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We study a system composed from two interdependent networks A and B, where a fraction of the nodes

in network A depends on nodes of network B and a fraction of the nodes in network B depends on nodes of

network A. Because of the coupling between the networks, when nodes in one network fail they cause

dependent nodes in the other network to also fail. This invokes an iterative cascade of failures in both

networks. When a critical fraction of nodes fail, the iterative process results in a percolation phase

transition that completely fragments both networks. We show both analytically and numerically that

reducing the coupling between the networks leads to a change from a first order percolation phase

transition to a second order percolation transition at a critical point. The scaling of the percolation order

parameter near the critical point is characterized by the critical exponent � ¼ 1.
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Most of the research on networks has concentrated on
the limited case of a single network [1–5] while real world
systems are composed frommany interdependent networks
that interact with one another [6–8]. As a real example,
consider a power network and a communication network
that are coupled together. The communication nodes de-
pend on the power stations for electricity while the power
stations depend on the communication nodes for con-
trol [9].

We show that introducing interactions between networks
is analogous to introducing interactions among molecules
in the ideal gas model. Interactions among molecules lead
to the replacement of the ideal gas law by the van derWaals
equation that predicts a liquid-gas first order phase tran-
sition line ending at a critical point characterized by a
second order transition [Fig. 1(a)]. Similarly, interactions
between networks give rise to a first order percolation
phase transition line that changes at the critical point to a
second order transition, as the coupling strength between
the networks is reduced [Fig. 1(b)]. Near the critical point
the order parameter (the size of the largest component)
scales linearly with the distance to the critical point, lead-
ing to the critical exponent � ¼ 1.

In interdependent networks, nodes from one network
depend on nodes from another network. Consequently,
when nodes from one network fail they cause nodes from
another network to also fail. If the connections within each
network are different, this may trigger a recursive process
of cascading failures that can completely fragment both
networks. Recently, Buldyrev et al. [10] studied the cou-
pling between two N node networks A and B assuming the
following restrictions: (i) Each and every node in network
A depends on one node from network B and vice versa;
(ii) if node Ai depends on node Bi, then node Bi depends on

node Ai. They show that for such a model, when a critical
fraction of the nodes in one network fail, the system under-
goes a first order phase transition due to the recursive
process of cascading failures.
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FIG. 1. (a) The van der Waals phase diagram. Along the
liquid-gas equilibrium line a first order transition occurs; thus,
the order parameter (density) abruptly changes from a low value
in the gas phase to a high value in the liquid phase. At the critical
point (Pc; Tc) the order parameter changes continuously as a
function of temperature (if the pressure is kept constant), but its
derivative (compressibility) diverges, characterizing a second
order phase transition. (b) The percolation phase transition for
two interdependent networks as obtained from the numerical
solution of system (8) for qB ¼ 1 and a ¼ b ¼ 3. Here 1� p,
the fraction of removed nodes from network A, plays the role of
temperature. (As 1� p increases, the disorder increases.) The
fraction 1� qA of independent nodes in network A plays the role
of pressure. (As 1� qA increases, the stability of network A
increases.) Below the critical point, the system undergoes a first
order phase transition at which �1, the fraction of nodes in the
giant (largest) component of network B, abruptly changes from a
finite value to zero. As we approach the critical point, �1 ! 0.
Above the critical point, the system undergoes a second order
transition where the giant component continuously approaches
zero.
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However, when examining the features of real interde-
pendent networks such as the power network and the com-
munication network presented above, we observe that in
practice not all nodes of network A depend on network B
and vice versa. We therefore introduce a general model that
is applicable to many real networks. This model consists of
two networks A and B with the number of nodes NA and
NB, respectively. Within network A, the nodes are ran-
domly connected by A edges with degree distribution
PAðkÞ, while the nodes in network B are randomly con-
nected by B edges with degree distribution PBðkÞ. In
addition, a fraction qA of network A nodes depends on
the nodes in network B and a fraction qB of network B
nodes depends on the nodes in network A. However, simi-
lar to the previous model a node from one network depends
on no more than one node from the other network, and if Ai

depends on Bj and Bj depends on Ak then k ¼ i. We find

that for strong coupling (large values of qA and qB) the
networks undergo a first order transition, while for a weak
coupling they undergo a second order phase transition.
Even for the case of weak coupling in which a second
order percolation transition occurs, the system still disinte-
grates in an iterative process of cascading failures unlike a
regular second order percolation transition in a single
network.

The iterative process of cascading failures is initiated by
randomly removing a fraction 1� p of network A nodes
and all the A edges that are connected to them. Because of
the interdependence between the networks, the nodes in
network B that depend on removed A nodes are also re-
moved together with the B edges that are connected to
them. As nodes and edges are removed, each network
breaks up into connected components (clusters). We as-
sume that when the network is fragmented, the nodes be-
longing to the largest component (giant component) con-
necting a finite fraction of the network are still functional,
while nodes that are parts of the remaining small clusters
become nonfunctional. Since each network is connected
differently, the nodes that become nonfunctional on each
step are different for both networks. This leads to the
removal of more dependent nodes from the coupled net-
work and so on.

Next we present the formalism for the cascade process
step by step. We define pA and pB as the fraction of nodes
belonging to the giant components of networks A and B,
respectively. The remaining fraction of network A nodes
after an initial removal of 1� p is c 0

1 � p. The initial

removal of nodes will disconnect additional nodes from the
giant cluster. The remaining functional part of network A
therefore contains a fraction c 1 ¼ c 0

1pAðc 0
1Þ of the net-

work nodes. Since a fraction qB of nodes from network B
depends on nodes from network A, the number of nodes in
network B that become nonfunctional is ð1� c 1ÞqB ¼
qB½1� c 0

1pAðc 0
1Þ�. Accordingly, the remaining fraction

of network B is �0
1 ¼ 1� qB½1� c 0

1pAðc 0
1Þ�, and the

fraction of nodes in the giant component of network B is
�1 ¼ �0

1pBð�0
1Þ.

Following this approach we can construct the sequence,
c n and�n, of giant components, and the sequence, c 0

n and
�0

n, of the remaining fraction of nodes at each stage of the
cascade of failures. The general form is given by

c 0
1 � p; c 1 ¼ c 0

1pAðc 0
1Þ;

�0
1 ¼ 1� qB½1� pAðc 0

1Þp�; �1 ¼ �0
1pBð�0

1Þ;
c 0

2 ¼ p½1� qAð1� pBð�0
1ÞÞ�; c 2 ¼ c 0

2pAðc 0
2Þ . . . ;

c 0
n ¼ p½1� qAð1� pBð�0

n�1ÞÞ�; c n ¼ c 0
npAðc 0

nÞ;
�0

n ¼ 1� qBð1� pAðc 0
nÞpÞ; �n ¼ �0

npBð�0
nÞ: (1)

To determine the state of the system at the end of the
cascade process we look at�0

m and c 0
m at the limit ofm !

1. This limit must satisfy the equations c 0
m ¼ c 0

mþ1 and
�0

m ¼ �0
mþ1 since eventually the clusters stop fragmenting

and the fractions of randomly removed nodes at stepm and
mþ 1 are equal. Denoting�0

m ¼ y and c 0
m ¼ x, we arrive

at a system of two equations with two unknowns:

y¼1�qB½1�pAðxÞp�; x¼pf1�qA½1�pBðyÞ�g: (2)

The model can be solved analytically using the apparatus
of generating functions. The generating functions will be
defined for network A while similar equations describe
network B. As in Refs. [11,12] we will introduce the
generating function of the degree distributions GA0ð�Þ ¼P

kPAðkÞ�k. Analogously we will introduce the generating
function of the underlying branching processes, GA1ð�Þ ¼
G0

A0ð�Þ=G0
A0ð1Þ. Random removal of fraction 1� p of

nodes will change the degree distribution of the remaining
nodes, so the generating function of the new distribution is
equal to the generating function of the original distribution
with the argument equal to 1� pð1� �Þ [11]. The fraction
of nodes that belongs to the giant component after the
removal of 1� p nodes is [12]

pAðpÞ ¼ 1�GA0½1� pð1� fAÞ�; (3)

where fA ¼ fAðpÞ satisfies a transcendental equation
fA ¼ GA1½1� pð1� fAÞ�: (4)

In the case of two Erdős-Rényi (ER) networks, whose
degrees are Poisson distributed [13–15], the problem can
be solved explicitly. Suppose that the average degree of the
network A is a and the average degree of the network B is
b. Then, GA1ð�Þ ¼ GA0 ¼ exp½að�� 1Þ� and GB1ð�Þ ¼
GB0 ¼ exp½bð�� 1Þ�. Accordingly, pBðxÞ ¼ 1� fB and
pAðxÞ ¼ 1� fA, and therefore system (2) becomes

x ¼ p½1� qAfB�; y ¼ 1� qBð1� p½1� fA�Þ; (5)

where fA and fB satisfy the transcendental equations

fA ¼ exp½axðfA � 1Þ�; fB ¼ exp½byðfB � 1Þ�: (6)
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The fraction of nodes in the giant components of net-
works A and B, respectively, at the end of the cascade
process is given by c1 ¼ pð1� fAÞð1� qAfBÞ and
�1 ¼ ð1� fBÞ½1� qBð1� pÞ � pqBfA�. Figure 2 shows
excellent agreement between computer simulations of the
cascade failures and the numerical results obtained by
solving system (1), where pAðc 0

nÞ and pBð�0
nÞ are com-

puted using Eqs. (3) and (4) and the generating functions of
ER networks. Excluding x and y from systems (5) and (6),
we obtain a system:

fA ¼ e�apðfA�1ÞðqAfB�1Þ;

fB ¼ e�bfqBð1�p½1�fA�Þ�1gðfB�1Þ:
(7)

The first equation can be solved with respect to fB, and the

second equation can be solved with respect to fA:

fB¼ 1

qA

�
1� logfA

apðfA�1Þ
�
; fA�1; 8 fB;fA¼1;

fA¼ 1

qB

�
1þqBðp�1Þ

p
� logfB
bpðfB�1Þ

�
; fB�1;

8 fA;fB¼1: (8)

The solutions of system (8) can be graphically presented
on a fA; fB plane (Fig. 3). The solutions are presented as a
crossing of either fBðfAÞ or fA ¼ 1 with fAðfBÞ or fB ¼ 1
and are restricted to the square 0 � fA � 1; 0 � fB � 1.
There are three different possible solutions. (i) The solu-
tion where the giant components of both networks are zero
(fA ¼ 1 and fB ¼ 1) as in Fig. 3(c). (ii) A solution for
which only one of the giant components of either network
A or B is zero (fA ¼ 1 and fB � 1 or fA � 1 and fB ¼ 1)
as in Fig. 3(d) [or Fig. 3(e)]. (iii) A solution for which both
networks have a nonzero giant component (fA � 1 and
fB � 1). This solution is given by the lowest intersection
point of the curves in Fig. 3(a). This solution may disap-
pear in two different scenarios.
The first scenario is presented in Fig. 3(b) in which an

infinitesimal change 4~z in the vector of the system pa-
rameters ~z ¼ ða; b; qA; qB; pÞ may lead to a first order
phase transition in which the size of one or both of the
giant components changes discontinuously from a finite
value to zero: [Fig. 3(a) ! Fig. 3(b) ! Fig. 3(c) or
Fig. 3(d), or Fig. 3(e)]. The condition for the first order

phase transition is dfBðfAÞ
dfA

dfAðfBÞ
dfB

¼ 1, which corresponds to

the touching point of the two curves as in Fig. 3(b). When
adding this condition to the two equations in system (8), we
can find the three unknowns fA ¼ fAI

, fB ¼ fBI
, and p ¼

pI for given a, b, qA, qB. Fixing a, b, qB will define a first
order phase transition line p ¼ pIðqAÞ as a function of qA
[Fig. 1(b)].
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FIG. 2 (color online). �1, the fraction of nodes in network’s B
giant component, after a cascade of failures in ER networks of
size NA ¼ NB ¼ 8� 105. (a) The value of �n for every iteration
of the first order cascades with the initial parameters p ¼
0:7455, a ¼ b ¼ 2:5, qA ¼ 0:7, and qB ¼ 0:6. (b) Similar
to (a) but for the second order case with parameters p ¼
0:605, a ¼ b ¼ 2:5, qA ¼ 0:2, and qB ¼ 0:75. Symbols repre-
sent simulation results for different random realizations of the
networks. Solid lines represent the solution of system (5).
(c) �1, as function of qA computed at p ¼ pIðqAÞ, the line of
the first order phase transition, for a ¼ 3, b ¼ 3, qB ¼ 1.
Inset: The same results (solid line) as function of jqA � qAc

j
yield a straight line with slope � ¼ 1 in double logarithmic
scale. If qA is changed but p ¼ pc is kept constant we obtain a
straight line with slope � ¼ 0:5 (dashed line). (d) Simulation
results for the phase transition of �1 as a function of p for ER
and SF (� ¼ 2:7) networks of size N ¼ 50 K. For strong cou-
pling between the networks we observe a jump in �1 as
expected in the first order phase transition [ER (circle) and SF
(up-pointing triangle)]. For weak coupling between the networks
the change in �1 is gradual as expected for the second and
higher order phase transitions [ER (square) and SF (right-
pointing triangle)].
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The second scenario is presented in Fig. 3(f). In this case
(corresponding to fA < 1, fB ¼ 1, or equivalently to qB >
1� 1=b) �1 continually decreases to zero, while c1
stays finite. This situation corresponds to the second order
phase transition that can be found by substituting fB ¼ 1
into system (8). These two equations allow one to find
fA ¼ fAII

, and p ¼ pII, which for fixed a, b, qB define a

line of second order phase transitions p ¼ pIIðqAÞ as a
function of qA [Fig. 1(b)].

The line of the first order phase transitions merges with
the line of the second order phase transitions in a critical
point which can be found by adding to system (8) both the

first order condition dfBðfAÞ
dfA

dfAðfBÞ
dfB

¼ 1 and the second order

condition fB ¼ 1 or fA ¼ 1. These four equations allow us
to find the critical parameters fB ¼ fBc

or fA ¼ fAc
, p ¼

pc, and qA ¼ qAc
as functions of a, b, qB. Figure 4 presents

the solution for pcðqBÞ and qAc
ðqBÞ for different values of

að¼ bÞ. The kink in the solutions occurs when both curves
tangentially intersect at fA ¼ 1, fB ¼ 1, which corre-
sponds to ~qB ¼ 1� 1=b. The minimal value of pc occurs
exactly at the kink, defining the condition for the first order
phase transition as pcð~qBÞ< 1. Thus the first order tran-
sition can exist only in dense networks with sufficiently
high average degrees, such that 4ða� 1Þðb� 1Þ> 1. Low
degree networks must disintegrate in the second order
phase transitions.

At the critical point the system can be reduced to a single
transcendental Lambert equation. For the simplest case
a=b ¼ qB ¼ 1, we find that fAc

¼ 1=z, qAc
¼ z� 2, pc ¼

z=½aðz� 1Þ�, and c1 ¼ ð3� zÞ=a, where z ¼
W ½expð3Þ� ¼ 2:207 94 satisfies the Lambert equation
z expðzÞ ¼ expð3Þ.

To find the critical exponent � near the critical point, we
express the order parameter �1ðqAÞ as function of qA >

qAc
along the transition line p ¼ pIðqAÞ [inset of Fig. 2(c)].

Expanding fB in series of x ¼ qA � qAc
, we find that

limx!0ð1� fBÞ=x ¼ C> 0, indicating that � ¼ 1.
Interestingly, if one keeps p ¼ pc constant and changes
only qA, then limx!0ð1� fBÞ=

ffiffiffi
x

p ¼ C0 < 0 corresponding
to � ¼ 1=2. The inset of Fig. 2(c) confirms our analytical
predictions numerically.
Although our analytical theory is developed for ER

networks, the same qualitative conclusions hold for ran-
domly connected networks with arbitrary degree distribu-
tions, since functions pAðxÞ and pBðyÞ can be expressed in
terms of generating functions of these distributions. Hence
an analysis similar to Fig. 3 holds for any degree distribu-
tions. Figure 2(d) shows that the first and second order
phase transitions exist not only for ER networks but also
for scale free (SF) networks characterized by a power law
degree distribution.
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FIG. 4 (color online). The critical point parameters, qAc
(a) and

pc (b), as functions of the coupling strength qB for ER networks
are plotted for different values of a ¼ b. (a) For qB ¼ 1 the
networks (with large degrees) have the same critical coupling
strength qAc

¼ 0:207 94. The networks with small degrees do not

have first order phase transitions (no critical points for qB),
because for large values of qB, pcðqBÞ> 1, which is unphysical.
The range of qB values for which the first order phase transition
exists shrinks as a ¼ b decreases and eventually disappears for
a ¼ b ¼ 3=2, when the critical point exists only for qAc

¼ qB ¼
1=3 and pc ¼ 1. This point is marked by a solid circle.
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