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Abstract – We present a model that explores the influence of persuasion in a population of
agents with positive and negative opinion orientations. The opinion of each agent is represented
by an integer number k that expresses its level of agreement on a given issue, from totally against
k = −M to totally in favor k = M . Same-orientation agents persuade each other with probability
p, becoming more extreme, while opposite-orientation agents become more moderate as they
reach a compromise with probability q. The population initially evolves to (a) a polarized state
for r = p/q > 1, where opinions’ distribution is peaked at the extreme values k = ±M , or (b) a
centralized state for r < 1, with most opinions around k = ±1. When r " 1, polarization lasts for
a time that diverges as rM ln N , where N is the population’s size. Finally, an extremist consensus
(k = M or −M) is reached in a time that scales as r−1 for r # 1.

editor’s  choice Copyright c© EPLA, 2014

Introduction. – Many empirical investigations show
the importance of social influence in the formation of
people’s opinions. For instance, it is argued that two inter-
acting partners may exert social pressure to change their
attitudes to conform each other [1]. Some physics mod-
els have incorporated this particular social mechanism by
means of a compromise process [2–5]. In these models,
opinions are represented by a real number between two
extreme values, and pair of individuals interact only if
their opinion difference is smaller than a given thresh-
old. Individuals resolve the conflict by reaching a com-
promise, in which both opinions are changed in the same
amount to reduce their difference. A less explored mecha-
nism of social interactions is the persuasive arguments ex-
change [6–9]. As observed by Myers [6] in group discussion
experiments, when two individuals talk, they do not only
state their opinions, but they also discuss about the argu-
ments that support their opinions. Then, if they already
hold the same opinion orientation, they could intensify
their opinions by persuading each other with new argu-
ments or reasons, becoming more extreme in their believes.
This mechanism was proposed by Lau and Murnighan [8]
after the works by Myers [6] and Isenberg [7], and re-
cently explored by Mäs et al. [9] using a computational
model.

In this letter, we introduce a simple model that ex-
plores the competition between the compromise and
persuasive-argument mechanisms in a population of N in-
teracting agents. The state of each agent is represented by
an integer number k (−M ≤ k ≤ M and k #= 0), where the
sign of k indicates its opinion orientation, like for instance
to be in favor (positive) or against (negative) marijuana
legalization, and the absolute value |k| measures its opin-
ion intensity or strength. Thus, k = M (−M) correspond
to extremists which are strongly in favor (against) of le-
galization, while k = 1 and −1 represent moderates. In a
time step, two agents with states j and k are picked at ran-
dom to interact. Then, their states are updated according
to two elemental processes (see fig. 1).

i) Compromise: if they have opposite orientations, their
intensities decrease in one unit with probability q:

– If j < 0 and k > 0 ⇒ (j, k) → (jr, kl) with prob. q.

– If j > 0 and k < 0 ⇒ (j, k) → (jl, kr) with prob. q.

If j = ±1 and k = ∓1, one switches orientation at
random:

(±1,∓1) →

{

(1, 1) with prob. q/2,

(−1,−1) with prob. q/2.
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Fig. 1: (Colour on-line) Two main processes of the model.
Left: compromise: two interacting agents with opposite opin-
ion orientation become more moderate. Right: persuasion:
two interacting agents with the same orientation become more
extremists.

ii) Persuasion: if they have the same orientation, their
intensities increase by one unit with probability p:

– If j < 0 and k < 0 ⇒ (j, k) → (jl, kl) with prob. p.

– If j > 0 and k > 0 ⇒ (j, k) → (jr, kr) with prob. p.

Here kr and kl denote the right and left neighboring
states of k, respectively, defined as

kr =















1, for k = −1,

M, for k = M,

k + 1, otherwise,

kl =















−1, for k = 1,

−M, for k = −M,

k − 1, otherwise.

With this dynamics, opinions are constrained to the
interval [−M,M ] and the neutral opinion k = 0 is ex-
cluded. We find that the population’s opinion settles in a
centralized state when the compromise process dominates
(q > p), and in a polarized state when persuasion domi-
nates (p > q). These states are not stable, and the sys-
tem ultimately reaches extremist consensus. We solve the
equations for the dynamics in the stationary state, and
also in the strong and small persuasion limits, and find
that the mean extremist consensus time is non-monotonic
in the ratio p/q.

We note that similar mechanisms to the compromise
process i) are found in nonlinear and multiple-state voter
models with a reinforcement rule [10–15], in which agents
switch orientation (opinion’s sign) only after receiving
multiple inputs of agents with the opposite orientation.
Besides, persuasion was used in recent works [16,17] as a
degree of a person’s self-conviction, where in addition to
the influence from others, a person takes into account its
own opinion when making a decision. Also, persuasion
between opposite-orientation agents was recently studied
in [15]. However, we understand that the mechanism of
strengthening of opinions due to same-orientation inter-
actions has not been investigated within an interacting
particle model.

Dynamics. – We study the dynamics of the system by
looking at the time evolution of the number of agents in
the different opinion states. We denote by xk(t) the frac-
tion of agents in state k at time t. Initially, states are
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Fig. 2: (Colour on-line) Time evolution of the fraction of
agents in different opinion states, for maximum opinion in-
tensity M = 5 in a population of N = 109 agents. (a) xk(t)
for p = 3/4 and q = 1/4. (b) xk(t) for p = 1/4 and q = 3/4.
Solid (dashed) curves correspond to positive (negative) opin-
ions. A logarithmic scale was used in the y-axis to clearly see
all plateaus together.

uniformly distributed, thus xk(t = 0) ' 1/2M . Figure 2
shows results from Monte Carlo (MC) simulations for
M = 5 and a population of size N = 109. Given that
qualitative results depend on the ratio r ≡ p/q that re-
lates the persuasion and compromise time scales, we show
two representative cases, one with r = 3 (fig. 2(a)) and the
other with r = 1/3 (fig. 2(b)). We observe that densities
xk reach a nearly constant value (plateau) that depends
on k, but eventually all xk decay to zero, except xM that
goes to 1, corresponding to a consensus in the extrem-
ist state M . The two extremists consensus x±M = 1 are
absorbing states of the system, thus they are the only pos-
sible final states in the long run. The length of the plateau
increases with the system size as ln N (not shown), a typ-
ical time scale that appears in models with intermediate
states [10,14]. We shall see that this particular scaling is
also a consequence of the discrete nature of the system
when a small initial asymmetry is introduced [14].

The structure of the population at the quasistationary
state or plateau shows interesting properties, as can be
seen in fig. 3 where we plot xk for a given time in the
plateau. The distribution of opinions depends on the ratio
r, which controls the relative frequency of persuasion and
compromise events. When r > 1, the persuasion process
dominates over compromise, driving the states of agents

40004-p2



Persuasion and opinion polarization

towards the extreme opinions k = ±M . This induces
opinion polarization, where xk is symmetric and peaked
at the opposite extreme values (see fig. 3(a)). Instead,
for r < 1 compromise events occur more often than per-
suasive encounters, thus most opinions accumulate around
the moderate values k = ±1, inducing a centralized opin-
ion state where xk has a maximum value at center states
(see fig. 3(b)).

Stationary states. – To gain an insight about these
observations, we write and analyze a set of ordinary differ-
ential equations for the time evolution of xk. Here we con-
sider for simplicity the large-N limit, where demographic
noise coming from system size fluctuations is neglected.
Then, the densities of positive states evolve according to
the following set of equations:

dx1

dt
= 2(x−1q − x1p)σ+ + 2q(x2 − x1)σ−, (1a)

dxk

dt
= 2p (xk−1 − xk)σ+

+ 2q (xk+1 − xk)σ−, for 2 ≤ k ≤ M − 1, (1b)

dxM

dt
= 2p xM−1σ+ − 2qxMσ−, (1c)

where σ+ =
∑M

k=1 xk and σ− =
∑−M

k=−1 xk are the to-
tal densities of positives and negatives states, respec-
tively, which satisfy the density conservation constraint
σ+ + σ− = 1. Equations for negative-state densities
are obtained from eqs. (1) by the transformations k ↔
−k and σ+ ↔ σ−. The gain and loss terms in the
rate equations account for the different processes. The
first term describes persuasive interactions between two
positive agents, while the second term accounts for the
compromise between positive and negative agents. In ad-
dition, the gain term 2q x−1 σ+ in eq. (1a) corresponding
to −1 → 1 transitions, describes the negative to positive
flux of states, while the absence of the loss term −2p xMσ+

and the gain term 2q xM+1σ− in eq. (1c) reflect the fact
that there is no state flux through the k = M boundary.

The properties of the quasistationary distributions of
fig. 3 can be obtained by studying the stationary solu-
tions of eqs. (1). The two trivial solutions xM = 1 and
x−M = 1 correspond to the M and −M extremists con-
sensus, respectively, where all agents end up with the same
maximum opinion intensity. These are stable fixed points
in the space of densities. But there is also a non-trivial
solution that corresponds to a balanced mix of positive
and negative agents, as the ones in fig. 3. Setting dxk

dt = 0
and σ+ = σ− = 1/2 in eqs. (1) we obtain a linear sys-
tem of algebraic equations that can be solved by iteration.
The solutions are xs

k = xs
1 rk−1 for 1 ≤ k ≤ M and xs

k =
xs
−1 r−k−1 for −M ≤ k ≤ −1, with r = p/q. Using the

normalization condition 1/2 = σ+ =
∑M

k=1 xk = x1(1−rM )
(1−r)
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Fig. 3: (Colour on-line) Distribution of opinions’ densities at
the quasistationary mixed state of fig. 2, and for the same
parameter values. (a) xk at time t = 200. (b) xk at t = 20.
Solid lines correspond to expression (3).

and 1/2 = σ− =
∑−M

k=−1 xk = x
−1(1−rM )

(1−r) , we obtain the
values

xs
1 = xs

−1 =
1 − r

2(1 − rM )
. (2)

Finally, densities at the quasistationary mixed state are

xs
k =

1

2

(

1 − r

1 − rM

)

r|k|−1 for − M ≤ k ≤ M. (3)

In fig. 3 we observe that expression (3) in solid lines
gives a good mathematical description of the opinions’
distributions from MC simulations, in a population of
agents whose opinions are polarized (r > 1) or central-
ized (r < 1).

To study the stability of these states we have integrated
eqs. (1) numerically for M = 5 and two values of r. The
time evolution is very similar to the one depicted in fig. 2.
We mimic the initial state of MC simulations by taking
xk(t = 0) = 1/2M + ε, where |ε| = N−1/2 corresponds to
a stochastic size fluctuation with respect to the uniform
state. All densities quickly reach a nearly constant value
in time, corresponding to the mixed solution xs

k of eq. (3),
and stay very close to this attractor for a time that scales
as ln N , to finally reach either fixed point x±M = 1. The
attractor xs

k corresponds to a saddle point of the dynamics
—starting from the exact uniform state xk(t = 0) = 1/2M
(or any symmetric case xk = x−k) causes the system to hit
xs

k, and stay there. But any small initial asymmetry, for
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Fig. 4: (Colour on-line) Main: mean extremist consensus time
τ vs. persuasion strength r = p/(1 − p) for M = 5 and N =
1000. Inset: rescaled time τ vs. r in log-log scale for M = 3
(squares), M = 5 (circles) and M = 8 (diamonds). The solid
line corresponds to the approximation (9) in the r # 1 limit,
while dashed lines denote the asymptotic behavior rM in the
r " 1 limit.

instance in the positive opinion, makes the system stay in
the vicinity of xs

k for a finite time, and eventually escape
and hit the positive extremist consensus state xM = 1.
The time spent near the saddle point is related to the
time to reach a consensus in orientation (all states with
the same sign) and, as we show in the next section, is
non-monotonic in r.

Convergence times. – In fig. 4 we plot the mean time
τ to reach the final extremist consensus x±M = 1 as a
function of r for M = 5, obtained from MC simulations.
As qualitative results only depend on r we took q = 1−p,
thus r = p/(1 − p) varies from 0 to ∞ as p goes from 0
to 1. Therefore, r can be seen as the relative strength
of persuasion, as compared to compromise. We observe
that τ is non-monotonic in r, and has a minimum value
around r ' 0.6. This means that the population reaches
the fastest consensus when interactions between agents
of the same orientation have a probability of success p
similar to that of opposite-orientation agents q. Instead,
mostly chatting with same-opinion partners (large r) re-
inforce initial believes, leading to a polarized state that
last for very long times. Besides, only interacting with
opposite-opinion partners (small r) first induces a central-
ized consensus, which is unstable, and then the population
is slowly driven to the final extremist consensus.

An insight about the non-monotonic behavior of τ can
be obtained by means of eqs. (1). For a simpler analysis of
the equations and a better understanding of the previous
results, it proves convenient to split the evolution of the
system into two distinct stages: a first stage with an as-
sociated time scale τ1, in which all agents adopt the same
opinion orientation (all states are either positive or nega-
tive), and a second stage where the system reaches extrem-
ist consensus, characterized by a time scale τ2. Therefore,

the convergence time can be written as τ = τ1 + τ2. The
nonlinearity of eqs. (1) makes it hard to find a complete
solution, but it is possible to obtain approximate expres-
sions for τ in the two limiting cases of very strong and
very weak persuasion.

Small persuasion limit r + 1. In this limit, the sec-
ond stage is much longer than the first stage (τ2 , τ1),
and we can approximate τ ' τ2. This is because once all
agents’ states become positive (negative) they are slowly
driven by persuasion events —which happen with a very
small probability p = r/(1 + r)— to the consensus state
xM = 1 (x−M = 1), thus the system spends most of
the time in the second stage. To estimate τ2 we assume,
without loss of generality, that the system starts at time
t = 0 from a configuration in which all states are positive
(xk(t = 0) = 0 ∀ k < 0). This initial condition implies
that states remain positive since only persuasive events
can take place, and thus σ+(t) = 1 and σ−(t) = 0 for
t ≥ 0. Then, eqs. (1) become linear

dx1

dt′
= −x1,

dxk

dt′
= xk−1 − xk, for 2 ≤ k ≤ M − 1, (4)

dxM

dt′
= xM−1,

where we have introduced the rescaled time t′ ≡ 2 p t. In
the Laplace space, eqs. (4) are reduced to the following
system of coupled algebraic equations:

s x1(s) − x1(0) = −x1(s),

s xk(s) − xk(0) = xk−1(s) − xk(s), 2 ≤ k ≤ M − 1,

s xM (s) − xM (0) = xM−1(s),

with solutions

xk(s) =
k−1
∑

n=0

xk−n(0)

(s + 1)n+1
, for 1 ≤ k ≤ M − 1,

xM (s) =
xM (0)

s
+

1

s

M−2
∑

n=0

xk−n(0)

(s + 1)n+1
.

Transforming back to the original space and replacing t′

by 2 p t we finally obtain

xk(t) = e−2p t
k−1
∑

n=0

(2p t)n xk−n(0)

n!
1 ≤ k ≤ M − 1,

xM (t) = 1 − e−2p t
M−1
∑

k=1

k−1
∑

n=0

(2p t)n xk−n(0)

n!
. (5)

The above solutions are valid for all values of r, but we
explore here their behavior in the r + 1 limit. In this case
we expect an initial distribution of states peaked at k = 1,
that is, x1(0) ' 1 and xk(0) ' 0 for 2 ≤ k ≤ M . This
is because the strong bias towards the center during the
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first stage keeps most states close to k = 1. Then, eq. (5)
becomes

xM (t) ' 1 − e−2p t
M−2
∑

k=0

(2p t)k

k!
, (6)

which shows that xM approaches 1 quasiexponentially fast
with time. Having xM > 1 − 1/N at a time t = τ2 is
equivalent to an extremist consensus in the discrete system
of N agents, since this corresponds to have a number of
agents in state M larger than N − 1. Therefore, from
eq. (6) τ2 obeys the following relation:

N e−2p τ2

M−2
∑

k=0

(2p τ2)k

k!
= 1. (7)

Then, τ2 = fM,N/2p, where fM,N is a solution of

Ne−f
M−2
∑

k=0

fk/k! − 1 = 0, (8)

a non-trivial function of M and N . Finally, replacing back
p = r/(1 + r) we arrive to following expression for τ

τ ' τ2 '
(1 + r)fM,N

2r
. (9)

In the inset of fig. 4 we show the curves τ vs. r from MC
simulations in a system of size N = 1000, and rescaled by
the functions f ' 9.233, 13.062 and 18.062, for M = 3, 5
and 8, respectively. These values of f were obtained by
numerically solving eq. (8), given that a closed expression
for f in terms of M and N is very hard to obtain. The
collapse of the three curves confirm the scaling given by
eq. (9), which also captures the r → 0 asymptotic behavior
r−1 observed from simulations.

Large persuasion r , 1 limit. In this case, the first
stage takes much longer than the second stage, and thus
τ ' τ1. The system quickly becomes polarized by the
driving bias towards the extreme states k = ±M , and
stays polarized for very long times, given that the flux of
particles from one side to the other is limited by the very
small compromise probability q = 1/(1 + r). To estimate
τ1, it proves useful to work with the magnetization m,
defined as the difference between the fraction of positive
and negative states

m(t) ≡ σ+(t) − σ−(t) = 2
M
∑

k=1

xk(t) − 1. (10)

From eqs. (1), the magnetization evolves according to

dm

dt
= 4 q (x−1σ+ − x1σ−), (11)

or, using the relations σ± = (1 ± m)/2, is

dm

dt
= 2 q [x−1(1 + m) − x1(1 − m)] . (12)

Equation (11) can also be obtained by noting that m only
changes after a compromise event that involves states 1
or −1. The first term accounts for −1 → 1 transitions
due to compromises between agents with states −1 and
k > 0, which happen at a rate 2x−1 σ+, increasing m
by 2/N . The second term stems for the reverse transi-
tion 1 → −1, where m decreases. Equation (12) is not
closed because x±1 depend on x±2, which in turn depend
on x±3 and so on, as we observe from eqs. (1). However,
we can still close the equation by finding approximate ex-
pressions for x±1 in terms of m, as we detail below. As
we showed before, the distribution of opinions at the qua-
sistationary mixed state follows the exponential relation
xs
±k = xs

±1 rk−1 (1 ≤ k ≤ M). Monte Carlo simulations
show that the distribution remains exponential during the
first stage, x±k(t) = x±1(t)αk−1

± (t), where α±(t) are time-
dependent variables. Interestingly, we have numerically
checked that α±(t) are almost constant over time, and
only a significant change is observed at the very end of
the stage. Therefore, they can be considered as slow vari-
ables, as compared to m, and taken as constants and equal
to their initial values α±(t) ' α±(0). Thus, we can write

σ± =
1±m

2
' x±1(t)

M
∑

k=1

αk−1
± (0) = x±1(t)

[

1−αM
± (0)

1−α±(0)

]

,

from where

x±1(t) '
[1 − α±(0)]

2[1 − αM
± (0)]

[1 ± m(t)]. (13)

Given that the quasistationary state is reached in a fast
time scale that is O(1) (see fig. 2(a)), we neglect this
short transient and assume that the initial condition corre-
sponds to the stationary solution eq. (3). Therefore, from
eq. (13), the initial variables α±(0) obey

[1 − α±(0)]

2[1 − αM
± (0)]

'
xs

1

1 ± m0
, (14)

where m0 = m(0) is the initial magnetization, and xs
1 =

(1−r)/2(1−rM ) is the state-1 density at the quasistation-
ary state (eq. (2)). Note that starting from the perfectly
symmetric mixed state gives m0 = 0, and thus α±(0) = r.
From eqs. (13) and (14) we get

x±1(t) '
xs

1

1 ± m0
[1 ± m(t)]. (15)

Plugging this expression for x±1 into eq. (12) leads to

dm(t)

dt
'

4 q xs
1 m0

1 − m2
0

[1 − m(t)2]. (16)

The integration of eq. (16) gives

m(t) '
(1 + m0)eAt − (1 − m0)e−At

(1 + m0)eAt + (1 − m0)e−At
, (17)
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where

A ≡
4 q xs

1 m0

1 − m2
0

=
2(1 − r)m0

(1 + r)(1 − rM )(1 − m2
0)

(18)

is the prefactor of eq. (16). Expression (17) captures
the qualitative behavior of the magnetization, which
approaches to |m| = 1 as

|m(t)| ' 1 −
2(1 − |m0|)

(1 + |m0|)
e−2|A|t. (19)

Within this framework of rate equations, the first stage
ends at a time τ1 when |m| equals 1 − 1/N , that is, when
less than one particle remains in one of the two sides. From
eq. (19) we obtain

τ ' τ1 '
(1 − m2

0)(1 + r)(1 − rM )

4 |m0| (1 − r)
ln

[

2N(1 − |m0|)

1 + |m0|

]

.

(20)
The scaling τ ∼ rM gives the right asymptotic behavior
for r , 1 (inset of fig. 4).

Summary and discussion. – In summary, we pro-
posed and studied a model that incorporates two mech-
anisms for the formation of opinions —compromise and
persuasion. Compromise interactions between individu-
als tend to moderate their opinions, while persuasive con-
tacts lead to extreme positions. When compromise events
are more frequent than persuasive events, opinions are
grouped around moderate values, leading to a central-
ized state of opinions. In the opposite case, if persua-
sion events dominate over compromise events, opinions are
driven towards extreme positive and negative values, in-
ducing polarization. The centralized and polarized states
are unstable, and consensus in either positive or negative
extreme opinions is eventually achieved. For a symmetric
initial distribution of opinions, these final extremist states
are equiprobable, but any asymmetry in the initial con-
dition that favors a given opinion orientation makes the
population reach consensus in the extreme state of the fa-
vored orientation. The mean extremist consensus time τ
is non-monotonic in the ratio r = p/q between the prob-
abilities of successful persuasive and compromise events,
and has a minimum when p and q are of the same order of
magnitude. In the small (r + 1) and large (r , 1) per-
suasion limit, the consensus time scales as τ ∼ r−1 and
τ ∼ rM lnN , respectively, with the maximum intensity M
and population size N .

In the studied model, individuals reinforce their opin-
ions by talking to other partners with the same opinion
orientation. It would be worthwhile to explore some ex-
tensions that include a reinforcement mechanism between
individuals with opposite orientations. Related to that,
it was recently found that a rejection rule between very
dissimilar individuals enhances polarization [18]. It might
also be interesting to explore the model when interactions
are no longer all-to-all, but rather take place in other
topologies like square lattices or complex networks. In
lattices we expect the formation of domains composed

by same-orientation partners, with a coarsening dynam-
ics driven by surface tension, as it happens in models with
intermediate states [10,12]. The connectivity of complex
networks could play an important role, by enhancing the
propagation and ultimate dominance of an extreme opin-
ion [19]. The effects of more complex topologies on the
opinion dynamics, for instance those containing commu-
nity structure, are more difficult to predict, and thus war-
rants future work. Finally, our model could be validated
by posting a popular question on a social networking web-
site like Facebook, MySpace or YouTube, and asking users
to rate their level of agreement/disagreement about that
issue.
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