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The extreme vulnerability of interdependent
spatially embedded networks
Amir Bashan1*, Yehiel Berezin1, Sergey V. Buldyrev2 and Shlomo Havlin1

Recent studies show that in interdependent networks a very small failure in one network may lead to catastrophic
consequences. Above a critical fraction of interdependent nodes, even a single node failure can invoke cascading failures that
may abruptly fragment the system, whereas below this critical dependency a failure of a few nodes leads only to a small amount
of damage to the system. So far, research has focused on interdependent random networks without space limitations. However,
many real systems, such as power grids and the Internet, are not random but are spatially embedded. Here we analytically and
numerically study the stability of interdependent spatially embedded networks modelled as lattice networks. Surprisingly, we
find that in lattice systems, in contrast to non-embedded systems, there is no critical dependency and any small fraction of
interdependent nodes leads to an abrupt collapse. We show that this extreme vulnerability of very weakly coupled lattices is a
consequence of the critical exponent describing the percolation transition of a single lattice.

Complex systems, usually represented as complex networks,
are rarely isolated but usually interdependent and interact
with other systems1–3. The vulnerability of a single network

is usually described by the percolation model in which the order
parameter is the size of the giant connected component and
the external parameter is the fraction of nodes that survived the
initial failure4. Recently it was shown that a coupled-networks
system is considerably more vulnerable than its isolated component
networks. In interdependent networks, nodes’ interactions are
represented by two different types of link, connectivity and
dependency links. The requirement to be connected to the giant
connected component, as in single-network percolation, represents
the need of a node (to function) to be connected to the system, but
it does not matter through which path. In contrast, a dependency
link represents the need of a node to get a critical supply to
function from one other specific node. This type of model is
based on the idea of mutual percolation in which the order
parameter is the size of the mutual giant component5–19. The
coupling between different networks induces a dynamical process
of cascading failures; a failure of nodes in one network leads to a
failure of dependent nodes in other networks, which in turn may
cause further damage to the first network and so on. This sequence
of cascading failures may totally fragment the entire system and
the size of the mutual giant component collapses to zero. It was
shown that the coupling strength of the networks, represented
by the fraction q of interdependent nodes, determines the way
the system collapses6,8,20. For strong coupling, that is, for a high
fraction of interdependent nodes, an initial damage event can lead
to cascading failures that yield an abrupt collapse of the system,
in a form of a first-order phase transition. Reducing the coupling
strength below a critical value, qc, leads to a change from an abrupt
collapse to a continuous decrease of the size of the network, in a
form of a second-order phase transition. This new paradigm is in
marked contrast to the common knowledge represented by a single
network behaviour. In any single network the percolation transition
is always continuous; therefore, the damage due to a failure is a
continuous function of the amount of damage. In sharp contrast,
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in interdependent networks, owing to the cascading failures, the
percolation transition may be discontinuous. In this case, damage
of even a single node can lead to failure of a finite fraction of
the whole system, which is clearly different from the continuous
behaviour in single networks. The existence of an abrupt collapse
phenomenon in interdependent networks makes such systems
extremely risky. Thus, understanding this phenomenon is critical
for evaluating the systems’ risks and vulnerability and for designing
robust infrastructures21.

Present models focus on interdependent networks where space
restrictions are not considered. Indeed, in some complex systems
the spatial location of the nodes is not relevant or not even defined,
such as in protein interaction networks22–24 and the World Wide
Web25,26. However, in many real-world systems, such as power
grid networks, ad hoc communication networks and computer
networks, nodes and links are located in Euclidean two-dimensional
(2D) space27. On the basis of universality principles, the dimension
of a network is a fundamental quantity to characterize its structure
and basic physical properties28,29. Indeed, all percolation models
whose links have a characteristic length, embedded in a space
of same dimensions, belong to the same universality class28. For
example, in random geometric networks the distance between two
connected nodes is below a given characteristic length. Another
example is power grid networks where the links have a characteristic
length because their lengths follow an exponential distribution29.
Therefore, these examples, as well as any 2D network with a charac-
teristic length scale, belong to the same universality class as regular
lattices. Thus, to obtain the main features of an arbitrary system of
interdependent networks embedded in 2D space, we model these
spatially embedded networks as 2D lattices. Typically, real spatial
networks in 2D space are characterized by a lower average degree
than a square lattice27. As seen in Supplementary Fig. S7, the case
of coupled lattices is not only a representative example for all of
its universality class but may serve as a lower bound case, and real
coupled spatial networks are evenmore vulnerable.

Here, we study analytically and numerically the stability of
systems of two interdependent spatially embedded networks,
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Figure 1 |A system of interdependent networks is characterized by the structure (dimension) of the single networks as well as by the coupling between
the networks. In random networks with no space restrictions, such as Erdös–Rényi and RR, the connectivity links (blue lines) do not have a defined length.
In contrast, in spatially embedded networks nodes are connected only to nodes in their geometrical neighbourhood creating a 2D network, modelled here
as a square lattice. The red arrows represent directed dependency relations between nodes in different networks, which can be of different types.
a, Coupled lattices. b, A coupled lattice–random network. c, Coupled random networks. d, A real-world spatial network coupled with a random network.
Models b and d belong to the same universality class.

modelled as two interdependent lattices (as illustrated in Fig. 1a).
We find that in such systems qc = 0; that is, any coupling q > 0
leads to an abrupt first-order transition. We show that the origin
of this extreme vulnerability of spatially embedded networks lies
in the critical behaviour of percolation of a single lattice, which
is characterized by a critical exponent � < 1 (refs 28,30). This
is in contrast to random networks for which � = 1, leading to
qc > 0 in the case of interdependent random networks. Here the
dependency links are between lattices’ nodes located in different
random spatial positions (Fig. 1a) or between lattice nodes and
nodes of randomnetworks where the space does not play a role at all
(Fig. 1b). In the case of dependency links between lattice nodes with
exactly the same position, the transition is always continuous, as for
percolation in a single lattice31. Note that the fully interdependent
limit of q = 1 of coupled lattices was studied in ref. 19. Our
results suggest that the effect of spatial embedding is qualitatively
different from all other studied network properties that show only
a quantitative change of the percolation threshold pc and of the
critical coupling qc.

Our theoretical and numerical approaches predict that a real-
world system of interdependent spatially embedded networks
that are characterized by � < 1 will, for any q > 0, abruptly
disintegrate. As for percolation of lattice networks it is known
that for any dimension d < 6, � < 1 (ref. 28), we expect that
also interdependent systems embedded in d = 3 (or any d < 6)
will collapse abruptly for any finite fraction of dependency q.
Indeed, an analysis of the statistics of many real-world out-
age events showed that they are commonly caused by cas-
cading failures32. Our results show that an important possible
mechanism in these events is the interdependencies in spatial
networks.

Theory
Consider a system of two interdependent networks, i = 1 and
i= 2, where a fraction 1� pi of nodes of each network is initially
randomly removed. We assume that only the nodes that belong
to the giant component of the remaining networks that constitute
a fraction P1,i(pi) of the original network remain functional.
Each node that has been removed or disconnected from the giant
component causes its dependent node in the other network to also
fail. This leads to further disconnections in the other network and
to cascading failures. The size of the networks’ giant components at
the end of the cascade is given by P1,i(xi), where xi are the solutions
of the self-consistent equations8

x1 = p1q1P1,2(x2)+p1(1�q1) (1)

x2 = p2q2P1,1(x1)+p2(1�q2) (2)

where qi is the fraction of nodes in network i that depends on
nodes in the other network. Here we assume no restrictions on
the selection of the directed dependency links. The results for the
case of the no feedback condition, where the dependency links are
bidirectional8, are qualitatively the same (see Supplementary Fig.
S8). The function P1,i(x) can be obtained either analytically or
numerically from the percolation behaviour of a single network.

For simplicity, we focus on a symmetric case, where both
networks have the same degree distribution P(k) and the same
topology, and where p1 =p2 ⌘p and q1 = q2 ⌘ q. Still, the results are
valid for any systemof interdependent spatially embedded networks
(such as planar graph) that belong to the same universality class.
In particular, to study the role of spatial embedding, we compare
the percolation transition in the case of a pair of interdependent
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Figure 2 | Schematic solution of the critical point of coupled lattices and coupled RR networks. The left-hand side and right-hand side of equation (3) are
plotted as a straight (red) line and a (blue) curve respectively. The tangential touching point, x

⇤, marked with a black circle, represents the new percolation
threshold in the system of interdependent networks. a, In the case of coupled lattices, owing to the infinite slope of the curve at pc, x

⇤ is always larger than
pc and, thus, there is always (for any q > 0) a discontinuous jump in the size of the giant component as p decreases. b, In contrast, in coupled random
networks the slope of the curves is finite for any value of x. Therefore, values of q < qc exist for which x

⇤ is equal to pc, leading to a continuous behaviour in
the network’s size.
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Figure 3 | Percolation transition of interdependent lattices compared with interdependent random networks. a,b, The size of P1 at steady state after
random failure of a fraction 1�p of the nodes of two interdependent lattice networks with periodic boundary conditions (PBC; a) and two RR networks (b).
All networks are of size 16⇥ 106 nodes and the same degree distribution P(k) = �

k,4. The coupling between the lattices and between the RR networks
changes from q = 0 to q = 0.8 with step 0.1 (from left to right). The solid lines are the solutions of equation (3) and the symbols represent simulation
results. In the case of interdependent lattices, only for q = 0 (no coupling, that is, a single lattice) the transition is the conventional second-order
percolation, whereas for any q > 0 the collapse is abrupt in the form of a first-order transition. This is in marked contrast to the case of interdependent RR
networks, where only for q > qc ⇠= 0.43 the transition is abrupt, whereas for q < qc the transition is continuous. c,d, A characteristic behaviour in a
first-order percolation transition in coupled networks is the sharp divergence of the number of iterations (NOI) when p approaches p

?
c (ref. 16) as seen for

coupled lattices for any q > 0 (c) and for coupled RR networks for q > qc (d). Models of coupled lattices with PBC have the same behaviour as models
without PBC as shown in Supplementary Fig S6.

lattices (Fig. 1a) with the case of a pair of interdependent random-
regular (RR) networks (Fig. 1c). The RR networks have the same
degree distribution, P(k) = �k,4, as for the lattices with the only
difference being that the lattice networks are embedded in space,
in contrast to RR networks.

In the symmetric case, equations (1) and (2) can be reduced
to a single equation

x = pqP1(x)+p(1�q) (3)

where the size of the giant component at steady state is P1(x).
For any values of p and q, the solution of equation (3) can
be graphically presented as the intersection between the curve
y = pqP1(x)+p(1�q) and the straight line y = x representing the
right-hand side and the left-hand side of equation (3) respectively,
as demonstrated in Fig. 2. The form of P1(x) for conventional
percolation is obtained from numerical simulations of a single
lattice and analytically for a single RR network17. From the solution
of equation (3) we obtain P1(p) as a function of p for several values
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of q. This P1(p) is the new percolation behaviour for a system of
interdependent networks, shown in Fig. 3a, for the case of coupled
lattices and in Fig. 3b for the case of coupled RR networks. In
the case of interdependent lattices, only for q = 0, no coupling
between the networks (the single network limit), the transition is
the conventional second-order percolation transition, whereas for
any q>0 the collapse is abrupt in the formof a first-order transition.
In marked contrast, in the case of interdependent RR networks,
for q > qc ⇠= 0.43 the transition is abrupt, whereas for q < qc the
transition is continuous.

Identifying qc
A discontinuity of P1(p) is a result of a discontinuity of x(p),
represented graphically as the tangential touching point of the curve
and the straight line (Fig. 2a). At this point, p ⌘ p? is the new
percolation threshold in the case of interdependent networks, and
x = x? yields the size of the giant component at the transition,
P?

1 ⌘ P1(x?), which abruptly jumps to zero as p slightly decreases.
The condition for a first-order transition p=p?, for a given q, is thus
given by solving equation (3) togetherwith its tangential condition,

1= p?qP 0
1(x?) (4)

The size of the giant component at the transition P?
1 depends

on the coupling strength q such that reducing q leads to a smaller
value of x? and thus a smaller discontinuity in the size of the giant
component. In general, P1(x) of a single network has a critical
threshold at x=pc such that P1(xpc)=0 whereas P1(x>pc)>0
and monotonically increases with x (ref. 28). As long as x? > pc,
the size of the discontinuity is larger than zero. However, for
a certain critical coupling q ⌘ qc, x? ! pc and the size of the
jump becomes zero (Fig. 2b). In this case the percolation transition
becomes continuous.

Therefore, the critical dependency qc below which the discontin-
uous transition becomes continuous must satisfy equations (3) and
(4) for x ! pc given by

pc = p?
c(1�qc) (5)

1= p?
cqcP

0
1(pc) (6)

A markedly different behaviour between random and spatial
coupled networks is derived from equations (5) and (6). This
difference is a consequence of the critical behaviour of percolation
in a single network. In the case of a single random network
P 0

1(x) is finite for any value of x . This allows an exact solution of
equation (6), yielding a finite non-zero value for qc. However, for
the case of a single lattice network the derivative of P1(x) diverges
at the critical point, P 0

1(pc)= 1, yielding qc = 0. Therefore, from
equation (6) follows that any coupling q> 0 between lattices leads
to an abrupt first-order transition. Figure 2 demonstrates how the
infinite slope of the percolation curve of a single lattice leads to a dis-
continuous percolation transition for any q>0 in coupled lattices.

The behaviour of the percolation order parameter of a single
network near the critical point is defined by the critical exponent
�, where P1(x ! pc) = A(x � pc)� . As for a single 2D lattice
� = 5/36 < 1, it follows that P 0

1(x) diverges for x ! pc for all
networks embedded in 2D space28,30,33,34. In contrast, for random
networks, such as Erdös–Rényi and RR, � = 1, which yields a finite
value of P 0

1(pc)28,30 and therefore a finite value for qc.
We next study the effect of spatial embedding, comparing the

size of the network at criticality, that is, the size of the jump, in
three models: two non-embedded coupled RR networks (k = 4);
two coupled lattices; and a lattice coupled with a non-embedded
RR network. The last model is relevant to real-world systems in
which a spatially embedded network is coupled to a non-embedded
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Figure 4 | The size of the abrupt collapse in coupled lattices compared
with coupled random networks. Comparison of the size of the giant
component at criticality P

?
1 ⌘ P1(p

?) for two coupled lattices (squares),
coupled lattice and RR networks (circles) and two coupled RR networks
(diamonds) as a function of the coupling strength q. The RR networks have
the same degree distribution as the lattice, k = 4 for all nodes. Whereas for
random networks with q < qc = 0.43 the size of the networks at criticality is
zero, in coupled lattice network the networks abruptly collapse for any
finite q > 0. Note also the significant differences in the network sizes at the
collapse transition. The coupled lattices collapse at a significantly larger
giant component compared with the coupled RR case. The solid line
represents the theory for coupled lattices given by equations (5) and (6),
and the symbols are from simulations. The solid line for coupled RR
networks represents the theory derived in ref. 6. The scaling behaviour (as
obtained from equations (7) and (8)) in the case of coupled lattices and
coupled lattice–RR for q ! qc = 0 is P

?
1 ⇠ q

5/31 and P

?
1 ⇠ q

10/31

respectively, whereas for coupled RR P

?
1 ⇠ (q�qc) (see insets) .

network, such as in the case of a power grid (embedded in 2D
space) coupled to a communication network (non-embedded)
as studied in ref. 5.

Figure 4 shows the size of the giant component at criticality P?
1

as a function of coupling strength q, demonstrating the significantly
increased vulnerability of the lattice network in the coupled system
compared with the random networks system. For coupled lattice–
lattice and coupled lattice–RR systems P?

1 > 0 for any q > 0,
whereas for a coupled RR–RR system P?

1 = 0 for q < qc = 0.43.
Moreover, in coupled lattices even for weak coupling, the size
of the discontinuity is relatively large. For example, for q = 0.1
the size of the network just before the collapse is about 42% of
the original network.

We next test the stability of two real-world spatially embedded
networks: the western United States power grid and the European
power grid. Figure 5 compares the mutual percolation of three
systems of interdependent networks: the power grid of the western
US, embedded in 2D space, coupled to a random network;
the power grid of Europe, embedded in 2D space, coupled
to a random network; and a model of two coupled random
networks, not embedded in space, showing the pronounced
effect of the spatial embedding on the stability of the system.
Weak coupling leads to an abrupt collapse of the spatial
embedded systems whereas the non-embedded networks, with
the same coupling strength between them, undergo a smooth
continuous transition.

Critical exponents
We calculate explicitly the scaling behaviour of the size of
the discontinuity near the critical coupling, P?

1(q) ⇠ (q � qc)�
? ,
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Figure 5 |Mutual percolation transition in spatially embedded real-world
systems. A comparison of mutual percolation transition in three systems:
the western United States electrical power grid coupled to a random
network; the European power grid coupled to a random network; and a
model of two coupled random networks with the same parameters (size,
hki and q). The size of the largest component P1 at steady state after initial
random removal of 1�p of the nodes, versus p. The circles (red) and
squares (green) represent simulation results of the electrical power grid of
the western United States (US_PG, embedded in 2D space with hki = 2.7,
N ' 5,000) and RR network (k = 3, N ' 5,000) with coupling q = 0.2 and
q = 0.4 respectively. The crosses (grey) and stars (pink) represent
simulation results of the electrical power grid of Europe (Europe_PG,
embedded in 2D space with hki = 2.88, N ' 1,250) and a RR network
(k = 3, N ' 1,250) with coupling q = 0.2 and q = 0.4 respectively. The
diamonds (blue) and the triangles (black) represent simulation results of
two interdependent random networks (k = 3, N = 5,000) with coupling
q = 0.2 and q = 0.4 respectively

as q! qc. The size of the giant component at the transition
is P?

1 = P1(x?), where x? is the solution of equation (3)
together with its tangential condition equation (4). We solve
the equations for q= qc +�, x? = pc +✏ and p? = pc +1, where
�,✏,1 ! 0. Near the critical point P1(x ! pc)=A(x�pc)� ; thus,
P 0

1(x ! pc)=A�(x�pc)��1, where A is a constant. Equations (3)
and (4) become

(pc +✏)= (pc +1)(1�qc ��) (7)

1= (pc +1)(qc +�)P 0
1(pc +✏)=A�(pc +1)(qc +�)✏��1 (8)

In the case of coupled lattices qc = 0; thus, from equation (7)
it follows that near the critical coupling p? = pc. Therefore, from
equation (8) follows that ✏ ⇠ �1/(1��) and the scaling behaviour of
the size of the giant component at criticality for q!0 is

P?
1 ⇠ q

�
1�� = q

5
31 (9)

The small value of the exponent, �? = 5/31 in equation (9).
demonstrates analytically the sharp increase of P?

1 with q, for
very small q values, as seen in Fig. 4. This is indeed the origin of
the critical role of dependencies for the extreme vulnerability of
spatially embedded coupled networks.

In the case of a square lattice coupled to a RR network with
k = 4 with the same q1 = q2 = q, similar analytical treatment of
equations (1) and (2) yields that P?

1 ⇠ q2�/(1��) = q10/31. This larger
critical exponent expresses that the singularity in the case of a lattice
coupled to a random network is slightly weaker compared with
the singularity of the symmetric case of coupled lattices. The fact
that �? < 1 indicates that even a weak coupling between spatial

networks leads to relatively large-scale collapses. For the case of
coupled random networks, however, for q! qc the discontinuity
size does not have a singular point, P?

1 ⇠ (q� qc), that is, �? = 1.
The above approximations are numerically validated as shown
in the insets of Fig. 4.
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