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Abstract

ElNifio is probably the most influential climate phenomenon on inter-annual time scales. It affects
the global climate system and is associated with natural disasters; it has serious consequences in many
aspects of human life. However, the forecasting of the onset and in particular the magnitude of El
Nifio are still not accurate enough, atleast more than halfa year ahead. Here, we introduce a new
forecasting index based on climate network links representing the similarity of low frequency
temporal temperature anomaly variations between different sites in the Nifio 3.4 region. We find that
significant upward trends in our index forecast the onset of El Nifo approximately 1 year ahead, and
the highest peak since the end of last EINifio in our index forecasts the magnitude of the following
event. We study the forecasting capability of the proposed index on several datasets, including, ERA-
Interim, NCEP Reanalysis I, PCMDI-AMIP 1.1.3 and ERSST.v5.

1. Introduction

EINino Southern Oscillation (ENSO) is an inter-annual coupled ocean-atmosphere climate phenomenon [1-3].
EINino is the warm phase of ENSO and is characterized by several degrees warming of the eastern equatorial
Pacific ocean. It occurs every 35 years, and is regarded as the most significant climate phenomenon on decadal
time scales. Among other factors, it affects the surface temperature, precipitation and mid-tropospheric
atmospheric circulation over extended regions in America, Australia, Europe, India, and East Asia [4-8]. In
particular, strong El Nifio can trigger a cascade events that can affect many aspects of human life [9-11].

As aresult of the environmental, economical, and social impacts of El Nifo, intensive efforts have been
undertaken to understand and eventually forecast El Nifio [12—14]. Extensive atmospheric and oceanic
observations have been used to track variations in ENSO cycle, and complex computer models have been
developed to forecast E1 Nifio[ 15-21]. Still, reliable forecasts techniques for the onset and in particular the
magnitude of EI Nifio with relatively longlead time (of more than halfa year) are not fully satisfactory. We have
just undergone one of the strongest El Nifio events since 1948, which started in the end 0f 2014 and ended in
mid-2016 [22]. The onset of this event was predicted one year ahead using the network approach [23]. Here, we
develop a climate network-based index that can forecast the onset of El Nifio approximately 1 year ahead (similar
to [23-25]). In particular our approach forecasts the magnitude of EI Nifo, once it begins.

2. Methodology

The Oceanic Nifio Index (ONI) is a standard index that is used to identify El Nifio [26]. It is the running 3 month
mean sea surface temperature (SST) anomaly averaged over the Nifio 3.4 region, based on 30 years periods,
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Table 1. Summary of the information (rows 1-5) and the forecasting power (rows 6—10) for different datasets. The ‘Resolution of the data’
refers to the spatial (zonal and meridional) resolution of the data. In the row of ‘D’ , the symbol “*” indicates that there are not enough events
in the datasets to perform the Kolmogorov—Smirnov statistic. In the columns of lead time, we show the mean value +1 standard deviation in
units of months. For more details on the above results see figure S2 in the SI.

DATA NCEP Reanalysis PCMDI-AMIP
ERA-Interim [27] 1[28] 1.1.3[29] ERSST.v5[30]
Daily near surface (1000 hPa) air
Type of data temperature Monthly sea surface temperature
The first year of data 1979 1948 1870 1854
The first year of the FI 1984 1953 1950 1950
Resolution of the data 2.5° x 2.5° 2.5° x 2.5° 1° x 1° 2° x 2°
EINifio magnitude r-value 0.76 0.39 0.70 0.32
D * 0.50 0.81 0.37
ElNifio onset Hit rate 74+2)/9=1 (13 + 4)/21 =~ 0.81 (18 4+ 3)/22 ~ 0.95 (19 +2)/
22 =~ 0.95
False alarm rate 2/23 =~ 0.09 8/43 ~ 0.19 9/42 ~ 0.21 10/41 ~ 0.24
Lead time 122 £ 2.6 9.3 £ 4.9 9.1 4.7 6.9 + 4.1
(month)

updated every 5 years. When the ONI exceeds 0.5 °C for at least five consecutive months, the corresponding year
is considered to be an EI Nifio year. We use the ONI (whose first value is at 1950) to estimate the accuracy of our
predictions for EINifo events occurred after 1950.

We analyze the variability of the daily mean near surface (1000 hPa) air temperature fields of the ERA-
Interim reanalysis [27], the NCEP Reanalysis I [28], the AMIP SST boundary condition data (current version:
PCMDI-AMIP 1.1.3) [29], and the extended reconstructed SST v5 (ERSST.v5) [30] in the Nifio 3.4 region (i.e.,
5°5-5°N, 120°W-170°W) using a climate network approach [31-38]. See table 1 (rows 1-5) for detailed
information on the datasets. We find that the temporal variations of temperature anomaly (defined below in (i))
in different sites of the Nifio 3.4 region become less coherent (more disordered) well before the onset of El Nifio.
In particular, the magnitude of the event is approximately proportional to the maximal degree of disorder
(defined below in (ii)) that the Nifio 3.4 region can reach before the onset of E1 Nino. We suggest a single index,
the degree of disorder of the EI Nifio 3.4 region, that can forecast both the onset and magnitude of El Nifio.

In the following, we first demonstrate the steps of the forecasting method we propose on 33 years (1984 to
present) of the reanalysis data of the European Centre for Medium-Range Weather Forecasts Interim Reanalysis
(ERA-Interim) [27]. We then examine the robustness and accuracy of the prediction method on longer periods
using several other datasets (NCEP Reanalysis I [28], PCMDI-AMIP 1.1.2 [29] and ERSST.v5 [30]).

The daily mean near surface (1000 hPa) air temperature fields of the ERA-Interim reanalysis data have a
spatial (zonal and meridional) resolution 0of 2.5° x 2.5° resulting in 105 grid points in the Nifio 3.4 region.
Different locations (grid points) in the Nifio 3.4 region correspond to nodes in the local climate network, and the
weight of links are determined by the similarities (defined below in (ii)) of the temporal temperature anomaly
variations between pairs of nodes [31, 38]. The forecasting algorithm is as follows:

(i) At each node k of the network, we calculate the daily atmospheric temperature anomalies Ti(f) (actual
temperature value minus the climatological average which then is divided by the climatological standard
deviation) for each calendar day. For the calculation of the climatological average and standard deviation,
only past data up to the prediction date have been used. For simplicity leap days were excluded. We have
used the first 5 years of data (1979-1983) to calculate the first average value and start the prediction
from 1984.

(ii) For obtaining the time evolution of the weight of the links between nodes 7 and j in the Nifio 3.4 region, we
follow [24, 25, 31] and compute, for each month ¢ (the first day where the month starts) in the considered
time span between 1 January 1981 and 31 August 2017, the time-delayed cross-correlation function defined

as
T_(t) T(_t) _ _ T_(t) T(_t) _
CO(—7) = (IO T — 1) = (TPO)NTP (@ — 7)) "
JUTO® = (TP - (T = 1) = (T — 1))
and
COr) = (T = DTOW) — (TP — DT () o

J(@Oe =7 =1 - np2) - J(@o — (10mpy)
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where the brackets denote an average over the past 365 days, according to

365
1

(f(1) = —Zf(t — a). 3)

We consider, for the daily datasets, time lags of 7 € [0, 200] days, where a reliable estimate of the background
noise level can be guaranteed (the appropriate time lag is discussed in [39]). For monthly updating datasets
(PCMDI-AMIP 1.1.3 and ERSST.v5), the brackets denote an average over the past 12 months, according to
(f@®) = %Zfz 1 f(t — a) and we consider time lags of 7 € [0, 6] months. The similarity between two
nodes (the weight of the link) is determined by the value of the highest peak of the cross-correlation
function, Ci(j) (0), where 0 is the corresponding time lag at the peak. The degree of coherence/disorder of
the Nifio 3.4 region is quantified by the average value of all links at their peaks, i.e.

C@t) = c<’>9, 4
(t) N(Nfl),zuzl;l @) (4)

where N = 105 is the number of nodes in the Nifio 3.4 region. Thus, higher values of C(#) indicate higher
coherence in the Nifio 3.4 region.

We like to note that the strength of the link between nodes i and j is represented by the strength of the cross-
correlation between the temperature records at the nodes, which is defined by [24, 35]

(t) _ (t)
wo_ GO “BGD “
J \/E(C(') E(Cl(;)))z

where E(g) denotes the average over 401 shifting days, according to

200 200
E@) = 201 (Zg( )+ Zg( 7)) (6)

Thus, Wi(j) is high when the peak at 7 = 6 is sharp and prominent, and it is low when the cross-correlation

function Cif;) (7) varies slowly with 7. In [24], Ludescher et al introduced a 12-mo forecasting scheme based
on the observation that the mean strength of links that connect the ‘El Nifio basin’ (equatorial Pacific
corridor) with the surrounding sites tends to increase about one year before the El Nifio event.

(iii) The forecasting index (FI) we propose here, is based on the temporal evolution of C() (defined in (ii)
equation (4)), representing the interactions or similarity (coherence) between the different sites within the
Nifio 3.4 region. We define the FI as a function of months as follows,

FI(H) = — zmjln C(t — a) — InC(1), (7
m + 1 a=0

wherea = 0indicates that the average of In(C) includes the current month, while 7 is the total number of
months preceding ¢ since January 1981. We use a minus sign in the right hand side of equation (7) so that
peaks in the FIwill correspond to peaks in the ONI, see figure 1. We also use the log in C(#) instead of just C
() in order to make small variations of C(#) to become more significant so that it will be seen more clearly in
figure 1. We start to evaluate FI(t) from January 1984. (For NCEP Reanalysis I, m equals the number of
months before ¢ since January 1950, and the FI(#) starts from January 1953; for PCMDI-AMIP 1.1.2, m
equals the number of months before ¢ since January 1872, and FI(¢) starts from January 1950; for ERSST.v5,
m equals the number of months before ¢ since January 1856, and FI(¢) starts from January 1950) Thus, it
follows that FI(¢) increases (C(#) decreases) when the Nifio 3.4 region is less coherent or more disordered
(due to the minus sign). FI(?) is calculated for each month (red dotted line in figure 1) and one can easily see
that usually FI(#) increases well before the onset of E1 Nifio, and decreases once El Nifio begins. In other
words, the temporal variations of temperature anomaly in different sites of the Nifio 3.4 region become less
coherent (more disorder) prior to El Nifio, and start to synchronize once EI Nifio begins. In particular, we
find that the more disordered the Nifio 3.4 region is before El Nino, the higher is the magnitude of the
approaching El Nifio.

We provide a flow chart entitled ‘Steps in calculating FI’ that briefly describes the above algorithm in the
supplementary material is available online at stacks.iop.org/NJP/20/043036 /mmedia.
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Figure 1. The forecasting algorithm. (a) The forecasting index (FI(#), red) and the ONI (blue). The blue shades under the ONI curve
indicate the EI Nifio periods. True positive forecasts are marked by the green arrows, while false alarms are marked in black dashed
arrows. The purple arrow is the newest potential alarm pending verification in the future. The green stars above some of the green
arrows indicate the predictions after which La Nifia occurred, leading to postponed ElNifio prediction. The horizontal black dashed
line indicates the FI = 0. The left edge of the light green rectangular shading indicates the time that FI(¢) predicts EI Nifio and the right
edge indicates the onset of E1 Nifo, thus the width of the shading indicates the lead time before the onset of EI Nifo. The red dots
indicate FI(#) values that are used to predict the magnitudes of El Nifio and the blue dots indicate the actual magnitudes of El Nifio.

(b) A detailed view of FI(¢) and the ONI since May, 2012. The green arrow (Forecast) indicates the true positive forecast of 2014-2016
ElNifo event; the blue (Valley) and red (Peak) arrows indicate the nearest minimum before the prediction point and the peak in FI(#)
is the value used to predict the magnitude of EI Nifio (blue dot). The purple star above the purple arrow indicates that we might be
undergoing a new La Nifia (the gray shades, the ONT has already been bellow —0.5 °C for the last two months), and therefore an El
Nifo is forecasted to come within 18 months after the end of the suspected ongoing La Nifa.

3. The forecasting algorithm using index FI

Based on the above observation, we suggest the following algorithm to forecast simultaneously both the
magnitude and onset of El Nifio using FI(#). For demonstration see the example shown in figure 1(b).

(i) To forecast the magnitude, as soon as one month the ONI rises across 0.5 °C we regard the value of the
highest peak of FI(#) (‘Peak’, as indicated by the red points in figure 1(a) and the red arrow in (b)) since the
end of last E1 Nifio as an estimate (forecasted magnitude) for EI Nifio strength (observed magnitude).
However, if the peak value is negative or there is no peak during this period, we use zero as the forecasted
magnitude and forecast a weak El Nifio event (ONI < 1 °C) (we counted the results of all the datasets we
used, and find that the ratio of such events is 13% on average of all the E1 Nifio events, and most of them
(84% on average of this kind of events) are indeed weak). In addition, we should clarify that if the ONI rises
across but do not keep above 0.5 °C for at least five months, we do not have an EI Nifio event, thus the value
of the highest peak is not a prediction of EI Nifio magnitude.

(i) To forecast the onset, we track both FI(#) and the ONI, starting from the onset of the previous El Nifo. If
FI(#) increases from alocal minimum (‘Valley’, as indicated by the blue arrow in figure 1(b)) continuously
for at least two months (time segment that yielded the best forecast), the time at which FI(#) exceeds 0 (if it is
not during ongoing El1 Nifio/La Nifia period, i.e. —0.5 °C < ONI < 0.5 °C) is considered as a potential
signal for the onset of either E1 Nino or La Nina event within approximately the next 18 months (‘Forecast’,
asindicated by the green arrows in figure 1). Moreover, if La Nifia is experienced within these 18 months,
we forecast a new EINifio to occur within 18 months after the end of La Nifia (the first month of ONI
> —0.5 °Cafter La Nifia). Given the above, a true positive prediction of EI Nifio is counted if within 18
months after the potential signal an EINifo occurs (‘normal’, as indicated by the green arrows in figure 1),
oraLaNifia that followed by an El1 Nifio in the next 18 months occurs (‘delayed’, as indicated by the green
arrows with stars on the top in figure 1); otherwise, a false alarm is counted.
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Figure 2. (a) PDF of Cit;f () for all links within Nifio 3.4 region, in networks at VALLEY (blue), FORECAST (green), PEAK (red)
months (see figure 1), and for the random network (gray). (c) Typical cross-correlation functions of alink (shown in (b)) within Nifio
3.4 region (indicated by the light red shaded area) for months of VALLEY (blue), FORECAST (green), and PEAK (red) before the
2014-2016 El Nifo event.

Next, we elaborate on the reasoning behind our approach. In figure 2(a), we plot the probability density function
(PDF) of Ci(j) () for all links in network windows at which ‘Valley’ (m = Valley, blue), ‘Forecast’ (m = Forecast,
green) and ‘Peak’ (n = Peak, red) occur, respectively. We compare these PDFs with a PDF of random networks that
are obtained by shuffling the order of the calendar days for each node within the Nifio 3.4 region. We find the
strongest correlations for the ‘Valley’ periods (as the PDF is stretched toward higher values), then weaker correlations
for the ‘Forecast’ periods, and then the weakest correlations for the ‘Peak’ periods (closest to the shuffled
correlations). Thus, the Nifio 3.4 network (region) becomes less coherent when progressing from ‘Valley’ periods to
the ‘Peak’ periods. The order is reestablished towards the actual peak of El Nifio. The evolution of the cross-
correlation of a typical link (shown in figure 2(b)), before the onset of 20142016 El Nifio event, is shown in
figure 2(c). The three cross-correlation functions (blue, green, and red) correspond to the ‘Valley’, ‘Forecast’ and
‘Peak’ points marked by blue, green and red arrows in figure 1(b). Consistently, we find that the maximal values of
the cross-correlation function, Ci(j.) (0), decreases from time of ‘Valley’ to ‘Forecast’ time, then to the ‘Peak’ time.

Moreover, while C i(’;) (0) is decreasing from Valley to Peak months, the strength of the link Wi(j) [24]is
increasing. This difference is probably due to the autocorrelation of the temperature anomaly variations in the
Nifio 3.4 region [39]; see figure S1.

4. Results

4.1. Forecasting the magnitude of El Nifio

We now examine the accuracy and robustness of our forecast for the magnitude of EI Nifio events between 1950
and present (since the ONI begin from 1950), using several datasets. For this purpose, we plot the predicted
magnitude versus the observed magnitude of E1 Nifo (scatter plot), and use the Pearson correlation coefficient,
1, to quantify the correlation. We present such scatter plots in figure 3.

Next, we apply the Kolmogorov—Smirnov test to quantify the significance of the relationship between the
predicted and observed magnitude of El Nifio; figure 3 (insets). Each time we randomly choose ten events and
calculate the correlation coefficient between their predicted and observed magnitudes; we repeated this
procedure 1 million times, and obtained the PDF of r-values for each dataset (colored by green in figure 3). For a
comparison, we also consider random cases as follows. Each time we choose randomly ten predicted values and
randomly ten observed values and then perform a linear regression between them; also here we have performed
1 million selections, and obtain the PDF of r-values for each dataset (colored by gray in figure 3). Then we
compare the PDFs of observed r-values to the random r-values using Kolmogorov—Smirnov statistic D [40]. For
each dataset used here, Dis relativelylarge (D > 0.37), indicating significant difference between the observed
and predicted EI Nino magnitude.

The results are summarized in table 1, in the rows heading ‘El Niflo magnitude’. We note however, that the
prediction of the magnitude of E1 Nifio is performed at the actual onset of El Nifio, which on average occurs
about halfa year prior to the peak of El Nifo.
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Figure 3. Scatter plots of the observed El Nifio magnitude versus the forecast ones for different datasets (different panels) and the
Kolmogorov—Smirnov statistic (inset of each panel). The different datasets are: (a) ERA-Interim [27], (b) NCEP Reanalysis I [28],
(c) PCMDI-AMIP 1.1.1[29] and (d) ERSST.v5 [30]. The red lines indicate the linear regression fits. We also show the corresponding
correlation (r-values), Kolmogorov—Smirnov statistic (D), and the function of the fitting lines.

4.2. Forecasting the onset of El Nifio
Next we examine the forecasting power of the onset of El Nifio. The results are summarized in table 1, in the rows
heading ‘El Nifio onset’. Here, the hit rate = L

hits + misses
positive prediction of El Nifio, which is composed of two parts, ‘normal’ + ‘delayed’, and the denominator is
the number of all the El Nifio events for each dataset. The False alarm rate = false alarms

, where in the numerator, the ‘hits’ is the number of true

where in
false alarms 4 correct rejections’

the denominator the number of ‘correct rejections’ equals the number of years where no El Nifio started and no
false alarm appeared in the past 18 months before the year. The lead time equals the time from the potential
signal (or the end of La Nifa, if La Nifia is experienced after the prediction) to the actual onset of El

Nifio (shaded areas in figure 1).

Previous studies proposed various methods to forecast EINifio events. Some of these predict quite
successfully the onset of El Nifio, about one year in advance [24, 25]. We compare our prediction method to
prediction of the 12-mo forecasting scheme based on climate network approach [24] and to the prediction of
state-of-the-art models—the COLA anomaly coupled model [41] and the Chen—Cane model [13]; for this
purpose we use the operating characteristics (ROC) [42], see figure S3. The resulting hit rate of our approach is
>0.81, and the lowest (worse) hit rate of 0.81 is obtained for NCEP Reanalysis I. Meanwhile, the false alarm rate
of our approach is <0.24, and the highest (worse) false alarm ratio of 0.24 is obtained for ERSST.v5. For
prediction lead time of 12 months the hit rate is < 0.4 for the COLA model [41] and < 0.45 for the Chen—Cane
model [13] with false alarm ratio of ~0.2. The hit rate for the network approach in [24] is 0.667 and false alarm
rate is 0.095.

The prediction scheme we proposed here improves the prediction of the onset of El Nifio. An additional and also
the most important advantage of the prediction scheme we propose is that it provide prediction both for the magnitude
and the onset of El Nifio based only on the temperature variability and their coherence in the Nifio 3.4 region.

5. Summary

In summary, we introduce a new FI that is based on climate networks which accurately and simultaneously
forecasts both the onset and magnitude of EI Nifo. The performance of the FI is examined successfully on
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several datasets. Our forecasting algorithm is based on the finding that the similarity or the coherence of low
frequency temporal variability of temperature anomaly between different sites (strength of links) in the Nifio 3.4
region decreases well before EI Nifio and increases at the onset of EI Nifo. The magnitude of the predicted El
Nifio is positively related with the highest peak in the FI during the period between the end of last E1 Nifio and
the onset of the new one. The results presented here indicate an important characteristic of the phase of the
ENSO cycle, i.e., significant increase of disorder occurs in the Nifio 3.4 region well before the onset of El Nifo.
The relationship between EINifio and the variation of the degree of disorder in the Nifio 3.4 region may be
further explained by defining an entropy based on the coherence of temperature variations in different sites of
the Nifio 3.4 region, which oscillates periodically with the ENSO cycle. There is surely a room of further
improvement of the forecasting algorithm proposed here, probably with combination with other forecasting
techniques and models.
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