Promoting information spreading by using contact memory

LEI GAO¹,², WEI WANG¹,²(a) PANPAN SHU³(b) HUI GAO¹,² and LIDIA A. BRAUNSTEIN⁴,⁵

¹ Web Sciences Center, University of Electronic Science and Technology of China - Chengdu 610054, China
² Big Data Research Center, University of Electronic Science and Technology of China - Chengdu 610054, China
³ School of Sciences, Xi’an University of Technology - Xi’an 710054, China
⁴ Center for Polymer Studies and Department of Physics, Boston University - Boston, MA 02215, USA
⁵ Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR)-Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET - Funes 3350, (7600) Mar del Plata, Argentina

received 19 March 2017; accepted 9 May 2017
published online 25 May 2017

PACS 89.75.Hc – Networks and genealogical trees
PACS 87.19.X- – Diseases
PACS 87.23.Ge – Dynamics of social systems

Abstract – Promoting information spreading is a booming research topic in network science community. However, the existing studies about promoting information spreading seldom took into account the human memory, which plays an important role in the spreading dynamics. In this letter we propose a non-Markovian information spreading model on complex networks, in which every informed node contacts a neighbor by using the memory of neighbor’s accumulated contact numbers in the past. We systematically study the information spreading dynamics on uncorrelated configuration networks and a group of 22 real-world networks, and find an effective contact strategy of promoting information spreading, i.e., the informed nodes preferentially contact neighbors with a small number of accumulated contacts. According to the effective contact strategy, the high-degree nodes are more likely to be chosen as the contacted neighbors in the early stage of the spreading, while in the late stage of the dynamics, the nodes with small degrees are preferentially contacted. We also propose a mean-field theory to describe our model, which qualitatively agrees well with the stochastic simulations on both artificial and real-world networks.

Copyright © EPLA, 2017

Introduction. – A wide range of propagation phenomena in the real world, such as the spreading of information, rumor, disease and behavior, can be described by spreading dynamics on complex networks [1–6]. The problem of how to enhance or promote the spreading has attracted much attention in the last few years in many disciplines [7]. Promoting spreading speed and understanding its effects in the outbreak size of the reached nodes are two important features to study in both theoretical and empirical aspects. Theoretically existing studies found that promoting the spreading dynamics could induce distinct critical phenomena with different outbreak thresholds and critical exponents [8]. Practically speaking, promoting the spreading dynamics could shed some lights on the propagation of information [9–11], marketing management [12,13], disease spreading [14–18], etc.

Many strategies for promoting spreading dynamics have been proposed, such as choosing influential seeds [19,20] and designing effective contact strategies [21,22]. Kitsak et al. found that selecting nodes with high k-shells as spreading sources can effectively enhance the size of the spreading in most cases [20], however the k-shell index cannot reflect the importance of nodes in the core-like group in which the nodes are connected very locally [23]. Yang et al. proposed a contact strategy based on the degree of neighbors nodes to promote the information spreading [21]. They found that the information spreading can be greatly promoted in uncorrelated networks if the small-degree neighbors are preferentially contacted. In addition, if the reached nodes, denoted as informed nodes, preferentially contact nodes with few informed neighbors, the information spreading could be further promoted [22].

In the real world, the activities of humans exhibit the characteristic of having memory [24,25]. This
characteristic has significant impacts on the spreading dynamics of information, epidemic, and behavior [26–28]. For instance, human’s memory produces a larger prevalence in the exponential decay time of new informed nodes than processes without memory [29]. Wang et al. [27] found that memory affects the growth pattern of the final outbreak size in the dynamics of social contagion. However, previous works about promoting information spreading always neglected the memory of individuals. In this letter, we propose a non-Markovian information spreading model, in which each individual (node) keeps memory of the number of accumulated contacts (NAC) with informed neighbors in the past. We assume that every informed node contacts a neighbor based on the values of neighbors’ NAC. To describe our model, we develop a novel mean-field theory. Our theoretical predictions are in good qualitative agreement with the stochastic simulations on both artificial networks and 22 real-world networks. Through theoretical analysis and extensive numerical simulations, we find that preferentially contacting neighbors with small NAC is an efficient strategy to promote the spreading. This strategy markedly promotes the information spreading, since it increases the number of effective contacts with susceptible nodes. With our effective strategy, we find that the informed nodes are more likely to contact high-degree nodes in the early stage, while small degree nodes are preferentially contacted in the late stage. As a result, our strategy unifies the probability that nodes of different degrees will be contacted enhancing the information spreading remarkably.

Model. We propose a generalized susceptible-informed model [1] to describe the information spreading. In this model, each node can either be in the susceptible or informed state. Initially, we randomly choose a small fraction of nodes in the informed state, while the remaining nodes are in the susceptible state. At each time step, each informed node i contacts one of its neighbors j with a probability $w_{ij}(t)$ (to be defined later). If node j is susceptible, it will become informed with a transmission probability λ. During the spreading process, we adopt the synchronous updating rule, i.e., all nodes will update their states synchronously at each time step [30]. The dynamical process evolves until time T, at which we compute the density of informed nodes $\rho(T)$. The change of this magnitude with the parameters will allow us to evaluate the efficiency of our strategy [31].

An effective information spreading strategy should increase the effective contacts between informed and susceptible nodes [32]. To achieve this goal our strategy assumes that every node remembers the number of accumulated contacts (NAC) with informed neighbors in the past. An informed node i contacts a neighbor j at time t with probability

$$w_{ij}(t) = \frac{[n_j(t) + 1]^{\alpha}}{\sum_{v \in \Gamma(i)} [n_v(t) + 1]^{\alpha}},$$

(1)

where $n_j(t)$ is the value of NAC of node j at time t, and Γ_i is the neighbor set of node i (see footnote 1). The parameter α determines the tendency of node i to contact a neighbor j with small or large value of $n_j(t)$. For the case of $\alpha > 0$, neighbors with larger $n_j(t)$ are preferentially contacted, and for the case of $\alpha < 0$, the opposite situation occurs. When $\alpha = 0$, all neighbors are randomly chosen and we recover the classical susceptible-informed model. As every node remembers its NAC before time t, the information spreading process is a non-Markovian process. In fig. 1 we show a schematic of the information spreading dynamics.

Results.

Theoretical analysis. To describe our model of information spreading dynamics, we develop a mean-field theory. We denote as $s_i(t)$ and $\rho_i(t)$ the probabilities that node i is susceptible and informed at time t, respectively. Since each node can only be in the susceptible or informed state, we have $s_i(t) = 1 - \rho_i(t)$. A susceptible node i will become informed at time t if it fulfills two conditions simultaneously: 1) being contacted by an informed neighbor i with probability $w_{ij}(t)$, and 2) being informed successfully with probability λ. The probability of node j to make a transition to the informed state by neighbors at time t is [33]

$$\Phi_j(t) = 1 - \prod_{i=1}^{N} [1 - \lambda A_{ij} w_{ij}(t) \rho_i(t)],$$

(2)

where N is the system size and A_{ij} is the element of the adjacency matrix of a given network. If there is an edge between nodes i and j, $A_{ij} = 1$; otherwise, $A_{ij} = 0$. Thus, 1

Footnote 1: In the equation, we set $n_j(t) + 1$ to avoid that the denominator is zero.
the evolution of the probability of the informed node j is

$$\rho_j(t+1) = \rho_j(t) + s_j(t)\Phi_j(t).$$ \hspace{1cm} (3)

In order to obtain the value of $w_{ij}(t)$, we compute $n_j(t)$ which is given by

$$n_j(t+1) = n_j(t) + \Theta_j(t),$$ \hspace{1cm} (4)

where

$$\Theta_j(t) = \sum_{i=1}^{N} A_{ij} w_{ij}(t) \rho_i(t)$$ \hspace{1cm} (5)

is the increase of node j’s NAC at time t. From eqs. (2)–(5), we obtain the evolution equations for the information spreading dynamics. At time t, the density of informed nodes is given by

$$\rho(t) = \frac{1}{N} \sum_{j=1}^{N} \rho_j(t),$$ \hspace{1cm} (6)

and the density of susceptible nodes is $s(t) = 1 - \rho(t)$.

Stochastic simulations. We perform extensive numerical simulations on both artificial and real-world networks. All the obtained results are averaged over 10^3 independent realizations of seeds on a fixed network. Initially, we randomly select 5% nodes as informed seeds. The information transmission probability is set as $\lambda = 0.1$. Notice that other values of $\lambda > 0$ do not qualitatively affect our results.

We first study the information spreading dynamics on artificial networks. We built the artificial networks using the uncorrelated configuration model \cite{34,35} with power-law degree distributions $P(k) \sim k^{-\gamma}$ with $k_{\text{min}} \leq k \leq \sqrt{N}$, where k_{min} is the smaller value of the degree and γ is the degree exponent. In all our simulations the network size is $N = 10^4$ and $k_{\text{min}} = 4$ in order to have a high average degree and, therefore, a relative high number of contacts.

In fig. 2 we show the results on artificial networks with different degree exponents. For a given value of T, we find that $\rho(T)$ decreases with α, as shown in figs. 2(a) and (c). Specifically, if every informed node i preferentially contacts a neighbor j with small value of $n_j(t)$, i.e., $\alpha < 0$, more nodes will be informed. On the other hand, if neighbors with large NAC are preferentially contacted, i.e., $\alpha > 0$, there will be few nodes to be informed. From the figures we can see that for $T = 100$ almost all nodes are in the informed state when $\alpha \leq 1$, however, there are few informed nodes when $\alpha > 1$. We can explain the above phenomena as follows. The larger the value of $n_j(t)$, the larger the probability that node j has been informed. As a result, an informed node i should contact a neighbor with small value of NAC to increase the number of effective contacts (i.e., contact with a susceptible neighbor), and further promotes the information spreading. In figs. 2(b) and (d) we show the time evolution of $\rho(t)$ for $\gamma = 2.1$ and 3.0, respectively. We find that for small values of α, $\rho(t)$ is large, nevertheless when $\alpha = 1.0$ the information spreads slowly and it is hard to expand the information to the whole network. Our theoretical predictions agree with the stochastic simulations in most cases. The deviations between the theoretical and the numerical results arise from disregarding the strong dynamical correlations among the states of neighbors in the theory \cite{1,2}. From the figures we can also see that the phenomena for $\gamma = 2.1$ and $\gamma = 3.0$ are similar, which indicates that the heterogeneity of the degree distribution does not qualitatively affect the results.

In order to explain our above results we compute the average values of NAC of nodes with degree k ($n_k(T)$) at time T. From figs. 3(a) and (c), we can observe that at the early stage of the information spreading dynamics (i.e., $T = 10$), $\langle n_k(T) \rangle$ increases linearly with k for all the values of α, i.e., high-degree nodes are more likely to be contacted by informed neighbors than low-degree nodes. Note that $\langle n_k(T) \rangle$ is slightly smaller for $\alpha = -2.0$ than for $\alpha = 1.0$. At a later stage of the information spreading dynamics (i.e., $T = 100$), we find some interesting phenomena as shown in figs. 3(b) and (d). For the case of $\alpha = 0.0$, $\langle n_k(T) \rangle$ still increases linearly with k. When $\alpha = 1.0$, the values of $\langle n_k(T) \rangle$ of the largest degree nodes are more than 200 times larger than the ones for nodes with minimum degree, and the number of the effective contacts are decreased in this case. However, for the case of $\alpha = -2.0$, almost all the nodes have the same values of $\langle n_k(T) \rangle$. This indicates that, compared to the case of $\alpha = 1.0$, in the latter case informed nodes are more likely to contact neighbors with small degrees. Since nodes with small degrees have small probabilities to be informed, preferentially contacting them increases the number of effective contacts. As a result, nodes with different
The probability is right column, we set $\gamma = 2.1$. In (c) and (d), we set $\gamma = 3.0$. In fig. 4, we study the time evolution properties of the information spreading on theoretical networks. The time evolution of $\rho(t)$ with $\alpha = -2.0, 0.0$ and 1.0 ρ for Advogato (c) and Hamsterster friendships networks (d). The theoretical analysis results are obtained from eq. (6). We set the information transmission probability as $\lambda = 0.1$.

In the left column, we set $\gamma = 2.1$. In the right column, we set $\gamma = 3.0$. The information transmission probability is $\lambda = 0.1$.

In fig. 4, we study the time evolution properties of the information spreading on theoretical networks. $\langle n_S(t) \rangle$ (a) and (e), $p_S(t)$ (b) and (f), $k_I(t)$ (c) and (g), and $D_I(t)$ (d) and (h) vs. t. The information transmission probability is $\lambda = 0.1$.

degrees almost have uniform probabilities of being contacted and the information spreading can be accelerated significantly.

In fig. 4, we study the time evolution properties of the information spreading. In figs. 4(a) and (e), we show the time evolution of the average number of accumulated contacts $\langle n_S(t) \rangle$ for the effective contacts (i.e., the newly contacted susceptible nodes) for $\gamma = 2.1$ and 3.0. For the case of $\alpha = -2.0$, most of the nodes with a small number of contacts are informed at the early stage, while the remaining few nodes with a large number of contacts are informed at the late stage. However, for the case of $\alpha = 1.0$, nodes with a small number of contacts are hard to be informed. We also find that the ratio of the number of effective contacts to all contacts at time t, i.e., $p_S(t)$, is very high in the early stage when $\alpha = -2.0$ (see figs. 4(b) and (f)). To clarify the types of informed nodes at different stages of the process, we study the average degree $\langle k_I(t) \rangle$ and the degree diversity $D_I(t)$ [22] of the newly informed nodes at time t. Here $D_I(t)$ is defined as

$$D_I(t) = \frac{1}{\sum_k I_k(t)} \left[\frac{I_k(t)}{I_k(t)-I_k(t-1)} \right]^\gamma,$$

where $I(t)$ is the number of newly informed nodes at time t, and $I_k(t)$ is the number of those with degree k. The large values of $D_I(t)$ indicate that the newly informed nodes have heterogeneous degrees. From figs. 4(c) and (g), we can see that for the case of $\alpha = -2.0$, $\langle k_I(t) \rangle$ is very large at the early stage, and then decreases at the later stage. $D_I(t)$ shows the same tendency as seen in figs. 4(d) and (h). Thus, when $\alpha = -2.0$ high-degree nodes are more likely to be informed in the early stage, while in the late stage low-degree nodes are often informed. When $\alpha = 1.0$ both $\langle k_I(t) \rangle$ and $D_I(t)$ are large in the whole spreading process, which means that nodes with low degrees are hard to be informed. These results corroborate our finding that the heterogeneity of degree distribution does not qualitatively affect the above-stated results.

Finally, we study our suggested information spreading dynamics on 22 real-world networks, which includes metabolic networks, infrastructure networks,
Table 1: Statistical characteristics of the 22 real-world networks. The statistical characteristics including the network size (N), number of edges (E), maximum degree (k_{max}), first and second moments of the degree distribution (⟨k⟩) and second moments (⟨k^2⟩), degree-degree correlations (r), clustering (c), and modularity (Q).

<table>
<thead>
<tr>
<th>Category</th>
<th>Networks</th>
<th>Statistical characteristics of networks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Social</td>
<td>Advogato [36]</td>
<td>5042</td>
</tr>
<tr>
<td></td>
<td>Hamsterster friendships [37]</td>
<td>1788</td>
</tr>
<tr>
<td></td>
<td>Hamsterster full [37]</td>
<td>2000</td>
</tr>
<tr>
<td>Metabolic</td>
<td>Caenorhabditis elegans [38]</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>Reactome [39]</td>
<td>5973</td>
</tr>
<tr>
<td></td>
<td>Human protein (Figeys) [40]</td>
<td>2217</td>
</tr>
<tr>
<td></td>
<td>Human protein (Vidal) [41]</td>
<td>2783</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Air traffic control [37]</td>
<td>1226</td>
</tr>
<tr>
<td></td>
<td>OpenFlights [42]</td>
<td>2905</td>
</tr>
<tr>
<td></td>
<td>Power [43]</td>
<td>4941</td>
</tr>
<tr>
<td>Collaboration</td>
<td>CA-Hep [44]</td>
<td>8638</td>
</tr>
<tr>
<td></td>
<td>Netsci [45]</td>
<td>379</td>
</tr>
<tr>
<td>Citation</td>
<td>DBLP [46]</td>
<td>12495</td>
</tr>
<tr>
<td>HumanContact</td>
<td>Jazz musicians [47]</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>Adolescent health [48]</td>
<td>2539</td>
</tr>
<tr>
<td>Computer</td>
<td>Route views [49]</td>
<td>6474</td>
</tr>
<tr>
<td></td>
<td>Route [50]</td>
<td>5022</td>
</tr>
<tr>
<td>Lexical</td>
<td>King James [37]</td>
<td>1707</td>
</tr>
<tr>
<td>OnlineContact</td>
<td>Pretty Good Privacy [51]</td>
<td>10680</td>
</tr>
<tr>
<td></td>
<td>Email [52]</td>
<td>1133</td>
</tr>
<tr>
<td></td>
<td>Emailcontact [20]</td>
<td>12625</td>
</tr>
<tr>
<td></td>
<td>Blog [53]</td>
<td>3982</td>
</tr>
</tbody>
</table>

Fig. 6: (Color online) Comparison of the theoretical and numerical predictions of the information spreading on 22 real-world networks. Different colors indicate different values of α. The analysis results are obtained from eq. (6). The results are obtained at the end time T = 100. We set λ = 0.1.

collaboration networks and citation networks, etc. For simplicity, the directed networks are treated as undirected ones and the weighted networks are treated as unweighted ones. Table 1 displays their statistical characteristics in details.

Figure 5 shows the information spreading on two representative networks. Strikingly, we find that the results on real-world networks are qualitatively similar to the ones found in artificial networks as shown in fig. 2. Specifically, if the informed nodes preferentially contact neighbors j with small n_j(t), the information spreading will be markedly facilitated. On the contrary, the information spread is slower if nodes with large NAC are favored, and it is hard to spread the information to the network.

We further verify the effectiveness of our suggested mean-field theory on the real-world networks at T = 100 for different values of α, as shown in fig. 6. We can see that our theoretical predictions qualitatively agree with the numerical simulations, although the theoretical predictions are slightly larger than the simulation results. The deviations between theoretical and numerical predictions derive from the strong dynamical correlations among the states of neighbors [1, 2].

Discussions. — In this letter, we proposed a novel non-Markovian information spreading model by introducing the individuals’ memory, which assumes that every node remembers the number of accumulated contacts (NAC) with informed neighbors in the past, and an informed node contacts a neighbor with different biases values of NAC. To describe the non-Markovian spreading dynamics, we developed a novel mean-field theory. Through extensive numerical simulations on artificial networks and
of other social dynamics. The Markovian spreading model can be extended to the study of new products adoption. Our theoretical method of non-Markovian spreading model could be used for other spreading dynamics in complex networks as well as the real-world networks. Our e-perimental results on artificial networks verify the effectiveness of our strategy. The spreading dynamics strongly depend on the structures of networks. The agreement between our theoretical predictions and numerical results is verified on artificial networks as well as the real-world networks. Our e-ffective strategy to promote the information spreading on complex networks could be used for other spreading dynamics, such as technical innovations, healthy behaviors, and new products adoption. Our theoretical method of non-Markovian spreading model can be extended to the study of other social dynamics.***

This work was supported by the National Natural Science Foundation of China (Grant No. 61673086). LAB thanks UNMDP and FONCyT, PICT 0429/2013 for financial support.

REFERENCES

[41] Rual J.-F., Venkatesan K., Hao T., Hirozane-Kishikawa T., Dricot A., Li N., Berriez G. F.,
Promoting information spreading by using contact memory

