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The extreme vulnerability of interdependent
spatially embedded networks

Amir Bashan'*, Yehiel Berezin', Sergey V. Buldyrev? and Shlomo Havlin'

Recent studies show that in interdependent networks a very small failure in one network may lead to catastrophic
consequences. Above a critical fraction of interdependent nodes, even a single node failure can invoke cascading failures that
may abruptly fragment the system, whereas below this critical dependency a failure of a few nodes leads only to a small amount
of damage to the system. So far, research has focused on interdependent random networks without space limitations. However,
many real systems, such as power grids and the Internet, are not random but are spatially embedded. Here we analytically and
numerically study the stability of interdependent spatially embedded networks modelled as lattice networks. Surprisingly, we
find that in lattice systems, in contrast to non-embedded systems, there is no critical dependency and any small fraction of
interdependent nodes leads to an abrupt collapse. We show that this extreme vulnerability of very weakly coupled lattices is a
consequence of the critical exponent describing the percolation transition of a single lattice.

are rarely isolated but usually interdependent and interagtercolation transition may be discontinuous. In this case, damage

with other systent&. The vulnerability of a single network of even a single node can lead to failure of a finite fraction of
is usually described by the percolation model in which the orde¢he whole system, which is clearly different from the continuous
parameter is the size of the giant connected component amehaviour in single networks. The existence of an abrupt collapse
the external parameter is the fraction of nodes that survived thghenomenon in interdependent networks makes such systems
initial failure*. Recently it was shown that a coupled-networkextremely risky. Thus, understanding this phenomenon is critical
system is considerably more vulnerable than its isolated compondat evaluating the systemsO risks and vulnerability and for designing
networks. In interdependent networks, nodesO interactions aobust infrastructure®.
represented by two different types of link, connectivity and Present models focus on interdependent networks where space
dependency links. The requirement to be connected to the giardgstrictions are not considered. Indeed, in some complex systems
connected component, as in single-network percolation, represeiite spatial location of the nodes is not relevant or not even defined,
the need of a node (to function) to be connected to the system, bstich as in protein interaction networi®®* and the World Wide
it does not matter through which path. In contrast, a dependencwelr>%, However, in many real-world systems, such as power
link represents the need of a node to get a critical supply frid networks,ad hoc communication networks and computer
function from one other specific node. This type of model isxetworks, nodes and links are located in Euclidean two-dimensional
based on the idea of mutual percolation in which the orde(2D) spacé’. On the basis of universality principles, the dimension
parameter is the size of the mutual giant comporf@fit The of a network is a fundamental quantity to characterize its structure
coupling between different networks induces a dynamical procemsd basic physical propertfé®. Indeed, all percolation models
of cascading failures; a failure of nodes in one network leads tandnose links have a characteristic length, embedded in a space
failure of dependent nodes in other networks, which in turn mayf same dimensions, belong to the same universality 2€laBsr
cause further damage to the first network and so on. This sequereeample, in random geometric networks the distance between two
of cascading failures may totally fragment the entire system andnnected nodes is below a given characteristic length. Another
the size of the mutual giant component collapses to zero. It wagample is power grid networks where the links have a characteristic
shown that the coupling strength of the networks, representddngth because their lengths follow an exponential distribiéfion
by the fractionq of interdependent nodes, determines the wayherefore, these examples, as well as any 2D network with a charac-
the system collaps¥€°. For strong coupling, that is, for a high teristic length scale, belong to the same universality class as regular
fraction of interdependent nodes, an initial damage event can le&attices. Thus, to obtain the main features of an arbitrary system of
to cascading failures that yield an abrupt collapse of the systemerdependent networks embedded in 2D space, we model these
in a form of a first-order phase transition. Reducing the couplingpatially embedded networks as 2D lattices. Typically, real spatial
strength below a critical value,, leads to a change from an abruptnetworks in 2D space are characterized by a lower average degree
collapse to a continuous decrease of the size of the network, inthan a square lattié& As seen in Supplementary Fig. S7, the case
form of a second-order phase transition. This new paradigm is iof coupled lattices is not only a representative example for all of
marked contrast to the common knowledge represented by a singfe universality class but may serve as a lower bound case, and real
network behaviour. In any single network the percolation transitiomwoupled spatial networks are even more vulnerable.
is always continuous; therefore, the damage due to a failure is aHere, we study analytically and numerically the stability of
continuous function of the amount of damage. In sharp contrasgystems of two interdependent spatially embedded networks,

C omplex systems, usually represented as complex networksjnterdependent networks, owing to the cascading failures, the
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Figure 1| A system of interdependent networks is characterized by the structure (dimension) of the single networks as well as by the coupling between
the networks. In random networks with no space restrictions, such as Erdés-Rényi and RR, the connectivity links (blue lines) do not have a defined length.
In contrast, in spatially embedded networks nodes are connected only to nodes in their geometrical neighbourhood creating a 2D network, modelled here
as a square lattice. The red arrows represent directed dependency relations between nodes in different networks, which can be of different types.

a, Coupled lattices. b, A coupled lattice-random network. ¢, Coupled random networks. d, A real-world spatial network coupled with a random network.
Models b and d belong to the same universality class.

modelled as two interdependent lattices (as illustrateffimla). Theory

We find that in such systemg = 0; that is, any couplingi> 0 Consider a system of two interdependent networks; 1 and
leads to an abrupt first-order transition. We show that the origiri = 2, where a fraction % p; of nodes of each network is initially

of this extreme vulnerability of spatially embedded networks liegandomly removed. We assume that only the nodes that belong
in the critical behaviour of percolation of a single lattice, whicho the giant component of the remaining networks that constitute
is characterized by a critical exponent< 1 (refs2830). This a fraction P, ;(p;) of the original network remain functional.

is in contrast to random networks for which = 1, leading to Each node that has been removed or disconnected from the giant
gc.> 0 in the case of interdependent random networks. Here theomponent causes its dependent node in the other network to also
dependency links are between lattices® nodes located in diffefaihtThis leads to further disconnections in the other network and
random spatial positionsHig.1a) or between lattice hodes andto cascading failures. The size of the networksO giant components at
nodes of random networks where the space does not play a role atlaé end of the cascade is giverfay;i(x;), wherex; are the solutions
(Fig.1b). Inthe case of dependency links between lattice nodes withthe self-consistent equatichs

exactly the same position, the transition is always continuous, as for

percolation in a single lattié& Note that the fully interdependent X1 = P101Poo.2(X2) +P2(1— 1) (1)
limit of g =1 of coupled lattices was studied in réf9. Our '
results suggest that the effect of spatial embedding is qualitatively X2 = P202Peo,1(X1) +P2(1 —02) 2

different from all other studied network properties that show only
a quantitative change of the percolation threshpldand of the whereq; is the fraction of nodes in network that depends on
critical couplingqc. nodes in the other network. Here we assume no restrictions on
Our theoretical and numerical approaches predict that a reathe selection of the directed dependency links. The results for the
world system of interdependent spatially embedded networkase of the no feedback condition, where the dependency links are
that are characterized by < 1 will, for any g > 0, abruptly bidirectionaf, are qualitatively the same (see Supplementary Fig.
disintegrate. As for percolation of lattice networks it is knowr88). The functionP., ;(x) can be obtained either analytically or
that for any dimensiond < 6, ! < 1 (ref. 28), we expect that numerically from the percolation behaviour of a single network.
also interdependent systems embeddedi iz 3 (or anyd < 6) For simplicity, we focus on a symmetric case, where both
will collapse abruptly for any finite fraction of dependengy networks have the same degree distribut®fk) and the same
Indeed, an analysis of the statistics of many real-world outepology, and wherp; =p,=p andq; =g, =g. Still, the results are
age events showed that they are commonly caused by cealid for any system of interdependent spatially embedded networks
cading failure®. Our results show that an important possible(such as planar graph) that belong to the same universality class.
mechanism in these events is the interdependencies in spatiaparticular, to study the role of spatial embedding, we compare
networks. the percolation transition in the case of a pair of interdependent
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Figure 2 | Schematic solution of the critical point of coupled lattices and coupled RR networks. The left-hand side and right-hand side of equation (3) are
plotted as a straight (red) line and a (blue) curve respectively. The tangential touching point, x*, marked with a black circle, represents the new percolation
threshold in the system of interdependent networks. a, In the case of coupled lattices, owing to the infinite slope of the curve at p¢, x* is always larger than
pc and, thus, there is always (for any g> 0) a discontinuous jump in the size of the giant component as p decreases. b, In contrast, in coupled random
networks the slope of the curves is finite for any value of x. Therefore, values of g < g exist for which x* is equal to p¢, leading to a continuous behaviour in
the network's size.
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Figure 3 | Percolation transition of interdependent lattices compared with interdependent random networks. a,b, The size of Py, at steady state after
random failure of a fraction 1—p of the nodes of two interdependent lattice networks with periodic boundary conditions (PBC; a) and two RR networks (b).
All networks are of size 16 x 10° nodes and the same degree distribution P(k) = "k4. The coupling between the lattices and between the RR networks
changes from g =0 to g = 0.8 with step 0.1 (from left to right). The solid lines are the solutions of equation (3) and the symbols represent simulation
results. In the case of interdependent lattices, only for g=0 (no coupling, that is, a single lattice) the transition is the conventional second-order
percolation, whereas for any g> 0 the collapse is abrupt in the form of a first-order transition. This is in marked contrast to the case of interdependent RR
networks, where only for g> g. = 0.43 the transition is abrupt, whereas for g < g. the transition is continuous. ¢,d, A characteristic behaviour in a
first-order percolation transition in coupled networks is the sharp divergence of the number of iterations (NOI) when p approaches pf (ref. 16) as seen for
coupled lattices for any g> 0O (¢) and for coupled RR networks for g> g (d). Models of coupled lattices with PBC have the same behaviour as models
without PBC as shown in Supplementary Fig Sé.

lattices Fig.l1a) with the case of a pair of interdependent randomwhere the size of the giant component at steady stake ().
regular (RR) networksKig.1c). The RR networks have the samd-or any values op and g, the solution of equatiolf3) can
degree distributionP (k) = " 4, as for the lattices with the only be graphically presented as the intersection between the curve
difference being that the lattice networks are embedded in spages pgP..(x) +p(1—q) and the straight lingg = x representing the

in contrast to RR networks. right-hand side and the left-hand side of equati@) respectively,
In the symmetric case, equatiofly and (2) can be reduced as demonstrated ifrig.2. The form of P, (x) for conventional
to a single equation percolation is obtained from numerical simulations of a single

lattice and analytically for a single RR netwdrlErom the solution
X =PgPs(X) +p(1—0q) (3) of equation(3) we obtainP,.(p) as a function of for several values
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of g. ThisP(p) is the new percolation behaviour for a system of 1.0
interdependent networks, shown kig.3a, for the case of coupled .
lattices and inFig.3b for the case of coupled RR networks. In ~ /
the case of interdependent lattices, only épe 0, no coupling O.Bffg

between the networks (the single network limit), the transition is 07 o
the conventional second-order percolation transition, whereas for ‘ ‘
anyq> Othe collapse is abrupt in the form of a first-order transition. 06 10710
In marked contrast, in the case of interdependent RR networks,
for > g. = 0.43 the transition is abrupt, whereas fgx q. the

transition is continuous. 0.4 a-q.
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Identifying q. 107 g
A discontinuity of P(p) is a result of a discontinuity ok(p), 02
represented graphically as the tangential touching point of the curve
and the straight line Kig.2a). At this point, p = p* is the new
percolation threshold in the case of interdependent networks, and 005 A% _ A% 00
x = x* yields the size of the giant component at the transition, q
P# =P, (x*), which abruptly jumps to zero gsslightly decreases.
The condition for a first-order transitiop = p”, for a givery, isthus ~ Figure 4 | The size of the abrupt collapse in coupled lattices compared
given by solving equatiofB) together with its tangential condition, with coupled random networks. Comparison of the size of the giant
component at criticality Pffo = Poo (p™) for two coupled lattices (squares),
1=p"gP. (x") (4)  coupled lattice and RR networks (circles) and two coupled RR networks
(diamonds) as a function of the coupling strength g. The RR networks have
The size of the giant component at the transitiBfy depends the same degree distribution as the lattice, k = 4 for all nodes. Whereas for
on the coupling strengtly such that reducing| leads to a smaller random networks with g < gc = 0.43 the size of the networks at criticality is
value ofx* and thus a smaller discontinuity in the size of the giantero, in coupled lattice network the networks abruptly collapse for any
component. In generaPR.(x) of a single network has a critical finite g> 0. Note also the significant differences in the network sizes at the
threshold ak = p. such thaP,.(x <p.) =0whereaB.,(X> pc) > 0  collapse transition. The coupled lattices collapse at a significantly larger
and monotonically increases with (ref. 28). As long ax* > p,,  giant component compared with the coupled RR case. The solid line
the size of the discontinuity is larger than zero. However, fokpresents the theory for coupled lattices given by equations (5) and (6),
a certain critical coupling] = q., X¥ — p. and the size of the and the symbols are from simulations. The solid line for coupled RR
jump becomes zerd{g.2b). In this case the percolation transition networks represents the theory derived in ref. 6. The scaling behaviour (as
becomes continuous. obtained from equations (7) and (8)) in the case of coupled lattices and
Therefore, the critical dependengybelow which the discontin- coupled lattice-RR for g— gc =0 is P% ~ g3 and P# ~ ¢3!
uous transition becomes continuous must satisfy equat{8nand  respectively, whereas for coupled RR P#, ~ (g —q¢) (see insets) .
(4) for x — p. given by

1072 ¢ “-q)

>
x>
o

0.8 1.0

network, such as in the case of a power grid (embedded in 2D

Pe=Pi(1—a0) (5)  space) coupled to a communication network (non-embedded)
i o as studied in ref5.
1=pZacP. (Pc) (6) Figure4 shows the size of the giant component at criticaffify

as a function of coupling strength demonstrating the significantly
A markedly different behaviour between random and spati@hcreased vulnerability of the lattice network in the coupled system
coupled networks is derived from equatiofS) and (6). This compared with the random networks system. For coupled latticeb
difference is a consequence of the critical behaviour of percolatitattice and coupled latticeDRR systeRfs> 0 for any q > 0,
in a single network. In the case of a single random netwonkhereas for a coupled RRDRR sys&in=0 for q < g, = 0.43.
P’ (x) is finite for any value ok. This allows an exact solution of Moreover, in coupled lattices even for weak coupling, the size
equation(6), yielding a finite non-zero value faj.. However, for of the discontinuity is relatively large. For example, foe 0.1
the case of a single lattice network the derivative,ofx) diverges the size of the network just before the collapse is about 42% of
at the critical point,P._ (pc) = oo, yieldingq. = 0. Therefore, from the original network.
equation(6) follows that any coupling|> 0 between lattices leads We next test the stability of two real-world spatially embedded
to an abrupt first-order transitionFigure2 demonstrates how the networks: the western United States power grid and the European
infinite slope of the percolation curve of a single lattice leads to a digewer grid. Figure5 compares the mutual percolation of three
continuous percolation transition for ary> 0in coupled lattices.  systems of interdependent networks: the power grid of the western
The behaviour of the percolation order parameter of a singldS, embedded in 2D space, coupled to a random network;
network near the critical point is defined by the critical exponenthe power grid of Europe, embedded in 2D space, coupled
I, whereP,(x — pc) = A(x — po)' . As for a single 2D lattice to a random network; and a model of two coupled random
I =5/36< 1, it follows thatP/ (x) diverges forx — p. for all networks, not embedded in space, showing the pronounced
networks embedded in 2D sp&é&3334, In contrast, for random effect of the spatial embedding on the stability of the system.
networks, such as Erd$sPRZnyi and RR,1, which yields a finite Weak coupling leads to an abrupt collapse of the spatial
value ofP/_(p.)?#%° and therefore a finite value fa. embedded systems whereas the non-embedded networks, with
We next study the effect of spatial embedding, comparing tthe same coupling strength between them, undergo a smooth
size of the network at criticality, that is, the size of the jump, irtontinuous transition.
three models: two non-embedded coupled RR netwokks: @);
two coupled lattices; and a lattice coupled with a non-embeddéGritical exponents
RR network. The last model is relevant to real-world systems We calculate explicitly the scaling behaviour of the size of
which a spatially embedded network is coupled to a non-embeddéte discontinuity near the critical couplindZ (q) ~ (q — qc)" "
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networks leads to relatively large-scale collapses. For the case of
coupled random networks, however, fgr— g, the discontinuity
size does not have a singular poiRf, ~ (q—qc), that is,! #=1.
The above approximations are numerically validated as shown

—— RR-RRg =02 in the insets ofFig.4.
. 06 Received 17 January 2013; accepted 17 July 2013; published online
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