities. However, many real net-
works can only be correctly described using two different types
of relations. Connectivity links that enable the nodes to function
cooperatively as a network and dependency links that bind the
failure of one network element to the failure of other network
elements. Here we present an analytical framework for studying
the robustness of networks that include both connectivity and
dependency links. We show that a synergy exists between the fail-
ure of connectivity and dependency links that leads to an iterative
process of cascading failures that has a devastating effect on the
network stability. We present exact analytical results for the dra-
matic change in the network behavior when introducing depen-
dency links. For a high density of dependency links, the network
disintegrates in a form of a first-order phase transition, whereas
for a low density of dependency links, the network disintegrates
in a second-order transition. Moreover, opposed to networks con-
taining only connectivity links where a broader degree distribution
results in a more robust network, when both types of links are pre-
sent a broad degree distribution leads to higher vulnerability.

percolation ∣ critical phenomena ∣ complex networks ∣
scale free networks ∣ Erdős–Rényi networks

Many friendships between individuals in a social network,
numerous business connections in a financial network, or

multiple cables between Internet routers are all examples of net-
works with a high density of connectivity links (1–11). Such net-
works are regarded as very stable to attacks because, even after a
failure of many nodes, the network still remains connected. In
contrast, dependencies between the network nodes endanger the
network stability because the failure of several nodes may lead to
the immediate failure of many others. As an example, consider a
financial network: Each company has trading and sales connec-
tions with other companies (connectivity links). These connec-
tions enable the companies to interact with each other and
function together as a global financial market. But there are also
dependencies relations between companies; several companies
that belong to the same owner depend on one another. If one
company fails, the owner might not be able to finance the other
companies that will fail too. Such dependencies jeopardize the
network stability and are the possible cause of many major finan-
cial crises. Another example is an online social network (Face-
book or Twitter): Each individual communicates with his friends
(connectivity links), thus forming a social network through which
information and rumors can spread. However, many individuals
will only participate in a social network if other individuals with
common interests also participate (dependency links) in that
social network.

The effect of failing nodes on the network stability has been
studied separately for networks containing only connectivity links
(12–17) and for networks containing only dependency links
(18–22). The fundamental difference between connectivity and
dependency links is that for dependency links when a node fails,
his direct neighbors also fail (with some probability), but for con-
nectivity links a node fails only when it (or the cluster it is in)

becomes completely disconnected from the network. Percolation
theory is a major tool for studying the stability of networks con-
nected only by connectivity links. In a percolation process on
a network of size N, a fraction 1 − p of the network nodes are
removed. If the remaining fraction of nodes, p, is larger than a
critical value (p > pc), a spanning cluster connecting order N
nodes exists; if, however, p < pc, the network collapses into small
clusters. At p ¼ pc the network undergoes a second-order phase
transition (12–17).

Previous studies of networks containing dependencies can
be divided into two categories: (i) Failures due to overloads in
networks containing a flow of a physical quantity. For example,
disturbances in power transmission systems or congestion in-
stabilities in transportation networks and Internet traffic (18–21).
These models show that when one node is overloaded and the
traffic cannot be routed through it, choosing alternative paths will
cause other nodes to also become overloaded. This process may
develop into a series of cascading failures that can disable the
entire network. (ii) Models that are based on local dependencies,
such as decision making of interacting agents (22). In these
models the state of a node depends on the state of its neighbors
and therefore a failing node will cause its neighbors to also fail
and so on.

Results
Here we present an analytical framework for studying the robust-
ness of networks that include both connectivity and dependency
links. When nodes fail in a network containing both types of links,
two different processes occur. (i) Connectivity links are discon-
nected, causing other nodes and clusters to disconnect from the
network (percolation process). (ii) Failing nodes cause other
nodes that depend on them to also fail even though they are still
connected to the network via connectivity links (dependency pro-
cess). We show that the synergy between the percolation process
and the dependency process leads to a cascade of failures that can
fragment the entire network (Fig. 1). We find that the density of
dependency links, q, plays a key role in determining the robustness
of such networks. For networks containing connectivity links and a
high density of dependency links, an initial failure of even a small
fraction of the network nodes disintegrates the network in a form
of a first-order phase transition. If, however, the fraction of depen-
dency links is reduced below a certain threshold, qc, the network
disintegrates in a form of a second-order phase transition.

The cascading process leading to a first-order transition exists
for a wide range of topologies including lattices, Erdős–Rényi
(ER), and scale free (SF) networks, indicating it is a general prop-
erty of many networks (Fig. 2A). Comparing networks with both
connectivity and dependency links but with different topologies,
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reveals a relation between topology and the robustness to random
failure: Networks with a broader degree distribution of connec-
tivity links are more vulnerable to random failure in the presence
of dependency links. This relation is opposed to the known result
for networks containing only connectivity links, where networks
with a broader degree distribution are significantly more robust to
random failures. Fig. 2 A and B show that, when comparing ER
and SF networks with the same average degree, SF networks with

a high density of dependent nodes are more vulnerable to random
failures then ER networks.

Formalism
Next we present an analytical approach for studying the robust-
ness to random failure of networks containing the two types of
links. Without loss of generality, we define a model in which only
pairs of nodes depend on one another, forming dependency
groups of size two. When the dependency group contains more
than two nodes, the cascade effect is even more extreme and the
transition from the regular second-order percolation transition
to a first-order transition occurs even for more stable networks
(SI Text). Therefore, the properties we present for the case of
dependency groups of size two are also valid in the general case
of larger dependency groups (see SI). The model is defined as
follows: A network containing N nodes is randomly connected
by connectivity links with a degree distribution PðkÞ and an aver-
age degree hki. In addition, pairs of nodes are connected by
dependency links as follows: (i) A node can only have one depen-
dency link. (ii) If node i depends on node j, then node j depends
on node i. For this model, we denote by q the fraction of nodes
that have dependencies.

We start by presenting the formalism describing the iterative
process of cascading failures for the simple case of q ¼ 1 (see SI).
Each iteration (step) includes failures that are the result of the
percolation process and failures that are the result of the depen-
dency process. The goal of the formalism is to describe the accu-
mulated process up to step n as an equivalent single random
removal, rn, from the original network. The remaining fraction
of nodes after such a removal is βn ¼ 1 − rn. The new network,
after the removal of a fraction rn of the nodes, has a giant com-
ponent consisting of a fraction gðβnÞ of the remaining nodes
which is a fraction αnþ1 ¼ βngðβnÞ from the original network.
The iterative process is initiated by the removal of a fraction r0 ¼
1 − p of the network nodes. The remaining part of the network is
β0 ¼ p. This initial removal will cause additional nodes to discon-
nect from the giant cluster due to the percolation process. The
fraction of nodes that remain functional after the percolation
process is α1 ¼ β0gðβ0Þ. Each node from the nonfunctional
part (1 − α1) will cause the node that depends on it to also fail
(dependency process). The probability that a node depending
on a nonfunctional node has survived until now is α1. Therefore
the fraction of new nodes that will fail due to dependencies is
δ1 ¼ ð1 − α1Þα1. The accumulated failure, including the initial
failure of 1 − β0 and δ1, is equivalent to a random removal of r1 ¼
ð1 − β0Þ þ ð1 − α1Þβ0 from the original network (see SI Text). The
remaining fraction of nodes after the new removal is therefore
β1 ¼ 1 − r1 ¼ β0α1 ¼ β20gðβ0Þ. The remaining functional part of
the giant component is now α2 ¼ β1gðβ1Þ. To calculate the frac-
tion δ2 of nodes that are disconnected due to dependencies at the
second stage, recall that at the previous stage a fraction δ1 failed
from α1. The remaining part of α1 was therefore α1 − δ1 ¼ α21.
Thus δ2 ¼ ðα2∕α21Þðα21 − α2Þ ¼ ½1 − ðα2∕α21Þ�α2, which is equiva-
lent to a random removal of r2 ¼ ð1 − β1Þ þ ½1 − ðα2∕α21Þ�β1 from
the original network. The remaining fraction of nodes is
β2 ¼ 1 − r2 ¼ α2α

2
1∕β1 ¼ β20gðβ1Þ. Following this approach, we

can construct the sequence, βn, of the remaining fraction of nodes
in the network after each iteration.

β0 ¼ p:

β1 ¼ p2gðβ0Þ:
β2 ¼ p2gðβ1Þ…
βn ¼ p2gðβn−1Þ:

Following a similar approach for the general case of 0 ≤ q ≤ 1
(see SI Text) yields the sequence βn ¼ qp2gðβn−1Þ þ pð1 − qÞ.
Given, βn, the fraction of nodes in the giant cluster is

Fig. 1. Demonstration of the synergy between the percolation process and
the failures caused by dependency links (dependency process) that lead to an
iterative process of cascading failures. The network contains two types of
links: connectivity links (solid lines) and dependency links (dashed lines).
(A) The process starts with the initial failure of two nodes (marked in
red). The connectivity links connected to them also fail (marked in red).
(B) Percolation process—in this stage all the nodes and the connectivity
links that are connected to them, that are not connected to the giant cluster
(largest cluster) by connectivity links, also fail (marked in red). (C) Depen-
dency process—the nodes that depend (connected by dependency links)
on the failing nodes also fail (marked in red). (D) The next step of connectivity
failure in which two more nodes fail because they are not connected to
the largest cluster (currently containing only two nodes).
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Fig. 2. (A) Simulation results showing the first- and second-order phase
transitions in lattice, ER, and SF networks. The fraction of nodes in the giant
component at the end the cascade process, α∞, is shown as a function of p for
q ¼ 1 (filled symbols) and for q ¼ 0 (open symbols), where q is the fraction of
dependent nodes. For q ¼ 1, α∞ abruptly drops to zero at the transition point,
characterizing a first-order transition. For q ¼ 0, α∞ gradually approaches
zero as expected in a second-order transition. The SF (circle) and ER (square)
networks presented both have the same average degree of hki ¼ 3.5. Thus,
SF networks that are most robust when only connectivity links exist (very low
transition point for q ¼ 0) become most vulnerable when dependency links
are added (very high transition point for q ¼ 1). (B) The transition points, pI

for the first-order region (solid line) and pII for the second-order region
(dashed line) are plotted as a function of q (the fraction of dependent nodes)
for ER (squares) and SF (circles) networks with the same average degree
hki ¼ 4. For ER networks theoretical results (confirmed by simulation results)
are obtained according to Eqs. 3 and 4 presented in the paper. For SF net-
works simulation results of a network with λ ¼ 2.9 are presented because
exact theoretical results are not available.
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αnþ1 ¼ βngðβnÞ ¼ pf1 − q½1 − pgðβnÞ�ggðβnÞ. Fig. 3A compares
theory and simulations of αn, for the case of an ER network.

To determine the state of the system at the end of the cascade
process, we analyze βn at the limit of n → ∞. This limit must
satisfy the equation βn ¼ βnþ1 because, at the end of the process,
the cluster is not further fragmented. Denoting βn ¼ βn−1 ¼ x we
arrive at the equation

x ¼ p2qgðxÞ þ pð1 − qÞ: [1]

This equation can be solved graphically as the intersection of
a straight line y ¼ x and a curve y ¼ p2qgðxÞ þ pð1 − qÞ. When
p is small enough, the curve increases very slowly and does not
intersect with the straight line (except at the origin which corre-
sponds to the trivial solution). The critical case for which the non-
trivial solution emerges, corresponds to the case when the line
touches the curve at a single point x and in this point we have
the condition 1 ¼ p2q dg

dx ðxÞ, which together with Eq. 1 gives
the solution for the critical fraction of failing nodes that will frag-
ment the network and the critical size of the giant component.

Analytical Solution
An exact analytical solution can be obtained using the apparatus
of generating functions. As in refs. 23–25, we introduce the gen-
erating function of the degree distribution G0ðξÞ ¼ ∑kPðkÞξk.
Analogously, we also introduce the generating function of the
underlying branching process, G1ðξÞ ¼ G0

0ðξÞ∕G0
0ð1Þ. A random

removal of a fraction 1 − p of nodes will change the degree dis-
tribution of the remaining nodes, so the generating function of
the new distribution is equal to the generating function of the
original distribution with the argument ξ replaced by 1 − pð1 − ξÞ
(23). The fraction of nodes that belong to the giant component
after the removal of 1 − p nodes is gðpÞ ¼ 1 −G0½1 − pð1 − f Þ�,
where f ¼ f ðpÞ satisfies a transcendental equation f ¼ G1½1 − p
ð1 − f Þ� (25).

In the case of an ER network with a Poisson degree distribu-
tion (12–14), the problem can be solved explicitly because
G1ðξÞ ¼ G0ðξÞ ¼ expðhkiðξ − 1ÞÞ. Accordingly, gðxÞ ¼ 1 − f and
f ¼ exp½hkixðf − 1Þ� where x is defined in Eq. 1. The fraction
of nodes in the giant component at the end of the cascade process
is then given by α∞ ¼ β∞gðβ∞Þ ¼ pf1 − q½1 − pð1 − f Þ�gð1 − f Þ.

The equation f ¼ f ðq;p;kÞ has a trivial solution at f ¼ 1. The
nontrivial solutions of f can be presented by the crossing points
of the two curves in a system of equations that are given with
respect to x and f :

�
x ¼ p2qð1 − f Þ þ pð1 − qÞ
x ¼ ln f

hkiðf−1Þ :
;0 ≤ f < 1 [2]

For the trivial solution at f ¼ 1, the size of the giant component is
zero (α∞ ¼ 0). For the solutions that are the crossing points of the
two curves, f < 1, i.e., α∞ > 0. Thus, the case where the curves
tangentially intersect corresponds to a first-order phase transition
point (p ¼ pI) where α∞ abruptly jumps from a finite size above pI
to zero below pI (26). The condition for the first-order transition
is that the derivatives of the equations of system [2] with respect
to f are equal. Together with system [2] this yields

ðpIÞ2hkiq ¼ −1∕½ðf − 1Þf � þ ln f∕ðf − 1Þ2: [3]

However, for a solution of system [2] where f → 1 (α∞ ¼ 0) there
is no jump in the size of the giant cluster and thus the transition is
a second-order transition (p ¼ pII). Solving system [2] for f → 1
yields

pIIhkið1 − qÞ ¼ 1 [4]

The analysis of Eqs. 3 and 4 shows that the first-order transition at
p ¼ pI occurs for networks with a high density of dependency
links (q > qc), whereas the second-order transition at p ¼ pII oc-
curs for networks with a low density of dependency links (q < qc).
This behavior is confirmed by Fig. 4A which compares theory and
simulations for pIIðqÞ and pIðqÞ. The critical value of qc (and pc)
for which the phase transition changes from first order to second
order is obtained when the conditions for both the first- and
second-order transitions are satisfied simultaneously. Applying
both conditions, we obtain

�
qc ¼ ðhki þ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hki þ 1

p Þ∕hki
pc ¼ 1∕ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hki þ 1
p

− 1Þ: [5]

Simulations
Next, we support our analytical results by simulations. Finding
the transition point via simulations is always a difficult task that
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Fig. 3. (A) Comparison between simulations and theoretical results for the
fraction of nodes in the giant cluster on every step n of the iterative process
of failing nodes. The results are shown for an ER network with q ¼ 0.8 and
p ¼ 0.84 (p≃ pI). The theoretical results (line) are calculated according to
Eq. 1 [the explicit form of gðxÞ is presented in the text] and are compared
to several realizations of computer simulations on networks of size
N ¼ 200 K. (B) The number of iterative failures (NOI) are shown for a scale
free network with λ ¼ 2.7 and q ¼ 1. At the first-order transition point,
the number of iterative failures that the network undergoes before disinte-
grating scales as N1∕4 (see SI Text). This number sharply drops as the distance
from the transition is increased. Thus, plotting the number of iterations as a
function of p provides a useful method for identifying the transition point,
pI , at the first-order region. The inset shows that the size of the second
largest cluster reaches its maximum value at the second-order transition
point, pII , therefore providing a useful method for identifying pII at the
second-order region.
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Fig. 4. (A) Theory (lines) and simulations (symbols) are compared for the
values of pIðqÞ and pIIðqÞ for ER networks with different values of hki. For
q > qc , the network undergoes a first-order transition, therefore the theore-
tical values of the transition point, pIðqÞ, that are calculated according to
Eq. 3 are compared with simulations performed using the NOI method (ex-
plained in text). For q < qc, the network undergoes a second-order transition,
therefore the theoretical values of the transition point, pIIðqÞ, that are cal-
culated according to Eq. 4 are compared with simulations performed using
the second largest cluster method (explained in text). The line separating
between the first and second order is obtained according to Eq. 5. (B) Com-
parison between simulation (symbols) and theory (lines) for α∞ as a function
q for different values of hki. At the phase transition point, α∞ is finite for a
first-order transition and a zero fraction for a second-order transition.
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requires high precision. In the case of the first-order transition,
we are able to calculate the transition point with good precision
by identifying the special behavior characterizing the number of
iterations (NOI) in the cascading process. At the first-order tran-
sition point, the NOI scales as N1∕4 (see SI Text), which is also
demonstrated by the long plateau in Fig. 3A. This number sharply
drops as the distance from the transition point is increased, be-
cause away from the transition point, pI , the NOI scales as
logN∕ðp − pIÞ (see SI Text). Thus, plotting the NOI as a function
of p provides a useful and precise method for identifying the tran-
sition point pI at the first-order region. For the second-order
region, a similar behavior exists for the size of the second largest
cluster which also reaches its maximum at the transition point
(17). Fig. 3B presents simulation results of the NOI. The transi-
tion point, pI , can easily be identified by the sharp peak charac-
terizing the transition point. Fig. 3B, Inset, presents a similar
behavior for the size of the second largest cluster near the second-
order transition point, pII . Fig. 4A compares simulation results
and theory for the transition points pIðqÞ at the first-order region
(solid line) and pIIðqÞ at the second-order region (dashed line).
The transition points were obtained using the NOI and the sec-
ond cluster size techniques, respectively. The theoretical results
for different values of q and hki were calculated by solving system
[2] together with Eqs. 3 or 4, respectively. Fig. 2B compares
the values of the transition points pIðqÞ and pIIðqÞ, respectively,
between SF and ER networks with the same average degree. For
networks with a small fraction of dependencies (second-order
transition region), SF networks are more robust to random failure
(lower pII). For networks with a high fraction of dependencies
(first-order transition region), SF networks become more vulner-
able (higher pI). Fig. 4B compares simulation and theory for α∞,
the fraction of nodes in the giant cluster at the transition point.
Above qc, α∞ is finite characterizing a first-order transition,

whereas below qc, α∞ is zero as expected for a second-order tran-
sition.

Discussion
Here we argue that, in order to properly model real networks, two
different types of links are needed: connectivity links and depen-
dency links. We present an analytical formalism for a general
network model including both connectivity and dependency links.
According to our model, networks with high density of depen-
dency links are extremely vulnerable to random failure and when
a critical fraction of nodes fail the network disintegrates in a form
of a first-order phase transition. Networks with a low density of
dependency links are significantly more robust and disintegrate in
a form of a second-order phase transition. In the limit of zero
fraction of dependency links, our general solution yields the
known results for networks with only connectivity links. Our fra-
mework also provides an analytical solution for the critical den-
sity of dependency links for which the phase transition changes
from a first-order to a second-order percolation transition. We
develop a powerful simulation method to accurately estimate
the transition point, based on the unique behavior of the NOI
(number of iterations in the iterative process of cascading fail-
ures) that diverges at the first-order transition point. Using this
method, we are able to provide very accurate simulation results
supporting our analytical results.
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