
New J. Phys. 20 (2018) 043036 https://doi.org/10.1088/1367-2630/aabb25

PAPER

Forecasting themagnitude and onset of El Niño based on climate
network

JunMeng1,2, Jingfang Fan1,2, Yosef Ashkenazy1, ArminBunde3 and ShlomoHavlin2,4

1 Department of Solar Energy&Environmental Physics, Blaustein Institutes forDesert Research, Ben-GurionUniversity of theNegev,
Midreshet Ben-Gurion 84990, Israel

2 Department of Physics, Bar-IlanUniversity, Ramat-Gan 52900, Israel
3 Institut für Theoretische Physik, Justus-Liebig-Universität Giessen, D-35392Giessen, Germany
4 Institute of Innovative Research, Tokyo Institute of Technology, 4259Nagatsuta-cho,Midori-ku, Yokohama 226-8502, Japan

E-mail: j.fang.fan@gmail.com

Keywords:ENSO, climate networks, complex systems, dynamic networks

Supplementarymaterial for this article is available online

Abstract
ElNiñois probably themost influential climate phenomenon on inter-annual time scales. It affects
the global climate system and is associatedwith natural disasters; it has serious consequences inmany
aspects of human life. However, the forecasting of the onset and in particular themagnitude of El
Niñoare still not accurate enough, at leastmore than half a year ahead.Here, we introduce a new
forecasting index based on climate network links representing the similarity of low frequency
temporal temperature anomaly variations between different sites in theNiño 3.4 region.We find that
significant upward trends in our index forecast the onset of ElNiñoapproximately 1 year ahead, and
the highest peak since the end of last ElNiñoin our index forecasts themagnitude of the following
event.We study the forecasting capability of the proposed index on several datasets, including, ERA-
Interim,NCEPReanalysis I, PCMDI-AMIP 1.1.3 and ERSST.v5.

1. Introduction

ElNiñoSouthernOscillation (ENSO) is an inter-annual coupled ocean-atmosphere climate phenomenon [1–3].
ElNiñois thewarmphase of ENSOand is characterized by several degreeswarming of the eastern equatorial
Pacific ocean. It occurs every 3–5 years, and is regarded as themost significant climate phenomenonondecadal
time scales. Among other factors, it affects the surface temperature, precipitation andmid-tropospheric
atmospheric circulation over extended regions inAmerica, Australia, Europe, India, andEastAsia [4–8]. In
particular, strongElNiñocan trigger a cascade events that can affectmany aspects of human life [9–11].

As a result of the environmental, economical, and social impacts of ElNiño, intensive efforts have been
undertaken to understand and eventually forecast ElNiño [12–14]. Extensive atmospheric and oceanic
observations have been used to track variations in ENSO cycle, and complex computermodels have been
developed to forecast ElNiño[15–21]. Still, reliable forecasts techniques for the onset and in particular the
magnitude of ElNiñowith relatively long lead time (ofmore than half a year) are not fully satisfactory.We have
just undergone one of the strongest El Niñoevents since 1948, which started in the end of 2014 and ended in
mid-2016 [22]. The onset of this eventwas predicted one year ahead using the network approach [23]. Here, we
develop a climate network-based index that can forecast the onset of ElNiño approximately 1 year ahead (similar
to [23–25]). In particular our approach forecasts themagnitude of ElNiño, once it begins.

2.Methodology

TheOceanicNiño Index (ONI) is a standard index that is used to identify El Niño [26]. It is the running 3 month
mean sea surface temperature (SST) anomaly averaged over theNiño 3.4 region, based on 30 years periods,
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updated every 5 years.When theONI exceeds 0.5 °C for at leastfive consecutivemonths, the corresponding year
is considered to be an ElNiñoyear.We use theONI (whose first value is at 1950) to estimate the accuracy of our
predictions for ElNiñoevents occurred after 1950.

We analyze the variability of the dailymean near surface (1000 hPa) air temperature fields of the ERA-
Interim reanalysis [27], theNCEPReanalysis I [28], the AMIP SST boundary condition data (current version:
PCMDI-AMIP 1.1.3) [29], and the extended reconstructed SST v5 (ERSST.v5) [30] in theNiño 3.4 region (i.e.,
5°S–5°N, 120°W–170°W) using a climate network approach [31–38]. See table 1 (rows 1–5) for detailed
information on the datasets.Wefind that the temporal variations of temperature anomaly (defined below in (i))
in different sites of theNiño 3.4 region become less coherent (more disordered)well before the onset of ElNiño.
In particular, themagnitude of the event is approximately proportional to themaximal degree of disorder
(defined below in (ii)) that theNiño 3.4 region can reach before the onset of ElNiño.We suggest a single index,
the degree of disorder of the ElNiño 3.4 region, that can forecast both the onset andmagnitude of ElNiño.

In the following, we first demonstrate the steps of the forecastingmethodwe propose on 33 years (1984 to
present) of the reanalysis data of the EuropeanCentre forMedium-RangeWeather Forecasts InterimReanalysis
(ERA-Interim) [27].We then examine the robustness and accuracy of the predictionmethod on longer periods
using several other datasets (NCEPReanalysis I [28], PCMDI-AMIP 1.1.2 [29] and ERSST.v5 [30]).

The dailymean near surface (1000 hPa) air temperaturefields of the ERA-Interim reanalysis data have a
spatial (zonal andmeridional) resolution of 2.5°×2.5°, resulting in 105 grid points in theNiño 3.4 region.
Different locations (grid points) in theNiño 3.4 region correspond to nodes in the local climate network, and the
weight of links are determined by the similarities (defined below in (ii)) of the temporal temperature anomaly
variations between pairs of nodes [31, 38]. The forecasting algorithm is as follows:

(i) At each node k of the network, we calculate the daily atmospheric temperature anomalies Tk(t) (actual
temperature valueminus the climatological averagewhich then is divided by the climatological standard
deviation) for each calendar day. For the calculation of the climatological average and standard deviation,
only past data up to the prediction date have been used. For simplicity leap days were excluded.We have
used thefirst 5 years of data (1979–1983) to calculate the first average value and start the prediction
from1984.

(ii) For obtaining the time evolution of the weight of the links between nodes i and j in the Niño 3.4 region, we
follow [24, 25, 31] and compute, for eachmonth t (thefirst daywhere themonth starts) in the considered
time span between 1 January 1981 and 31August 2017, the time-delayed cross-correlation function defined
as
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Table 1. Summary of the information (rows 1–5) and the forecasting power (rows 6–10) for different datasets. The ‘Resolution of the data’
refers to the spatial (zonal andmeridional) resolution of the data. In the row of ‘D’ , the symbol ‘*’ indicates that there are not enough events
in the datasets to perform theKolmogorov–Smirnov statistic. In the columns of lead time, we show themean value± 1 standard deviation in
units ofmonths. Formore details on the above results seefigure S2 in the SI.

DATA
ERA-Interim [27]

NCEPReanalysis
I [28]

PCMDI-AMIP
1.1.3 [29] ERSST.v5 [30]

Type of data
Daily near surface (1000 hPa) air

temperature Monthly sea surface temperature

The first year of data 1979 1948 1870 1854
The first year of the FI 1984 1953 1950 1950
Resolution of the data 2.5°×2.5° 2.5°×2.5° 1°×1° 2°×2°

ElNiñomagnitude r-value 0.76 0.39 0.70 0.32
D * 0.50 0.81 0.37

ElNiñoonset Hit rate (7+ 2)/9= 1 (13+ 4)/21≈0.81 (18+ 3)/22≈0.95 (19+ 2)/
22≈0.95

False alarm rate 2/23≈0.09 8/43≈0.19 9/42≈0.21 10/41≈0.24
Lead time
(month)

12.2± 2.6 9.3± 4.9 9.1± 4.7 6.9± 4.1
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where the brackets denote an average over the past 365 days, according to
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Weconsider, for the daily datasets, time lags of τä [0, 200] days, where a reliable estimate of the background
noise level can be guaranteed (the appropriate time lag is discussed in [39]). Formonthly updating datasets
(PCMDI-AMIP 1.1.3 andERSST.v5), the brackets denote an average over the past 12months, according to
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whereN= 105 is the number of nodes in theNiño 3.4 region. Thus, higher values ofC(t) indicate higher
coherence in theNiño 3.4 region.
We like to note that the strength of the link between nodes i and j is represented by the strength of the cross-
correlation between the temperature records at the nodes, which is defined by [24, 35]
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, is highwhen the peak at τ= θ is sharp and prominent, and it is lowwhen the cross-correlation

function t( )( )Ci j
t

, varies slowlywith τ. In [24], Ludescher et al introduced a 12-mo forecasting scheme based
on the observation that themean strength of links that connect the ‘ElNiñobasin’ (equatorial Pacific
corridor)with the surrounding sites tends to increase about one year before the ElNiñoevent.

(iii) The forecasting index (FI) we propose here, is based on the temporal evolution of C(t) (defined in (ii)
equation (4)), representing the interactions or similarity (coherence) between the different sites within the
Niño 3.4 region.We define the FI as a function ofmonths as follows,
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where a= 0 indicates that the average of ln(C) includes the currentmonth, whilem is the total number of
months preceding t since January 1981.We use aminus sign in the right hand side of equation (7) so that
peaks in the FIwill correspond to peaks in theONI, see figure 1.We also use the log inC(t) instead of justC
(t) in order tomake small variations ofC(t) to becomemore significant so that it will be seenmore clearly in
figure 1.We start to evaluate FI(t) from January 1984. (ForNCEPReanalysis I,m equals the number of
months before t since January 1950, and the FI(t) starts from January 1953; for PCMDI-AMIP 1.1.2,m
equals the number ofmonths before t since January 1872, and FI(t) starts from January 1950; for ERSST.v5,
m equals the number ofmonths before t since January 1856, and FI(t) starts from January 1950)Thus, it
follows that FI(t) increases (C(t) decreases)when theNiño 3.4 region is less coherent ormore disordered
(due to theminus sign). FI(t) is calculated for eachmonth (red dotted line infigure 1) and one can easily see
that usually FI(t) increases well before the onset of ElNiño, and decreases once ElNiñobegins. In other
words, the temporal variations of temperature anomaly in different sites of theNiño 3.4 region become less
coherent (more disorder) prior to ElNiño, and start to synchronize once ElNiñobegins. In particular, we
find that themore disordered theNiño 3.4 region is before ElNiño, the higher is themagnitude of the
approaching ElNiño.

We provide aflow chart entitled ‘Steps in calculating FI’ that briefly describes the above algorithm in the
supplementarymaterial is available online at stacks.iop.org/NJP/20/043036/mmedia.
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3. The forecasting algorithmusing index FI

Based on the above observation, we suggest the following algorithm to forecast simultaneously both the
magnitude and onset of ElNiñousing FI(t). For demonstration see the example shown infigure 1(b).

(i) To forecast the magnitude, as soon as one month the ONI rises across 0.5 °C we regard the value of the
highest peak of FI(t) (‘Peak’, as indicated by the red points infigure 1(a) and the red arrow in (b)) since the
end of last ElNiñoas an estimate (forecastedmagnitude) for ElNiñostrength (observedmagnitude).
However, if the peak value is negative or there is no peak during this period, we use zero as the forecasted
magnitude and forecast a weak ElNiñoevent (ONI < 1 °C) (we counted the results of all the datasets we
used, andfind that the ratio of such events is 13%on average of all the ElNiñoevents, andmost of them
(84%on average of this kind of events) are indeedweak). In addition, we should clarify that if theONI rises
across but do not keep above 0.5 °C for at least fivemonths, we do not have an ElNiñoevent, thus the value
of the highest peak is not a prediction of ElNiñomagnitude.

(ii) To forecast the onset, we track both FI(t) and the ONI, starting from the onset of the previous El Niño. If
FI(t) increases from a localminimum (‘Valley’, as indicated by the blue arrow infigure 1(b)) continuously
for at least twomonths (time segment that yielded the best forecast), the time at which FI(t) exceeds 0 (if it is
not during ongoing ElNiño/LaNiñaperiod, i.e.−0.5 °C < ONI < 0.5 °C) is considered as a potential
signal for the onset of either ElNiñoor LaNiñaevent within approximately the next 18months (‘Forecast’,
as indicated by the green arrows infigure 1).Moreover, if LaNiñais experiencedwithin these 18months,
we forecast a newElNiñoto occurwithin 18months after the end of LaNiña(thefirstmonth ofONI
> −0.5 °C after LaNiña). Given the above, a true positive prediction of ElNiñois counted if within 18
months after the potential signal an ElNiñooccurs (‘normal’, as indicated by the green arrows infigure 1),
or a LaNiñathat followed by an ElNiñoin the next 18months occurs (‘delayed’, as indicated by the green
arrowswith stars on the top infigure 1); otherwise, a false alarm is counted.

Figure 1.The forecasting algorithm. (a)The forecasting index (FI(t), red) and theONI (blue). The blue shades under theONI curve
indicate the ElNiñoperiods. True positive forecasts aremarked by the green arrows, while false alarms aremarked in black dashed
arrows. The purple arrow is the newest potential alarmpending verification in the future. The green stars above some of the green
arrows indicate the predictions after which LaNiñaoccurred, leading to postponed ElNiñoprediction. The horizontal black dashed
line indicates the FI= 0. The left edge of the light green rectangular shading indicates the time that FI(t) predicts ElNiñoand the right
edge indicates the onset of ElNiño, thus thewidth of the shading indicates the lead time before the onset of ElNiño. The red dots
indicate FI(t) values that are used to predict themagnitudes of El Niñoand the blue dots indicate the actualmagnitudes of El Niño.
(b)Adetailed view of FI(t) and theONI sinceMay, 2012. The green arrow (Forecast) indicates the true positive forecast of 2014–2016
ElNiñoevent; the blue (Valley) and red (Peak) arrows indicate the nearestminimumbefore the prediction point and the peak in FI(t)
is the value used to predict themagnitude of ElNiño(blue dot). The purple star above the purple arrow indicates that wemight be
undergoing a newLaNiña(the gray shades, theONI has already been bellow−0.5 °C for the last twomonths), and therefore an El
Niñois forecasted to comewithin 18months after the end of the suspected ongoing LaNiña.
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Next,we elaborate on the reasoningbehindour approach. Infigure 2(a), weplot theprobability density function
(PDF)of q( )( )Ci j

t
, for all links innetworkwindows atwhich ‘Valley’ (m= Valley, blue), ‘Forecast’ (m= Forecast,

green) and ‘Peak’ (m= Peak, red)occur, respectively.We compare thesePDFswith aPDFof randomnetworks that
are obtainedby shuffling the order of the calendar days for eachnodewithin theNiño3.4 region.Wefind the
strongest correlations for the ‘Valley’periods (as the PDF is stretched towardhigher values), thenweaker correlations
for the ‘Forecast’periods, and then theweakest correlations for the ‘Peak’periods (closest to the shuffled
correlations). Thus, theNiño3.4network (region)becomes less coherentwhenprogressing from ‘Valley’periods to
the ‘Peak’periods. Theorder is reestablished towards the actual peakof ElNiño.The evolutionof the cross-
correlationof a typical link (shown infigure 2(b)), before the onset of 2014–2016ElNiñoevent, is shown in
figure 2(c). The three cross-correlation functions (blue, green, and red) correspond to the ‘Valley’, ‘Forecast’ and
‘Peak’pointsmarkedbyblue, green and red arrows infigure 1(b). Consistently,wefind that themaximal values of
the cross-correlation function, q( )( )Ci j

t
, , decreases from timeof ‘Valley’ to ‘Forecast’ time, then to the ‘Peak’ time.

Moreover, while q( )( )Ci j
t

, is decreasing fromValley to Peakmonths, the strength of the link ( )Wi j
t

, [24] is
increasing. This difference is probably due to the autocorrelation of the temperature anomaly variations in the
Niño 3.4 region [39]; see figure S1.

4. Results

4.1. Forecasting themagnitude of ElNiño
Wenow examine the accuracy and robustness of our forecast for themagnitude of ElNiñoevents between 1950
and present (since theONI begin from1950), using several datasets. For this purpose, we plot the predicted
magnitude versus the observedmagnitude of ElNiño(scatter plot), and use the Pearson correlation coefficient,
r, to quantify the correlation.We present such scatter plots infigure 3.

Next, we apply theKolmogorov–Smirnov test to quantify the significance of the relationship between the
predicted and observedmagnitude of ElNiño; figure 3 (insets). Each timewe randomly choose ten events and
calculate the correlation coefficient between their predicted and observedmagnitudes; we repeated this
procedure 1million times, and obtained the PDF of r-values for each dataset (colored by green infigure 3). For a
comparison, we also consider random cases as follows. Each timewe choose randomly ten predicted values and
randomly ten observed values and then perform a linear regression between them; also herewe have performed
1million selections, and obtain the PDF of r-values for each dataset (colored by gray infigure 3). Thenwe
compare the PDFs of observed r-values to the random r-values usingKolmogorov–Smirnov statisticD [40]. For
each dataset used here,D is relatively large (D�0.37), indicating significant difference between the observed
and predicted ElNiñomagnitude.

The results are summarized in table 1, in the rows heading ‘ElNiñomagnitude’.We note however, that the
prediction of themagnitude of ElNiñois performed at the actual onset of ElNiño, which on average occurs
about half a year prior to the peak of ElNiño.

Figure 2. (a)PDFof q( )Ci j
m
, for all links withinNiño 3.4 region, in networks at VALLEY (blue), FORECAST (green), PEAK (red)

months (seefigure 1), and for the randomnetwork (gray). (c)Typical cross-correlation functions of a link (shown in (b))withinNiño
3.4 region (indicated by the light red shaded area) formonths of VALLEY (blue), FORECAST (green), and PEAK (red) before the
2014–2016 ElNiñoevent.
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4.2. Forecasting the onset of ElNiño
Nextwe examine the forecasting power of the onset of ElNiño. The results are summarized in table 1, in the rows
heading ‘ElNiñoonset’. Here, the =

+
hit rate hits

hits misses
, where in the numerator, the ‘hits’ is the number of true

positive prediction of ElNiño, which is composed of two parts, ‘normal’+ ‘delayed’, and the denominator is
the number of all the ElNiño events for each dataset. The =

+
False alarm rate false alarms

false alarms correct rejections
, where in

the denominator the number of ‘correct rejections’ equals the number of years where no ElNiño started and no
false alarm appeared in the past 18months before the year. The lead time equals the time from the potential
signal (or the end of LaNiña, if LaNiñais experienced after the prediction) to the actual onset of El
Niño(shaded areas infigure 1).

Previous studies proposed variousmethods to forecast ElNiñoevents. Some of these predict quite
successfully the onset of ElNiño, about one year in advance [24, 25].We compare our predictionmethod to
prediction of the 12-mo forecasting scheme based on climate network approach [24] and to the prediction of
state-of-the-artmodels—theCOLA anomaly coupledmodel [41] and theChen–Canemodel [13]; for this
purposewe use the operating characteristics (ROC) [42], seefigure S3. The resulting hit rate of our approach is
�0.81, and the lowest (worse) hit rate of 0.81 is obtained forNCEPReanalysis I.Meanwhile, the false alarm rate
of our approach is�0.24, and the highest (worse) false alarm ratio of 0.24 is obtained for ERSST.v5. For
prediction lead time of 12months the hit rate is < 0.4 for theCOLAmodel [41] and < 0.45 for theChen–Cane
model [13]with false alarm ratio of∼0.2. The hit rate for the network approach in [24] is 0.667 and false alarm
rate is 0.095.

Theprediction schemeweproposedhere improves thepredictionof theonset ofElNiño.Anadditional andalso
themost important advantageof theprediction schemewepropose is that it providepredictionboth for themagnitude
and theonsetofElNiñobasedonlyon the temperature variability and their coherence in theNiño3.4 region.

5. Summary

In summary, we introduce a new FI that is based on climate networks which accurately and simultaneously
forecasts both the onset andmagnitude of ElNiño. The performance of the FI is examined successfully on

Figure 3. Scatter plots of the observed ElNiñomagnitude versus the forecast ones for different datasets (different panels) and the
Kolmogorov–Smirnov statistic (inset of each panel). The different datasets are: (a)ERA-Interim [27], (b)NCEPReanalysis I [28],
(c)PCMDI-AMIP 1.1.1 [29] and (d)ERSST.v5 [30]. The red lines indicate the linear regression fits.We also show the corresponding
correlation (r-values), Kolmogorov–Smirnov statistic (D), and the function of thefitting lines.
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several datasets. Our forecasting algorithm is based on the finding that the similarity or the coherence of low
frequency temporal variability of temperature anomaly between different sites (strength of links) in theNiño 3.4
region decreases well before ElNiñoand increases at the onset of ElNiño. Themagnitude of the predicted El
Niñois positively relatedwith the highest peak in the FI during the period between the end of last ElNiñoand
the onset of the newone. The results presented here indicate an important characteristic of the phase of the
ENSO cycle, i.e., significant increase of disorder occurs in theNiño 3.4 regionwell before the onset of ElNiño.
The relationship between ElNiñoand the variation of the degree of disorder in theNiño 3.4 regionmay be
further explained by defining an entropy based on the coherence of temperature variations in different sites of
theNiño 3.4 region, which oscillates periodically with the ENSO cycle. There is surely a roomof further
improvement of the forecasting algorithmproposed here, probably with combinationwith other forecasting
techniques andmodels.
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