The most important driver of climate variability is the El Niño Southern Oscillation, which can trigger disasters in various parts of the globe. Despite its importance, conventional forecasting is still limited to 6 mo ahead. Recently, we developed an approach based on network analysis, which allows projection of an El Niño event about 1 y ahead. Here we show that our method correctly predicted the absence of El Niño events in 2012 and 2013 and now announce that our approach indicated (in September 2013 already) the return of El Niño in late 2014 with a 3-in-4 likelihood. We also discuss the relevance of the next El Niño to the question of global warming and the present hiatus in the global mean surface temperature.

El Niño Southern Oscillation

Natural climate variability is driven by numerous processes, but the most important one is the El Niño-Southern Oscillation (ENSO) phenomenon (1–5). It can be perceived as a self-organized dynamical see-saw pattern in the Pacific ocean-atmosphere system, featured by rather irregular warm (El Niño) and cold (La Niña) excursions from the long-term mean state. The ENSO phenomenon is tracked and quantified by the NINO3.4 index, which is defined as the average of the sea surface temperature (SST) anomalies at certain grid points in the Pacific (Fig. 1). An El Niño episode is said to occur when the index is 0.5 °C above the average for a period of at least 5 mo.

Because especially strong El Niño episodes can wreak havoc in various parts of the world (through extreme weather events and other environmental perturbations) (6–10), early warning schemes based on robust scientific evidence are highly desirable. Sophisticated global climate models taking into account the atmosphere-ocean coupling, as well as statistical approaches like the dynamical systems schemes approach, autoregressive models, and pattern recognition techniques, have been used to forecast the pertinent index with lead times between 1 and 24 mo (1, 11–26). Monthly updated overviews of the current conventional forecasts can be obtained from the International Research Institute for Climate and Society (27) and the National Oceanic and Atmospheric Administration (28). Unfortunately, the forecasting methods used thus far have quite limited anticipation power. In particular, they generally fail to overcome the so-called “spring barrier” (29, 30), which shortens their warning time to around 6 mo.

To resolve this problem, we recently introduced an alternative forecasting approach (31) based on complex networks analysis (32–35) that can considerably shift the probabilistic prediction horizon. The approach exploits the remarkable observation that a large-scale cooperative mode linking the “El Niño basin” (i.e., the equatorial Pacific corridor) and the rest of the Pacific ocean (Fig. 1) builds up in the calendar year before a pronounced El Niño event. An appropriate measure for the emerging cooperativity can be derived from the time evolution of the teleconnections (links) between the atmospheric temperatures at the grid points (nodes) inside and outside of the El Niño basin. The strengths of those links are represented by the cross-correlation (see below). The figure is from ref. 31.

Fig. 1. The NINO3.4 index and the climate network. The network consists of 14 grid points in the El Niño basin (solid red symbols) and 193 grid points outside this domain (open symbols). The red rectangle denotes the area where the NINO3.4 index is measured. The grid points are considered as the nodes of the climate network that we use here to forecast El Niño events. Each node inside the El Niño basin is linked to each node outside the basin. The nodes are characterized by their surface air temperature (SAT), and the link strength between the nodes is determined from their cross-correlation (see below). The figure is from ref. 31.
values of the respective cross-correlations (Data and Methods). The crucial entity is the mean link strength $S(t)$ as obtained by averaging over all individual links in the network at a given instant t (for details, see refs. 31 and 35 and Data and Methods). $S(t)$ rises when the cooperative mode builds up and drops again when this mode collapses rather conspicuously with the onset of the El Niño event. The rise of $S(t)$ in the year before an El Niño event starts serves as a precursor for the event.

Forecasting the Next El Niño

For the sake of concrete forecasting, we used in ref. 31 high-quality atmospheric temperature data for the 1950–2011 period. The optimized algorithm (Data and Methods) involves an empirical decision threshold Θ. Whenever S crosses Θ from below while the system is outside the El Niño mode, the algorithm sounds an alarm and predicts El Niño inception in the following year. For obtaining and testing the appropriate thresholds, we divided the data into two halves. In the first part (1950–1980), which represents the learning phase, all thresholds above the temporal mean of $S(t)$ are considered, and the optimal ones, i.e., those ones that lead to the best predictions in the learning phase, are determined. We found that Θ-values between 2.815 and 2.834 lead to the best performance (31). In the second part of the data set (1981–2011), which represents the prediction (hindcasting) phase, the performance of these thresholds was tested. We found that the thresholds between 2.815 and 2.826 gave the best results (Fig. 2, where $\Theta = 2.82$). The alarms were correct in 76% and the nonalarms in 86% of all cases.

For Θ values between 2.827 and 2.834, the performance was only slightly weaker.

Now, equipped with this hindcasting capacity of the algorithm, we turn to present and future El Niño behavior by considering all available temperature data, which extends the prediction phase from the end of 2011 until November 2013. Fig. 2A shows that in 2011 and 2012, $S(t)$ did not cross the threshold from below, which correctly forecasted the absence of El Niño events in both 2012 and 2013. These predictions, made by the end of 2011 and 2012, respectively, are not trivial. For example, as late as August 2012, the Climate Prediction Center/International Research Institute for Climate and Society Consensus Probabilistic ENSO forecast focusing on the SSTs in the NINO3.4 domain yielded a 4-in-5 likelihood for an El Niño event in 2012, which turned out to be incorrect only few months later (27, 28).

However, as Fig. 2B reveals, a sea change seems to be underway now. Between September 7 (where $S = 2.810$ was below the lowest threshold of 2.815) and September 17 (where $S = 2.838$ was above the upper thresholds of 2.826 and 2.834), $S(t)$ transgressed the alarm threshold level, indicating the return of El Niño in 2014.

Thus, our scheme generates an early warning signal with a 3-in-4 likelihood. Note that conventional forecasting methods focusing on SSTs in the NINO3.4 domain (27, 28) keep predicting ENSO-neutral conditions. In September 2013, the CPC/IRI consensus probabilistic ENSO forecast yielded a 1-in-5 likelihood for an ENSO event next year, which increased to a 1-in-3 likelihood by November 2013. We are aware of the reputational risks associated with our announcement, yet formulating falsifiable hypotheses is at the heart of the scientific method. Should our alarm turn out to be correct, however, this would be a major step toward better forecasting—and eventually understanding—of the ENSO dynamics.

Our contribution may also be relevant for the wider debate about anthropogenic global warming (36). There have been speculations that the recent hiatus in planetary mean surface temperature rise indicates that the climate system is less CO₂ sensitive than previously thought. On the other hand, new studies have demonstrated that decadal atmospheric warming is considerably masked by equatorial Pacific variability in heat uptake and release (36–39).

In fact, an average El Niño event increases the climate anomaly (deviation of global mean surface temperature from preindustrial level) by about 0.1 °C. The mean anomaly in the La Niña-dominated period 2002–2011 was 0.59 °C, whereas the record temperature deviation thus far happened in 2010 (0.69 °C) (40). This suggests that a strong El Niño event in late 2014 (as indicated by our scheme) can make 2015 a record year, because air temperature rise lags Pacific warming by about 3 mo.

On the other hand, the signal depicted in Fig. 2B is relatively weak thus far. However, we have not yet explored how the strength of the precursor cooperativity pattern relates to the degree of the ensuing Eastern Pacific warming. This is an important topic for future research.

Data and Methods

For the prediction of El Niño events or nonevents, we use the cooperative behavior of the atmospheric temperatures in the Pacific as precursor. To obtain a measure for the cooperativity, we consider the daily surface atmospheric temperatures (SATs) between June 1948 and November 2013 at grid points (nodes) of a Pacific network (Fig. 1).

We analyze the time evolution of the teleconnections (links) between the temperatures at nodes i inside the El Niño basin and nodes j outside the basin. The strengths of these links are represented by the strengths of the cross-correlations between the temperature records at these sites (35).

The prediction algorithm (31) is as follows:

1. At each node k of the network shown in Fig. 1, the daily atmospheric temperature anomalies $T_k(t)$ (actual temperature value minus climatological average for each calendar day; see below) at the surface area level are determined. For the calculation of the climatological average, leap days were removed. The data were obtained from the
National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis I project (41, 42).

ii) For obtaining the time evolution of the strengths of the links between the nodes \(i \) inside the El Niño basin and the nodes \(j \) outside, we compute, for each 10th day \(t \) in the considered time span between January 1950 and November 2013, the time-delayed cross-correlation function defined as

\[
f(t) = \frac{1}{365} \sum_{m=0}^{364} f(t - m).
\]

We consider time lags \(\tau \) between 0 and 200 d, where a reliable estimate of the background noise level can be guaranteed.

iii) We determine, for each point in time \(t \), the maximum, the mean, and the SD around the mean of the absolute value of the cross-correlation function \(|C_{ij}(\tau)| \) and define the link strength \(S_j(t) \) as the difference between the maximum and the mean value, divided by the SD. Accordingly, \(S_j \) describes the link strength at day \(t \) relative to the underlying background noise (signal-to-noise ratio) and thus quantifies the dynamical teleconnections between nodes \(i \) and \(j \).

iv) To obtain the desired mean strength \(S(t) \) of the dynamical teleconnections in the climate network, we simply average over all individual link strengths.

v) Finally, we compare \(S(t) \) with decision thresholds \(\Theta \). When the link strength \(S(t) \) (being above its temporal mean) crosses the threshold from below and the NINO3.4 index is below 0.5 °C, we give an alarm and predict that an El Niño episode will start in the following calendar year.

We would like to add that, for the calculation of the climatological average in the learning phase, all data within this time window were taken into account, whereas in the prediction phase, only data from the past up to the prediction date were considered.

Acknowledgments. A.B. and S.H. thank Deutsche Forschungsgemeinschaft for financial support. S.H. also acknowledges financial support by the Learning about Interacting Networks in Climate project funded by the Marie-Curie Initial Training Networks program (FP7-PEOPLE-2011-ITN).