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We study the mutual percolation of two interdependent lattice networks ranging from two to seven dimensions,
denoted as D. We impose that the length (measured as chemical distance) of interdependency links connecting
nodes in the two lattices be less than or equal to a certain value, r . For each value of D and r , we find
the mutual percolation threshold, pc[D,r], below which the system completely collapses through a cascade
of failures following an initial destruction of a fraction (1 − p) of the nodes in one of the lattices. We find
that for each dimension, D < 6, there is a value of r = rI > 1 such that for r � rI the cascading failures
occur as a discontinuous first-order transition, while for r < rI the system undergoes a continuous second-order
transition, as in the classical percolation theory. Remarkably, for D = 6, rI = 1, which is the same as in random
regular graphs with the same degree (coordination number) of nodes. We also find that in all dimensions, the
interdependent lattices reach maximal vulnerability (maximal pc[D,r]) at a distance r = rmax > rI , and for
r > rmax the vulnerability starts to decrease as r → ∞. However, the decrease becomes less significant as D

increases, and pc[D,rmax] − pc[D,∞] decreases exponentially with D. We also investigate the dependence
of pc[D,r] on the system size as well as how the nature of the transition changes as the number of lattice
sites, N → ∞.
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I. INTRODUCTION

The behavior of many complex systems in the real world
can be better understood and explained through network
theory [1–7]. Highway traffic, power outages, the relationship
between businesses, and many other phenomena can be
modeled as networks. Additionally, many of the real networks,
such as the communications network and the power grid, are
interdependent [8–19]. Their behavior can be discussed in
terms of mutual percolation: in order to function properly,
a node in each network must be connected to the giant
component of its own network and must be supported by an
interdependent node in the other network. An initial failure of
a fraction (1 − p) of nodes in one network will lead to failures
in the other network. This will either cause both networks
to eventually stabilize, preserving their giant components,
or to completely collapse. The communication network and
the power grid network are examples of such interdependent
networks, embedded in space. A blackout in a city may cause
a server operating the power grid to go down, and this may
cause further disruption of power stations. Another example is
the network of seaports and the network of national highways,
which are interdependent. Hurricane Sandy demonstrated that
if a seaport gets damaged, the city to which it supplies fuel will
become isolated from the highway network. Similarly, a city
without fuel for trucks cannot supply a seaport properly, and
the seaport will not be able to function well [19]. So, most
real-world interdependent networks contain nodes that are
embedded in a two-dimensional (2D) surface or in a 3D space.
Moreover, it is reasonable to assume that the interdependent
nodes in the two networks are not located far away from each
other [17,18].

Li et al. [17] introduced the concept of a dependence on
distance, according to which a node in network A can be
interdependent with a node in network B only if the distance
between these two nodes does not exceed a value r . The
definition of distance used by those authors differs slightly
from the chemical distance [20] (sometimes referred to as the

Manhattan metric or Taxicab geometry) used in the present
work, and the effect of this difference will be discussed below
in Sec. V. From here on, the word distance or length in this
work will always refer to this chemical distance.

In [17] it was shown that the constraint on the length of the
interdependency links has a significant effect on the mutual
percolation of the two networks, and it alters the properties
of the system’s collapse. It was found that for r = 0, the col-
lapse transition in two interdependent two-dimensional lattice
networks is identical to the classical percolation problem in
a two-dimensional lattice [21,22]. As r increases, the critical
percolation threshold, pc, increases, but the transition remains
a second-order transition in which the size of the surviving
mutual giant component of the system gradually approaches
zero as the fraction p approaches pc. Interestingly, when
r reaches a critical value, rI ≈ 8, the transition suddenly
becomes a first-order transition, in which either the majority of
the nodes survive, or the networks are completely destroyed.
As r increases further, pc starts to decrease until, for r → ∞,
it reaches the value characteristic of the mutual percolation on
the lattices with random interdependency links. In the interval
rI � r < ∞, the cascading failures lead to a small hole, which
starts to grow circularly until all the nodes of both lattices are
wiped out. The explanation of this phenomenon [17] was based
on the idea that cascading failures in this regime propagate by
the destruction of nodes close to the perimeter of the hole that
is larger than r . This will happen because such nodes have
lost their supporting nodes in the other network, previously
located in the hole. For small r , pc is close enough to the
critical threshold of classical percolation, pp

c , at which the size
of the holes diverges, so that holes larger than r appear at the
first stage of the cascade. However, as r grows, pc also grows
and eventually the typical size of the holes, dictated by the
correlation length of the classical percolation, becomes equal
to r . When this happens, the system becomes metastable: a
random formation of a hole of a sufficient size by a local
density fluctuation causes the circular growth of such a hole,
destroying the entire system. As r increases in the vicinity of
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rI , a smaller value of p is needed to produce a hole of size r .
Therefore, pc starts to decrease for r > rI .

This behavior should be contrasted with that of a random-
regular (RR) graph of degree k. An RR graph can be regarded
as an infinite-dimensional lattice, where the surface is not
a well-defined concept, because its dimensionality is equal
to the dimensionality of the entire graph. Thus, for two
interdependent identical RR networks, using the shortest path
between a pair of nodes as the distance for the interdependency
links, pc should increase monotonically with r , and the
transition should switch from second order to first order as
r increases. Indeed, this has been shown numerically (and
analytically in some cases) by Kornbluth et al. [19], who found
that for k > 8, rI becomes 1. For the case (k = 8, r = 1), a first-
order phase transition is closely followed by a second-order
phase transition at a smaller p, and for k � 7, rI becomes
greater than or equal to 2. We expect that in our case, when the
dimensionality of the lattice increases, the behavior observed
for the D-dimensional interdependent lattices studied here
should converge to the behavior of the interdependent RR
graphs. Additionally, there is the possible existence of an upper
critical dimension [21,22], above which the fractal dimension
of the percolation cluster and the fractal dimension of its
surface (accessible perimeter) both become equal to 4, and
hence the propagation of an interface becomes ill-defined. For
classical percolation, the upper critical dimension is known
to be six [23]. Thus one can hypothesize that for the mutual
percolation of two 6D lattice networks, the behavior will be
similar to that of infinite-dimensional networks, for which the
interface of a percolation cluster coincides with the cluster
itself. The goal of this paper is to test all of the hypotheses
discussed above.

II. THE MODEL

We study the mutual percolation [8] of two interdependent
hypercubic lattice networks in several dimensions. We create
two identical networks A and B, whose nodes are labeled
1,2, . . . ,N = LD , where D is the dimensionality of the lattice
and L is the number of nodes along each of its dimensions.
Each node is connected with edges to exactly k = 2D nearest-
neighbor nodes. We then introduce one-to-one bidirectional
interdependency links, such that the shortest path between any
two interdependent nodes is not greater than r . To decrease
computation time and define how the network is built, we
introduce two isomorphisms between networks A and B.
These isomorphisms, the topological isomorphism, T , and
the dependency isomorphism, D, are those that were defined
in Kornbluth et al. [19]. The topological isomorphism is
defined for each node Ai as T (Ai) = Bi , and it is verified
that if Ai and Aj are first neighbors in network A, then
T (Ai) and T (Aj ) are first neighbors in network B and vice
versa. For the case of lattices, the topological isomorphism is
automatically established due to the identical lattice structure.
The dependency isomorphism establishes the interdependency
links, and we create it following the restriction that Bk =
D(Ai) only if the shortest path connecting Ai and Ak = T (Bk)
is of a length rik � r . Since our goal is to compare the behavior
of D-dimensional hypercubic lattices to the RR graphs with
k = 2D, for which the concept of coordinates is not applicable,

we choose our definition of distance as one that is identical
to that used for RR graphs (i.e., the chemical distance, which
is the smallest number of edges connecting the two sites). In
the context of hypercubes, this metric is the Manhattan metric,
which differs slightly from both the Euclidian metric and the
cubic metric used in Li et al. [17], r = maxD

i=1|�xi |, where
�xi are the coordinate differences of the two interdependent
nodes.

To establish the dependency isomorphism while still sat-
isfying the shortest path restriction, Li et al. [17] created a
random permutation of the indices of all the nodes that fulfilled
the distance restriction. However, in our case we followed the
procedure developed by Kornbluth et al. [19], namely, we set
D(Ai) = Bi only if there are no other possibilities for D(Ai).
Additionally, we require that if D(Ai) = Bk , then D(Bi) =
Ak . This further restriction decreases the time required for
computation without affecting the results in any essential way.

Initially, a fraction (1 − p) of randomly selected nodes in
the first network are destroyed. Any node in the second network
whose interdependent node in the first network has been
destroyed, or who lost its connectivity to the largest percolation
cluster (the largest group of nodes connected to each other),
will also be destroyed. We return to the first network and further
destroy all the nodes that lost their support in the previous
process, or that got disconnected from the largest percolation
cluster, as a consequence of the previous stage. This process
of destruction continues to alternate between the networks,
and it is referred to as a cascade of failures. The process ends
when both networks no longer contain nodes that will fail. The
largest mutual cluster of nodes that spans the entire network is
called the mutual giant component. In addition to the largest
mutual cluster, we also find mutual clusters of smaller sizes,
as defined in Ref. [8]. In all cases, if the fraction of nodes
p surviving the initial attack falls below a certain critical
threshold, p-critical or pc, the network completely collapses
and the largest mutual cluster becomes a negligible fraction of
the initial size of the system. We study how pc changes as a
function of the maximum length r of interdependent links, as
well as the dimensionality of the networks D. We denote the
p-critical value for a network of dimension, D, and distance,
r , as pc[D,r]. In all cases, we run our simulations for lattices
of at least N = 106 nodes. To estimate the finite-size effect,
we perform additional simulations for several system sizes
up to N = 6.4 × 107. In Sec. IV B, we discuss the finite-size
effects. In particular, we explore the cases in which changing
the system size leads to a change in the order of the transition.
For each combination of [D,r] and several values of p in
the vicinity of pc[D,r], we conduct M = 1000 independent
simulations and compute the size of the largest cluster and that
of the second largest cluster. We then construct a histogram of
the sizes of the largest cluster and compute the average size of
the second largest cluster.

III. SIMULATION RESULTS

A. Main results

We run simulations to determine the value of pc for lattices
of two through seven dimensions. For these lattices, we find
that the value of pc increases with r , reaches a maximum at
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FIG. 1. Plot of pc[D,r] vs r for lattices of dimensions ranging
from 2 to 7. The smaller symbols correspond to second-order
transitions, the larger symbols correspond to first-order transitions,
and the bold symbols denote the maximum value of pc[D,r] for a
given dimension. The last value in each plot is the value of pc[D,∞].

r = rmax, and then slowly converges to pc[D,∞], which is the
value of pc for random interdependency links (Fig. 1). For low
values of r < rI , the transition is second order, while for higher
values of r � rI the transition is first order. Additionally, we
find that rmax > rI for all D. For example, in a two-dimensional
lattice for 0 � r � 10, the transition is second order and, for
r � rI = 11, the transition is first order, while the maximum
value of pc occurs when r = rmax = 12.

The trend of the maximum value of pc occurring after
the change from second- to first-order transitions is present
through all dimensions, including the seven-dimensional
lattice. However, the difference, pc[D,rmax] − pc[D,∞], de-
creases exponentially with D (Fig. 2). It is also interesting that
the difference between rmax and rI increases with D. Thus, the
case of RR graphs in which the maximum of pc is reached
only for r = ∞ [19] is the limiting case of the behavior of
finite lattices when D → ∞.
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FIG. 2. Plot of the decrease of the difference between pc[D,rmax]
and pc[D,∞] as the dimension of the lattice increases.

Additionally, as D increases, the difference between the
individual values of pc for the lattice and RR networks with
k = 2D decreases (Fig. 3). Figure 4 shows a comparison
between the pc[D,∞] for our simulation results and the
analytical results for pc for a RR network with k = 2D and
random interdependent links. The pc of the lattice network
slowly approaches that of the RR network as the number of
neighboring nodes (degree), k, increases.

B. Types of collapses

As discussed in connection with Fig. 1, the size of the
surviving fraction of the networks at the end of the cascade
of failures experiences a transition as a function of the size
of the initial attack. When this attack is small, the network
survives almost intact, but if this attack is large enough, the
final largest mutual cluster will become a negligible fraction of
the initial size of the system. For each dimension, the nature of
this transition can be first order or second order, depending on
the value of the distance r of the interdependency links. We can
clearly distinguish the nature of the transition by examining
the cumulative distribution of the fraction of nodes, μ, in the
largest mutual cluster of the networks for different realizations
of the initial attack at criticality, p = pc. As seen in Fig. 5,
for the case of a first-order phase transition, the values of μ

fall into two very well separated ranges. In the case illustrated
there, for D = 3 and r = 5, the values of μ are above the
value α ≈ 0.35, or below the value β ≈ 0.02. There are no
simulations that result in α > μ > β. Accordingly, we define
a transition as first order if there is this clear gap in the plot of
the cumulative distribution of the largest cluster. For a second-
order transition, as seen in the same figure for the case of [D =
3,r = 4], the graph of the cumulative distribution of the mutual
largest cluster of the networks looks significantly different
from that of a first-order transition. The cumulative distribution
of μ decreases continuously, and the size of the largest mutual
cluster can take many values with no discontinuous jump in
the middle of the distribution, as in the previous case.

C. Determination of pc

In finite networks, there is always an uncertainty in the
size of the largest mutual cluster, which makes the precise
determination of pc a formidable problem. Accordingly, we
use two different methods for determining the approximate
values of pc for the cases of the first- and second-order
transitions, which have been developed in Refs. [10,19,22].

In the case of the first-order transition, for each value of
p we study, we first define q(p) as a fraction of realizations
that result in μ � α. Accordingly, the fraction of realizations
that result with μ � β is 1 − q(p). Following Ref. [19], we
define pc as the value of p such that q(p) = 1/2. However,
for finite-size networks, the size of the largest mutual cluster
is subject to statistical fluctuations. Therefore, the value of
q(p) is defined with a certain statistical error. Using the Law
of Large Numbers, we find the upper bound for its standard
deviation, σq � 1

2
√

M
, where M is the number of independent

realization of the system. In first-order transitions, a small
change in p will result in a dramatic change in the largest
mutual cluster distribution (Fig. 6). A slight increase in p will
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(a) 2D lattice and RR network with
k = 4

(b) 3D lattice and RR network with
k = 6

(c) 4D lattice and RR network with
k = 8

(d) 5D lattice and RR network with
k = 10

(e) 6D lattice and RR network with
k = 12

(f) 7D lattice and RR network with
k = 14

FIG. 3. Comparison of pc[D,r] vs r for lattices of varying dimensions and the corresponding RR network. The smaller symbols denote
second-order transitions and the larger symbols denote first-order transitions

lead to q(p) = 1 and a slight decrease will lead to q(p) = 0.
Obviously pc must belong to this interval. Therefore, in order
to determine pc, we produce several simulations for values of
p that belong to the interval in which 0 < q < 1, such that we
get at least one point p1 with q1 = q(p1) that belongs to the
interval [0.1,0.5], and at least one point p2 with q2 = q(p2)
that belongs to the interval [0.5,0.9]. We next find pc by linear
interpolation,

pc = p1 +
(

1

2
− q1

)
p2 − p1

q2 − q1
. (1)
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FIG. 4. Comparison between our simulation results for pc of
lattice networks with random interdependent links and the analytical
results for pc for RR networks with k = 2D and random interdepen-
dent links.

Based on σq , we can estimate the 95% confidence error bar in
pc as

�p = p2 − p1

(q2 − q1 − 2σq)
√

N
. (2)

Usually, we obtain more than one pair of points p1,p2, which
satisfy the above conditions. In this case, we can construct a
linear least-squares fit of q(p) and solve q(p) = 1/2. The
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FIG. 5. Plot of the cumulative distribution of the largest cluster
for the last second-order transition of a 3D network with N = 106 at
pc[3,4] = 0.4464 and the first-order transition at pc[3,5] = 0.4604.
There is a clear large gap in the plot of the size of the largest cluster
for the first-order transition, which is absent in the case of the second-
order phase transition.
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FIG. 6. Plot of largest cluster size at and near pc[3,5] = 0.4604.
It can be seen that a very small change in p leads to drastically
different largest cluster size distributions.

values of pc obtained by this method are always within
�p from pc found by linear interpolation. This observation
suggests that the actual error bar is smaller than the estimate
given by Eq. (2), which in all cases studied does not exceed
0.0004. This error bar is sufficient to precisely determine rmax

for each studied dimension D and system size N .
For the case of the second-order transition, the method

described above cannot be used because α and β cannot be
clearly defined. Instead, we use the average second largest
mutual cluster to determine the value of pc [10,22]. As
discussed in Kornbluth et al. [19], when p > pc the largest
mutual cluster spans the network, preventing other large
clusters from forming. When p < pc the network is very
fragmented, and thus large clusters are not able to form.
However, when p ≈ pc, the average size of the second largest
cluster develops a sharp peak (Fig. 7). We verified this in
cases of second-order transitions of all lattices, regardless of
dimension. Thus, for the case of second-order transitions, we
determine pc by finding the value of p for which the average
size of the second largest cluster reaches its maximum. The
error bar in pc in this case is defined as the difference between
the two values of p, one above and another below the value
providing the maximum. We make sure that the step in p is
large enough so that a single maximum is observed. In this
case, the error bar in pc also never exceeds 0.0004. Thus in
all cases studied, the error bar of pc is much smaller than the
symbol size in Fig. 1.

IV. DISCUSSION OF THE RESULTS

A. Propagation of the interface of the hole

It was noted in Ref. [17] that these interesting phenomena
(the existence of rI and rmax) are related to the presence of the
surface of a hole in the mutual cluster, which is valid only in a
system of a finite dimension. Indeed, one can specifically study
the problem of a propagating (D − 1)-dimensional interface
on a D-dimensional lattice based on the mutual percolation
rules discussed above, with the maximal interdependence
distance r and the initial density of surviving sites p. The
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FIG. 7. Plot of the average second largest cluster size as a function
of p for two-, three-, and four-dimensional lattices.

process of this propagation is similar to the various models
of fluid propagation in disordered media [24], which are
characterized by the depinning transition: i.e., there is a critical
threshold p = p

f
c above which the interface is completely

blocked by the obstacles, but below which the velocity of the
interface propagation is finite, and gradually decreases to zero
when approaching the critical threshold: v ∼ (pf

c − p)θ . The
depinning transition is a second-order transition characterized
by several critical exponents, one of which is θ > 0. The fluid
propagation near p = p

f
c is characterized by avalanches: one
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remaining active site in a completely blocked interface can
create an avalanche of propagation. The size distribution of the
avalanches obeys a power law similar to the distribution of the
cluster sizes in percolation theory. In the mutual percolation
model, p

f
c (r) of the interface propagation increases with r

from the value p
p
c of classical percolation theory at r = 0 to the

value 1 at a certain r = rf . If r > rf , the interface propagates
freely through the system even if the lattice is completely
intact.

When p
f
c is close to the percolation threshold p

p
c , the

correlation length of percolation, ξ (pf
c ), is greater than r . This

means that there are always holes of size greater than r , and the
interface is always spontaneously created. The interface will
start to propagate from many different places. However, if p

is close to p
f
c from above, the propagation will stop leaving a

spongelike mutual giant component with holes of all possible
sizes. The destruction of a single node may disconnect a huge
portion of the mutual giant component and may dramatically
reduce its size. Hence there is a broad distribution of the
sizes of the mutual giant component, which is one of the
characteristics of a second-order phase transition. In contrast,
when p

f
c is far above pc, for large values of r , the sizes of the

holes are smaller than r , and the interface cannot be created
spontaneously. Therefore, one must reduce p in order for a
hole of size r to be created. As we consider larger values of r ,
the value of p required to create such a hole decreases. Once the
hole is created, its interface starts to propagate freely because
p < p

f
c , and it will wipe out the entire lattice. In this scenario,

for small r , the critical threshold of the mutual percolation is
pc = p

f
c (r), which increases with r until ξ (pf

c ) = r . In that
interval, the transition is second order. But for r > ξ (pf

c ), pc

starts to decrease, following the equation ξ (pc) = r , and the
transition becomes first order. In fact, the values of r = rI

at which the transition becomes first order for the first time
and r = rmax at which pc starts to decrease may not exactly
coincide. There is always a probability that a hole of size
r > ξ (p) may appear in a large enough system. Thus for
r > rI , one can expect the average pc to be in between the
increasing function p

f
c (r) and the decreasing function p(r)

defined by the equation ξ [p(r)] = r , and hence may still
increase until it reaches its maximum at r = rmax.

B. Dependence of the transition order and rmax

on the system size

One would expect that the values of rI and rmax should
depend on the system size. Moreover, as shown in the previous
section, for r � rI the system becomes metastable with respect
to the formation of a hole, in a similar way to how a superheated
liquid is metastable to spontaneous nucleation of a gas bubble.
The larger the system, the greater the probability that the
critical hole will spontaneously form. We notice that if the
interdependence distance r is chosen in the vicinity of rI ,
the system exhibits the strongest finite-size effects in terms
of pc[D,r]. However, based on our studies of networks of
different sizes, we find that, in all dimensions except D = 2
and 6, the values of rmax and rI do not depend on the system
size if N � 106. The case D = 2 and r = 10 is presented
in Figs. 8, 9, and 10, and the case D = 6 and r = 1 is
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FIG. 8. Plot of the largest cluster distribution for 2D lattice
networks of increasing size (with r = 10). It can be seen that as
the size of the network increases, the type of transition becomes more
second order. When L � 750, the transition becomes second order
and approaches the true transition of the 2D lattice.

presented in Figs. 11, 12, and 13. These two examples are
very different from each other, and the increasing importance
of the finite-size effects that mask the nature of the transition
are caused by different mechanisms. In the low-dimensional
system, the dependence is caused by the increasing probability
of the formation of holes. However, in the high-dimensional
system, it is caused by the statistical uncertainty in the value of
the largest mutual percolation cluster, which becomes a small
fraction of the entire network.

The formation of the large holes as the mechanism for
network collapse is especially important in low-dimensional
systems in which the dimensionality of the interior of the hole
and its perimeter are significantly different. As mentioned
in the previous section, the critical threshold of the moving
free interface, p

f
c (r), increases linearly with r . However,

the probability of the spontaneous formation of a hole of
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FIG. 9. Plot of the largest cluster distribution for a 2D lattice
network of size L = 1000 and 2000, with r = 10, for different values
of p. When L = 2000, denoted by the thicker lines, the transition is
completely second order.
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FIG. 10. Behavior of pc for D = 2, as a function of r for different

system sizes: L = 500, 1000, and 2000. The inset shows pc as a
function of ln(L) to test Eq. (3).

size r at p
f
c (r) decreases with p

f
c . This is because the

probability, per one lattice site, of the formation of a hole
of size r decreases exponentially with r , ph(r) ∼ exp(−r/ξ ),
where ξ ∼ (pf

c − p
p
c )−ν is the percolation correlation length,

p
p
c is the percolation critical threshold, and ν is a critical

exponent [21]. The total probability of the formation of a hole
in a lattice of size N is Nph(r). We can expect the formation of
the hole in a given instance of the lattice if Nph(r) = 1. Thus
the fraction, ph, of survived nodes for which the hole of size r

will be formed can be found from the following equations:

LD exp
[ − ar

(
ph − pp

c

)ν] = 1,

ar
(
ph − pp

c

)ν = D ln(L),

ph(r) = [D ln(L)/ar]1/ν + pp
c , (3)

where a is a proportionality coefficient. If ph < p
f
c (r), then

the system is metastable and the hole of size r certainly
eliminates the entire system. If ph > p

f
c (r), then the interface

of the hole will grow unpredictably, as in the second-order
phase transition. Thus if L is large enough, we can expect
the transition to be second order (Figs. 8 and 9) and follow
the increasing function, pc = p

f
c (r), for larger and larger r

(Fig. 10). For a fixed L, as soon as ph(r) < p
f
c (r), the type of

transition will change to first order. Moreover, pc will switch
to follow the graph of ph(r). Thus, at a fixed r , pc will increase
logarithmically with the system size until it reaches p

f
c (r), after

which the dependence on L stops (Fig. 10). We also observe
the logarithmic dependence of pc in the vicinity of rmax on the
system size for all other dimensions, but the strength of the
dependence becomes weaker as D increases, and for D � 3 it
is not sufficient to change the value of rmax and rI .

C. The effect of statistical fluctuations

The other interesting case is the 6D lattice with r = 1.
For L = 10 (N = 106), the transition looks second order
(Fig. 11). As we increase L, the transition begins to slowly
shift from second order to first order, and only when L = 20
(N = 4 × 106) does the transition become distinctly first order.
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FIG. 11. Plot of the largest cluster distribution for a 6D lattice
network with r = 1 of increasing size. It can be seen that as the
size of the network increases, the type of transition becomes more
and more first-order-like. When L = 20 (blue circles), the gap in the
distribution indicating the first order transition starts to develop.

The explanation of this fact is based on the statistical errors in
finite systems. If we remove exactly N (1 − p) random sites
from the system in an initial attack, it does not mean that
the size of the giant component in the lattice after the first
stage of the cascade will be exactly Ng(p), where g(p) is
the expected value of the giant component in a percolation
problem. According to the law of large numbers, the size of
the giant component will be distributed around g(p) with a
standard deviation σg ∼ 1/

√
N . Moreover, the long cascade

of failures at p = pc can be viewed as a sequence or iterations
approaching the tangential point between the curve y = pg(x)
and y = x [8]. If the size of the giant component differs by
an amount σg from the value g(x), the root of the equation
x = pg(x) will change as

√
σg , because at the tangential

point this equation becomes a quadratic equation with zero
discriminant, and hence changes in the discriminant of the
order of σg will result in the change of the root of the order
of

√
σg ∼ N−1/4. Thus, we can expect that the statistical error

of the mutual giant component as well as its mean value near
the first-order transition will decrease with the system size as
N−1/4. We observe this behavior for all r and D, but only for
D = 6 are these effects strong enough to affect the apparent
order of the collapse transition. For all other dimensions, the
order of the transitions remains the same even when the system
size is increased.

Indeed, the probability density function (PDF) of the
mutual giant component near the first-order phase transition
is the derivative of the cumulative distribution, and hence the
inflection point of the plateau of the cumulative distribution
corresponds to the minimum of the PDF. Thus, the PDF of μ

near the first-order phase transition is a bimodal distribution
with a left peak corresponding to the collapsed states of
the system, and a right peak corresponding to the survived
states of the system. Figure 12 shows the PDF of μ (for
D = 6,r = 1) for various values of L. One can see that
the right peak becomes sharper as L increases. As the
right peak becomes narrower, for L = 20 it practically stops
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FIG. 12. PDF of μ for D = 6, r = 1 for increasing values of L

from 10 to 20. One can see that the right peak, corresponding to the
survived giant component, becomes sharper as L increases.

overlapping with the left peak, making the distribution clearly
first-order-like.

Figure 13 shows the standard deviation and mean of
the right peak as a function of 1/N−1/4 (equal to 1/L−3/2

in six dimensions). One can easily see an approximately
linear behavior confirming our theory. The different curves
correspond to different methods of estimating σ and μ. The
first method is the direct computation of the average μ and
the variance from realizations of μ > μmin, where μmin is the
value of the minimum of the PDF. The second method consists
of doing a Gaussian fit near the maximum of the right peak
of the PDF. In this last case, σ can be computed from the
maximum of the PDF and from the coefficient of the second
power of the quadratic polynomial fitting the logarithm of the
PDF.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

L
-3/2

0

0.01
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0.05

 σ
, μ
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σ, Gauss 1/max
σ
μ, Gauss 
μ

FIG. 13. The average mutual giant component, μ, and its standard
deviation σ , computed for D = 6, r = 1 as functions of the lattice
size L plotted against N−1/4 = L−3/2. One can see an approximately
linear behavior for both quantities. Different curves correspond to
different methods of estimating σ and μ as discussed in the text.

D. The upper critical dimension

The upper critical dimension of the classical percolation
might play an important role in the mutual percolation problem
with distance restriction as well. This means that, qualitatively,
the behavior of our model for D � 6 should coincide with
the behavior of a RR network with k = 2D = 12. In this RR
network, the first value of r in which there is a first-order
transition is rI = 1 [19]. As shown above, when analyzing
very large 6D lattice networks for which the finite-size effects
become negligible (for L � 20), the transition at r = 1 is first
order as well. For D = 7 and L = 10, the transition for r = 1 is
a clear first-order transition. This supports our hypothesis that
the upper critical dimension for percolation plays a role in the
problem of mutual percolation with restricted interdependency
distance. However, the quantitative difference of the behavior
of pc for lattices and RR graphs gradually decreases with D.

V. CONCLUSION

In our study, we confirm that the behavior of the inter-
dependent D-dimensional lattices with distance limitation r

between the interdependent nodes approaches the behavior of
the interdependent RR graphs as D increases. We find that
for D < 6 there is a value of r = rI > 1 such that for r � rI

the cascading failures happen as a discontinuous first-order
transition, while for r < rI the transition is a continuous
second-order transition, as in the classical percolation theory.

We also find that in all dimensions, the interdependent
lattices reach maximal vulnerability (largest pc) at a distance
r = rmax > rI , such that for r > rmax the vulnerability starts
to decrease as r → ∞. These findings are in qualitative
agreement with Li et al. [17], who found that for a lattice
of D = 2, rI = rmax = 8. In this work, we find that for D = 2,
rI = 11 and rmax = 12. The quantitative difference between
our results can be explained by the fact that we use the chemical
distance, or shortest path, as a metric, while Li et al. use
a maximal coordinate difference as a metric. The number of
proximal nodes in Li et al. for r = 8 is hence (2r + 1)2 = 289.
In our model, the number of proximal nodes is 1 + 2r(r + 1),
which for r = 11 becomes 265 and for r = 12 is 313. Thus
in terms of the number of proximal nodes, the value found by
Li et al. for rI = rmax = 8 falls exactly in between our values
rI = 11 and rmax = 12.

Note that as D increases, both rI and rmax decrease, but
their difference increases. Moreover, the difference between
pc[D,rmax] and pc[D,∞] decreases exponentially with D.

More significantly, we find that for D = 6 and r = 1, the
transition is first order. This coincides with RR graphs with
r = 1 and large k > 8. This finding suggests that the upper
critical dimension of the classical percolation, D = 6, plays
an important role in the problem of mutual percolation with
distance restrictions.

We also investigate how the nature of the transition changes
as the number of lattice sites N → ∞. We find that when
N increases, the value of pc near the maximum increases
logarithmically with N , approaching the value of p

f
c , the

depinning transition of the propagation of the hole perimeter.
The problem of the upper critical dimension for this depinning
transition and its universality class is an interesting one that
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requires further investigation. rI and rmax have a tendency to
increase with N ; however, this dependence is small and could
be observed only for D = 2 in our study.

We also showed that when r is close to rI , which is the value
for which the nature of the transition changes, the true order
of the transition in the thermodynamic limit can be identified
only for very large N , which has been determined above.
The bimodality of the distribution of the giant component
indicated by the inflection point in the cumulative distribution
may either disappear, suggesting that the true nature of the

transition for N → ∞ is second order, or become stronger,
indicating that the transition is first order in the thermodynamic
limit.
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