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Abstract. Networks with a given degree distribution may be very resilient to one type of failure or attack
but not to another. The goal of this work is to determine network design guidelines which maximize the
robustness of networks to both random failure and intentional attack while keeping the cost of the network
(which we take to be the average number of links per node) constant. We find optimal parameters for:
(i) scale free networks having degree distributions with a single power-law regime, (ii) networks having
degree distributions with two power-law regimes, and (iii) networks described by degree distributions
containing two peaks. Of these various kinds of distributions we find that the optimal network design is
one in which all but one of the nodes have the same degree, k1 (close to the average number of links per
node), and one node is of very large degree, k2 ∼ N2/3, where N is the number of nodes in the network.

PACS. 89.20.Hh World Wide Web, Internet – 02.50.Cw Probability theory – 64.60.Ak
Renormalization-group, fractal, and percolation studies of phase transitions

1 Introduction

Recently, there has been much interest in the resilience of
real-world networks to failure of nodes or to intentional
attacks [1–6]. Despite the obvious need, thus far there are
no studies of optimization of network design. The goal of
this work is to determine network design guidelines which
maximize the robustness of the networks to both random
failures of nodes and attacks targeted on the highest de-
gree nodes [7].

Networks with a given degree distribution may be very
resilient to one type of attack but not to another. Con-
sider the simple seven node network example shown in
Figure 1a. This network is relatively robust with respect
to a random failure – only a failure of the central node
will cause the network to fragment. Thus the probability
that a random failure will cause the network to fragment
is only 1/7. On the other hand the network is extremely
vulnerable to a targeted attack – an attack in which the
most highly connected nodes are removed first. In this sim-
ple example the probability that a targeted attack which
removes one node will fragment the network is 1!

As shown in Figure 1b we can modify the network to
make it more resilient to targeted attack by adding more
links between the nodes on the periphery of the network.
With this modification, neither a single node random fail-
ure nor a targeted attack which removes only one node can
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Fig. 1. (a) Example of network with low tolerance to targeted
attack. (b) Example of a network with much higher tolerance
to targeted attack but with double the cost.

fragment the network. This increased robustness, however,
comes with a cost. If we define the “cost” to construct and
maintain a network with a given number of nodes as being
proportional to the average number of links 〈k〉 per node
in the network, we see that the cost of the original network
is 12/7 while the cost of modified network is 24/7. So for
the additional robustness we pay a factor of 2 in cost.

Our goal then becomes how to maximize the robust-
ness of a network of size N nodes to both random failures
and targeted attacks with the constraint that the cost re-
mains constant. That is, the number of links remains con-
stant but the nodes are connected in a different and more
optimal way.

Many real world computer, social, biological and other
types of networks have been found to be scale free, i.e.,
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they exhibit degree distributions of the form P (k) ∼
k−λ [8–16]. For large scale free networks with exponent
λ less than 3, it has been found that, if nodes fail ran-
domly, essentially all nodes must fail for the network to
become disconnected [3,4]. On the other hand, because
the scale free distribution has a long power-law tail (i.e.
hubs with large degree), the networks are vulnerable with
respect to targeted attack. This raises two questions that
we address in this work: (i) How can we optimize scale
free networks to both random failure and targeted attack
and (ii) Are there other network types that can be better
optimized than scale free networks. To this end, we begin
our analysis with scale free networks and then consider
networks with other types of distributions.

2 Optimization metric

The threshold for random removal of nodes for any degree
distribution, P (k), is [3]

f rand
c = 1 − 1

κ0 − 1
, (1)

where κ0 ≡ 〈k2〉/〈k〉.
Reference [5] describes how to calculate f targ

c , the
threshold under intentional attack.

A metric we can use to measure the robustness of the
network to both random and targeted attack is the sum

f tot
c = f rand

c + f targ
c . (2)

This is only one of a number of possible metrics we could
use, e.g., we could have used the product f rand

c · f targ
c .

Our results are, in general, not dependent on the metric
chosen.

Our goal can now be stated as follows: for a network
of a given number of nodes N , how do we maximize f tot

c

while keeping the number of links constant?
We can estimate an upper bound for f tot

c . We first note
that the maximum value of f rand

c is essentially 1 which is
the case when a small number of nodes have a very large
degree distribution – as in scale free networks with λ < 3
or in the simplest case where one node is linked to all
other nodes. In these cases the probability of these critical
nodes randomly failing approaches zero and the threshold
is close to 1. The maximum value of f targ

c is obtained in
the situation in which all the nodes have the same degree,
〈k〉, in which case the targeted attack becomes equivalent
to random failure and we can use equation (1) to find
f targ

c = 1− 1/(〈k〉− 1). Our upper bound f̄ tot
c is therefore

given by

f tot
c ≤ f̄ tot

c ≡ 2 − 1
(〈k〉 − 1)

. (3)

3 Power law degree distribution

We first study how to optimize a scale free network with
a single power law regime by varying the exponent λ and
keeping 〈k〉 constant [17].
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Fig. 2. Random, targeted and total critical percolation thresh-
olds for scale free networks as a function of the exponent λ.

In Figure 2, we plot the values of f rand
c , f targ

c , and
f tot

c , for a range of the exponent λ for a network with N =
106 nodes and 〈k〉 = 3 [18]. For this choice of 〈k〉, the upper
bound of f tot

c is given by f̄ tot
c ≈ 1.5 (see Eq. (3)). We find

that: As λ increases, f targ
c increases but f rand

c decreases.
For λ ≈ 2.5 f tot

c is optimized but the maximum value of
f tot

c (≈ 1.04) is small relative to the theoretical maximum
≈ 1.5. It is interesting that the network is optimized with
a value of λ about 2.5 which is consistent with the range
of exponents for many real networks [8–16].

4 Degree distributions formed by two power
laws

We next analyze a slightly more complex form for P (k).
Keeping 〈k〉 constant, we consider degree distributions
which consist of 2 segments each of which is a power
law. The inflection point at which the distribution changes
slope we denote by a. The hypothesis is that the first
power law segment (for k < a) with exponent α will con-
tribute to the robustness against targeted attack and the
second segment (for k > a) with exponent λ will con-
tribute to the robustness against random failures. We de-
termine the relative weights of the two segments such
that fc-total is maximized. To maintain constant 〈k〉 as
we change a we again adjust the minimum, m, of the dis-
tribution.

In Figure 3, we plot the values of f tot
c as a function

of the inflection point a for λ = 2.5, 〈k〉 = 3 and for
various α. We see that f tot

c attains a maximum value that
increases with increasing α. Thus for a given λ we can
maximize f tot

c by choosing appropriate values of a and α.
We can further increase the maximum value of f tot

c

by changing the value of λ. In plots (not shown) of f tot
c

as functions of a, for α = 10 and various values of λ, we
find that as λ decreases, the maximum value attained by
f tot

c increases. Thus we can maximize the robustness of a
network with respect to both random failure and targeted
attack by replacing the original degree distribution by one
with the same 〈k〉 but with two power law segments char-
acterized by exponents α and λ with α large and λ close to
one (the lowest value of λ which yields physical results).
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Fig. 3. Total percolation threshold vs. the inflection point
a for distributions P (k) composed of two scale free segments
with λ = 2.5 (for k > a) and for the slope (for k < a) α =
3, 4, 5, 10, 20, 30 (from right to left).

In these distributions with large values of α the total
probability in the tail of the distribution is a small fraction
of the total probability, so that there is only on the order
of one node in the tail and, due to the large value of α,
most of the nodes have almost the same number of links
– very close to the minimum m.

5 Degree distributions formed
by an exponential and a power law

With the insight that the larger the exponent α the bet-
ter the optimization, we now consider distributions with
the initial power law segment (k < a) of the distribution
replaced by an exponential distribution P (k) ∼ ε−βk. As
expected we find that for a given β, at some value of a,
f tot

c is optimized and that the optimization increases as β
increases.

6 Degree distribution formed
by two Gaussians

Considering the previous cases, it appears that the opti-
mization strategy does not depend on the fact that the
initial segment of the distribution is a power law or expo-
nential. Given that the total probability of the nodes in
the second segment (the tail of the distribution) is very
small (of order 1), as discussed above, we now want to
study the case where the second segment is not a power
law. We therefore consider here a case where the degree
distribution consists of two Gaussian segments.

One Gaussian has its center at k1 and width ω1 and
the second Gaussian has its center at k2 > k1 and width
ω2. The ratio r represents the fraction of the number of
nodes in the second Gaussian to the total number of nodes.
We consider cases in which r and k2 are the independent
variables and k1 must be a dependent variable in order to
maintain a fixed value of 〈k〉.

In plots (not shown) of the total threshold f tot
c in terms

of the ratio r for various values of k2, we find that the

optimal f tot
c increases as r decreases. In addition, we ob-

tain higher values of the optimal f tot
c for smaller values

of ω1. This fact indicates that the highest value of f tot
c

is achieved in the limit where this width goes to zero. In
this limit the lower segment tends toward a simple delta
function. This observation motivates us to study next the
optimization of networks consisting of two delta functions.

7 Degree distributions formed
by two delta functions

Next we consider the degree distribution that consists of
two delta functions:

P (k) ≡ (1 − r)δ(k − k1) + rδ(k − k2). (4)

As in the case of two Gaussian segments, we calculate the
total threshold as a function of r and k2 for a fixed value
of 〈k〉. We obtain analytical expressions for both f rand

c and
f targ

c as follows.
Using equation (1),

f rand
c =

〈k〉2 − 2r〈k〉k2 − 2(1 − r)〈k〉 + rk2
2

〈k〉2 − 2r〈k〉k2 − (1 − r)〈k〉 + rk2
2

. (5)

For the threshold for targeted attack, we must consider
two cases:

(i)f targ
c > r. In this case, after the targeted attack, the

only nodes that remain have degree k1. We find

f targ
c = r +

1 − r

〈k〉 − rk2

{
〈k〉 〈k〉 − rk2 − 2 (1 − r)

〈k〉 − rk2 − (1 − r)
− rk2

}
;

(6)
(ii) f targ

c < r. For this case nodes are removed only
from the higher segment and we find

f targ
c =

〈k〉2 − 2r〈k〉k2 + rk2
2 − 2(1 − r)〈k〉

k2(k2 − 1)(1 − r)
. (7)

With the expressions for the thresholds, equations (5–7),
we are able to evaluate the total threshold f tot

c . We can
obtain an expression for the optimal value of k2 as a func-
tion of r by determining the value of k2 for which f tot

c

is maximized. Based on our results above, we expect the
maximum will be obtained for r small. Using equations (5)
and (7), we find that for small r the optimal value of k2

can be approximated by

k2 ∼
{

2〈k〉2(〈k〉 − 1)2

2〈k〉 − 1

}1/3

r−2/3 ≡ Ar−2/3. (8)

Using this result and equation (3) we find, for small r,

f tot
c = f̄ tot

c − 3〈k〉
A2

r1/3 + O(r2/3). (9)

Thus f tot
c approaches the theoretical maximum value

when r approaches, but is not, zero. For a network of
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Fig. 4. Contour plot of total percolation threshold vs. r and k2

for distribution consisting of two delta functions with 〈k〉 = 3.

N nodes, the maximum value of f tot
c is obtained when

r = 1/N the smallest possible value consistent with there
being 1 node of degree k2. Given this r the equation de-
termining the optimal k2 is

k2 = AN2/3. (10)

Figure 4 demonstrates the behavior of the optimal f tot
c

as a function of r and k2. We see that the highest values
of the optimal f tot

c are attained as r approaches zero; and
for a given small value of r, f tot

c is optimized for k2 from
equation (10).

The general nature of our results hold for the met-
ric defined in equation (2) as well as for metrics f tot

c de-
fined as a linear combination of the random and targeted
thresholds

f tot
c = af rand

c + bf targ
c , (11)

where a and b allow one to specify for a given network
the weight to be attached to random and targeted at-
tack respectively. The only modification to our results for
these alternative metrics, is that the prefactor A is gener-
alized to

A =
{

a

b

2〈k〉2(〈k〉 − 1)2

2〈k〉 − 1

}1/3

. (12)

8 Discussion and summary

We develop a strategy for optimization of scale free and
two-peaked networks against both random failures and
targeted attacks. We find that the network which ap-
proaches the theoretical maximum level of optimization
is generated with a degree distribution which is non-zero
at only two values: k1 and k2. This level of optimization
is possible because in order to obtain a value of f rand

c

which is essentially 1 we have to wire only 1 node with
a large number of links. The remaining nodes, all with
the same degree, provide essentially the same high degree
of resilience to targeted attack as for the case in which all
nodes have degree 〈k〉. Figure 5 compares the level of opti-
mization obtained for these optimized networks two-delta-
function networks with the level of optimization obtained
for networks with two power laws segments and with the
theoretical maximum values which can be obtained.
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Fig. 5. Plots of the optimal ftot
c vs. 〈k〉 for theoretical maxi-

mum value (solid line), two delta functions (dotted line), and
distributions consisting of two power law segments (see legend).

The optimal network is obtained by connecting k2 ∼
AN2/3 nodes to a single node and all of the other nodes ex-
cept the degree k2 node are of degree k1 ∼ 〈k〉−A/N1/3 ∼
〈k〉.

Subjects for further study include (i) an analysis of
the static and dynamic properties of the optimized two
delta function networks which we have identified here and
(ii) the optimization of complex networks under combined
random failure and targeted attack. Finally we note that
the origin of the N2/3 appearing in equation (10) may be
related to the size of the infinite cluster at criticality for
Erdös-Rényi graphs [19–22].

We thank L. Braunstein, S. Buldyrev, R. Cohen, and S.
Sreenivasan for helpful discussions and ONR and Israel Sci-
ence Foundation for support.

Note added in proof

After this work was accepted for publication, we became
aware of a related study [23].
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