CHAOS 27, 035807 (2017)

@CrossMark
click for

Percolation framework to describe El Nino conditions
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Complex networks have been used intensively to investigate the flow and dynamics of many
natural systems including the climate system. Here, we develop a percolation based measure, the
order parameter, to study and quantify climate networks. We find that abrupt transitions of the
order parameter usually occur ~1 year before El Nino events, suggesting that they can be used as
early warning precursors of El Nino. Using this method, we analyze several reanalysis datasets and
show the potential for good forecasting of El Nino. The percolation based order parameter exhibits
discontinuous features, indicating a possible relation to the first order phase transition mechanism.
Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4975766]

Climate conditions influence the nature of societies and
economies. El Nino event, in particular, has great influen-
ces on climate, which may further cause widespread nat-
ural disasters like flood and drought across the globe. We
have just undergone one of the strongest El Nino events
(2014-2016) since 1948, it brings drought conditions in
Venezuela, Australia, and more tropical cyclones within
the Pacific Ocean. There have been still improvements in
the understanding of El Nino, its climate effects and asso-
ciated impacts. Here, we present a multidisciplinary
renaissance combined climate, network, and percolation
theory to study the mechanism of El Nino. Our method
can forecast El Nino events 1 year-ahead of the events,
with a high prediction accuracy of 70%, and a low false
alarm of only 4%. The methodology and results presented
here not only facilitate the study of predicting El Nino
events but also can bring a fresh perspective to the study
of abrupt phase transitions.

I. INTRODUCTION

In the last two decades, complex network became a pop-
ular framework to investigate a large variety of real systems,
including Internet, social networks, biological networks, and
financial networks.' ™ In recent years, network approach was
found to be useful in studying climate phenomena, using
“climate network.”®'® In a climate network, usually, nodes
are chosen to be geographic locations, and links are con-
structed based on the similarities between the time variability
between pairs of nodes. Climate networks are used to quan-
tify and analyze the structure and dynamics of the climate
system'®® and even forecast some important climate
phenomena, such as monsoon,24_26 the North Atlantic
Oscillation,27’28 and El Nino,15:16:19.29.30

El Nino is probably the most influential climate phe-
nomenon on interannual time scales.>' % During El Nino,
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the eastern Pacific Ocean is getting warmer by several
degrees, impacting the local and global climate. La Nina is
cold anomaly over the El Nino region. The El Nino activity
is quantified, for example, by the Oceanic Nino Index (ONI),
which is NOAA'’s primary indicator for monitoring El Nino
and La Nina. El Nino can trigger many disruptions around
the globe and in this way affect various aspects of human
life. These include unusual weather conditions, droughts,
floods, declines in fisheries, famine, plagues, political and
social unrest, and economic changes. Global impacts of El
Nifio had been investigated by Halpert and Ropelewski.*’
Here we propose a percolation framework analysis to
describe the structure of the global climate system during EI
Nino, based on climate networks. Our results suggest that an
abrupt first order percolation transition occur about 1 year
ahead of El Nino events.

Percolation theory is also used to analyze the behavior
of connected clusters in a network.’>®*” The applications of
percolation theory cover many areas, such as, optimal path,
directed polymers, epidemics, immunization, oil recovery,
and nanomagnets. In the framework of percolation theory,
one may define phase transition based on simplest pure geo-
metrical considerations.

In the present study, we construct a sequence of
monthly shifting-climate networks by adding links one by
one according to the similarities between nodes. More spe-
cifically, the nodes which are more similar (based on their
temperature variations) will be connected first. We statisti-
cally found that around one year prior to the onset of El
Nino, the climate network undergoes a first order phase
transition (i.e., exhibiting a significant discontinuity in the
order parameter), indicating that links with higher similari-
ties tend to localize into two large clusters, in the higher
latitudes of the northern and southern hemispheres.
However, during El Nino event periods, there is only one
big cluster via tropical links. We find that indications of
discontinuity in the order parameter are closely related to
the ONI.
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Il. CLIMATE NETWORK

Our analysis is based on the daily near surface
(1000 hPa) air temperature of ERA-Interim reanalysis.>® We
pick 726 grid points that approximately homogeneously
cover the entire globe;'” these grid points are chosen to be
the nodes of our climate network. For each node (i.e.,
longitude-latitude grid point), daily values within the period
1979-2016 are used, from which we subtract the mean sea-
sonal cycle and divide by the seasonal standard deviation.
Specifically, given a record fy(d), where y is the year, and d

(T(@)T;(d — 7)) — (T;(d))(T;(d — 7))
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stands for the day (from 1 to 365), the filtered record is
defined as

Ty(d) — mean (T"(d))
std (T (d))

T’(d) = (1)
where “mean” and “std” are the mean and standard deviation
of the temperature on day d over all years.

To obtain the time evolution of the strengths of the links
between each pair of nodes, we define, the time-delayed
cross-correlation function as

; 2

Cij(—1) =

and

V@) — @) /(10 - - < 1(d — )’

(Ti(d — <)T;(d)) — (T;(d — 7))(T;(d))

Cij(t) =

where 7 is the time lag between 0 and 200 days. Note that for
estimating the cross-correlation function at day d, only the
temperature data points prior to this day are considered. We
then define the link’s weight as the maximum of the cross-
correlation function max(C; /(1)).

lll. PERCOLATION

In lattices model, a percolation phase transition occurs if
the systems’ dimension is larger than one.’’ The system is
considered percolating if there is a path from one side of the
lattice to the other, passing through occupied bonds (bond
percolation) or sites (site percolation). The percolation
threshold usually depends on the type and dimensionality of
the lattice. However, for the network system, no notion of
side exists. For this reason, a judgment condition to verify
whether the system is percolating is the existence of a giant
component (cluster) containing O(N) nodes, where N is the
total number of nodes in the network. If two nodes are in the
same cluster, then there is at least one path passing through
them.

In this section, we discuss the construction of the cli-
mate networks, and study the evolution of clusters. Initially,
given N =726 isolate nodes, links are added one by one
according to the link strength, i.e., we first add the link with
the highest weight, and continue selecting edges ordered by
decreasing weight. During the evolution of our network, we
measure the size of the normalized largest cluster s; =S,/N
and the susceptibility y, where S| represents the size of the
largest component. The size of the largest cluster is defined
as the number of nodes in the largest component.” A compo-
nent is a subset of nodes of a network such that there exists
at least one path from each node in that subset to another

V(T =) = (T(d = 0)) -/ (1) - < T,(@)))?

; 3)

node in the subset.* The susceptibility of the climate network
(the average size of the finite clusters) is defined as>®

~>is?ng(C)
1= 722 o (C) 4)

where ny(C) denotes the average number of clusters of size s
at edge’s weight C, and the prime on the sums indicates the
exclusion of the largest cluster in each measurement.

Since our network is finite, we use the following proce-
dure to find the percolation threshold. We first calculate, dur-
ing the growth process, the largest size change of the largest
cluster:

1
A= 7y max [S1(C2) = 81(C1), ..., S1(Cri1) = S1(Cr), .|,
&)

where Cr are the links’ weights ordered by decreasing value.
The step with the largest jump is defined as C... The percola-
tion transition in the network is characterized by A, and C.
corresponds to its transition point. We find that the magni-
tude of A has a strong correlation with El Nino Index (see
Fig. 1), but the susceptibility has seemingly no distinct rela-
tion with El Nino Index. We thus refrain from using the sus-
ceptibility as a predictor of El Nino but only use it to
validate the “location” of the percolation transition.

IV. RESULTS

For each network, we obtain A, and find that, usually
around one year ahead of the beginning of El Nino, the cli-
mate network has the largest A. This feature is used here for
forecasting the inception of an El Nino event in the
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FIG. 1. The percolation forecasting scheme and power based on the near
surface temperature of the ERA-Interim dataset.® We compare the largest
gap of the largest cluster A during the climate network evolution with a
threshold @ =0.286 (red curve, left scale) and the ONI (blue curve, right
scale) between January 1980 and September 2016. When the A is above the
threshold, ®, we give an alarm and predict that an El Nino event will start in
the following calendar year. Correct predictions are marked by green arrows
and false alarms by dashed arrows.

following year. To this end, we place a varying horizontal
threshold A = ® and mark an alarm when A is above thresh-
old, outside an El Nino episode. Fig. 1 demonstrates the fore-
casting power where the red curve depicts A, and the blue
curve is the ONI; correct predictions are marked by green
arrows. The lead time between the prediction and the begin-
ning of the El Nino episodes is 1.05 = 0.18 year. Our method
forecasts 7 out of 10 events. Note the similarity in the power
of forecasting to that of Ludescher ez al.'®

Next, we concentrate on specific El Nino events to illus-
trate the evolving cluster structure through El Nino. We first
focus on one of the strongest El Nino events, the 1982-1983
event. In Fig. 2, we show for this event, s; and y as a func-
tion of link strength C two years and one year before El
Nino, during El Nino and one year after El Nino. We find
that s; exhibits the largest jump in A about one year before
El Nino; the jump in y also becomes very large at the same
point. The two quantities yield the same percolation thresh-
old, strengthening the confidence of the threshold value.

Fig. 3(a) shows the climate network cluster structure in
the globe map at the percolation threshold one year before El
Nino event. It seems like the equatorial region separates the
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network into two communities, Northern and Southern hemi-
spheres, where the nodes with green color indicate the larg-
est cluster and the blue indicates the second largest cluster;
after the critical link adding (marked by thicker green line),
the largest and second largest cluster merge, and the new
largest clusters approximately covers the entire globe (Fig.
3(b)). We find that typically during the El Nino event, (Fig.
2(c)) s; does not exhibit a large jump at the percolation
threshold. Fig. 3(c) shows the cluster structure at the percola-
tion threshold before the critical link was added. Fig. 3(d)
shows the cluster structure at the percolation threshold, just
after the critical link was added. There are more edges in the
tropical zone. This is since during the El Nino period, the
nodes in low latitudes are drastically affected by the El Nino,
resulting in higher cross-correlation. Therefore, we do not
find a large gap in the percolation of the network.

Another example for the evolution of the network (rep-
resented by s; and y vs. C) during the 1997-1998 El Nino
event is shown in Fig. 4. Also here we find that one year
before event there is a large gap in s; (Fig. 4(b)), however,
during the El Nino event, two years before the event and one
year after the event, the gap becomes smaller (Figs. 4(a),
4(c), and 4(d)).

Following the above, we assume that large A is an alarm
forecast that El Nino will develop in the following calendar
year. In the case of multiple alarms in the same calendar
year, only the first one is considered. The alarm results in a
correct prediction, if in the following calendar year, an El
Nino episode actually occurs; otherwise it is regarded as a
false alarm. There were 10 El Nino events (years) between
1980 and 2016 and additional 27 non-El Nino years. To
quantify the accuracy of our prediction, we use the Receiver
Operating Characteristic (ROC)-type analysis'> when alter-
ing the magnitude of the threshold and hence the hit and
false-alarm rates. Fig. 5 shows the best hit rates for the false-
alarm rates 0, 1/27, 2/27, and 3/27. The best performances
are for (i) thresholds ® in the interval between 0.286 and
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(a) (b)

FIG. 3. The cluster structure on map at
the percolation threshold for the net-
work one year before the El Nino event
(December 1981). (a) Before the criti-
cal link was added; (b) after the critical
link (marked by thicker green line)
was added. During El Nino episode
(c) (d) (December 1982) (c) before the critical
link was added and (d) after the critical
link. Different colors represent differ-
ent clusters, especially, the green rep-
resents the largest cluster and the blue
represents the second largest cluster.
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0.289, where the false-alarm rate is 1/27 and the hit rate is

0.8 ' ' ' ' 0.7, for (ii) thresholds between 0.264 and 0.266, where the

0.7 = = 2 - false-alarm rate is 2/20 and the hit rate is 0.7, and (iii) for
thresholds between 0.223 and 0.26, where the false-alarm
rate is 3/20 and the hit rate is 0.7.

0.5_- ] We also applied the same method for different datasets,

0.6 .

% 1 1 the NCEP/NCAR reanalysis dataset,39 and the JRA-55 data-
= 0.4+ 7 set.*” The prediction accuracy is summarized in Table I. We
: 0.3 i basically find very similar results for all three different
I 4 4
0.2 b TABLE 1. The forecast accuracy for different reanalysis datasets, based on
0.1 1 1 the Receiver Operating Characteristic (ROC)-type.
0.0 | 1 Dataset Hitrates D False-alarm rates o
. T T g T T
0.00 0.05 0.10 ERA-Interim (1980-2016) 7/10 1127
False alarm rate o NCEP/NCAR reanalysis (1980-2016) 6/10 1/27
JRA-55 (1980-2016) 6/10 1/27
FIG. 5. The prediction accuracy of our method. For the four lowest false- NCEP/NCAR reanalysis (1950-2016) 14/22 4/47

alarm rates o =0, 1/27, 2/27, 3/27 the best hit rates D.
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reanalysis datasets, strengthening the confidence in our pre-
diction method.

To further test the order of the percolation phase transi-
tions in the climate network before El Nino event, we study
the finite size effects of our network, and suggest that the
transition is a first order phase transition. We change the sys-
tem’s size by altering the resolution of nodes, and at the
same time make sure that every node in a given covers the
same area on the global (i.e., we are fewer nodes at the high
latitudes). First, we define the resolution (in degree latitude)
at the Equator as ry and then find that the number of nodes is
no=360/ry. Then the number of nodes in latitude rom is n,,
= ng cos(rom), where m € [—90/rg, 90/r¢]. The total number
of nodes is then N = Z::zgo/ " 2n,, — ny. We choose rq to be
(15, 12.5, 10, 7.5, 5, 2.5)°, which yields N = (180, 251, 408,
726, 1634, 6570). We then calculate A as a function of the
system size N. If A approaches zero as N — oo, the corre-
sponding giant component is assumed to undergo a continu-
ous percolation; otherwise, the corresponding percolation is
assumed to be discontinuous. This is since it suggests that
the order parameter s; has a non-zero discontinuous jump
at the percolation threshold.*'** The results of A as a func-
tion of the system size N are shown in Fig. 6 for two El Nino
events considered above. The results suggest a discontinuous
percolation since A(N) tends to be a non-zero constant
(Figs. 6(a) and 6(c)). We also find that A follows a scaling
form:

A—AN)~NF (©6)
where A is a constant and f3 is a critical exponent. Figs. 6(b)
and 6(d) show the related results where we find that f§ is very
close to 1, implying it might be an universal scaling
exponent.

It has been pointed out that a random network always
undergoes a continuous percolation phase transition during a

random process.*® The question whether percolation transi-
tions could be discontinuous have attracted much attention.**
Discontinuous percolation in networks was reported in the
framework of the explosive percolation model.*> However,
later studies questioned this finding.**~>® Interestingly, our
results indicate the possibility of first order phase transition
in climate networks.

Recently, a percolation approach was used to study earth
science® and climate systems.” Rodriguez-Mendez et al.>
found precursors for both model simulations and climate
phenomena (such as El Nino) based on percolation theory in
functional networks; we find their results to be consistent
with our conclusions, i.e., that abrupt transitions of the order
parameter usually occur before El Nino. The advantage of
the results and methods presented here is that the prediction
time is about 1 year prior to El Nino.

V. CONCLUSIONS

To summarize, a time-evolving weighted climate net-
work is constructed based on the near surface air tempera-
ture time series. A percolation framework to study the
cluster structure properties of the climate network is put
forward. We find that the structure of the network changes
violently approximately one year ahead of El Nino
events—we suggest to use such percolation-based precur-
sor, the largest change of order parameter, A, to forecast El
Nino events. The percolation description of climate system
(as reflected by the surface air temperature records) high-
light the importance of such network techniques to under-
stand and forecast El Nino events. Based on finite size
scaling analysis, we also find that the percolation process is
discontinuous. The methodology and results presented here
not only facilitate the study of predicting El Nino events
but also can bring a fresh perspective to the study of abrupt
phase transitions.
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