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In this paper we study the scaling behavior of the interface fluctuations �roughness� for a discrete model with
conservative noise on complex networks. Conservative noise is a noise which has no external flux of deposi-
tion on the surface and the whole process is due to the diffusion. It was found that in Euclidean lattices the
roughness of the steady state Ws does not depend on the system size. Here, we find that for scale-free networks
of N nodes, characterized by a degree distribution P�k��k−�, Ws is independent of N for any �. This behavior
is very different than the one found by Pastore y Piontti et al. �Phys. Rev. E 76, 046117 �2007�� for a discrete
model with nonconservative noise, which implies an external flux, where Ws� ln N for ��3, and was ex-
plained by nonlinear terms in the analytical evolution equation for the interface �La Rocca et al., Phys. Rev. E
77, 046120 �2008��. In this work we show that in these processes with conservative noise the nonlinear terms
are not relevant to describe the scaling behavior of Ws.
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I. INTRODUCTION

It is known that many physical and dynamical processes
employ complex networks as the underlying substrate. For
this reason many studies on complex networks are focused
not only in their topology but also in the dynamic processes
that run over them. Some examples of these kinds of dy-
namical processes on complex networks are cascading fail-
ures �1�, traffic flow �2,3�, epidemic spreadings �4�, and syn-
chronization �5,6�. In particular, synchronization problems
are very important in the dynamics and fluctuations in task
completion landscapes in causally constrained queuing net-
works �7�, in supply-chain networks based on electronic
transactions �8�, brain networks �9�, and networks of coupled
populations in the synchronization of epidemic outbreaks
�10�. For example, in the problem of the load balance on
parallel processors the load is distributed between the pro-
cessors. If the system is not synchronized, few processors
have low load and they will have to wait for the most loaded
processors to finish the task. The nodes �processors� of the
system have to synchronize with their neighbors to ensure
causality on the dynamics. The computational time will be
given by the most loaded processors, thus synchronizing the
system is equivalent to reduce or optimize the computational
time. Synchronization problems deal with the optimization
of the fluctuations of some scalar field h �load in processing�
in the system that will be optimally synchronized minimizing
those fluctuations. To analyze synchronization problems is
customary to study the height fluctuations of a nonequilib-
rium surface growth. If the scalar field on the nodes repre-
sents the interface height at each node, its fluctuations are
characterized by the average roughness W�t� of the interface
at time t, given by W�W�t�= �1 /N�i=1

N �hi− 	h
�2�1/2, where
hi�hi�t� is the height of node i at time t, 	h
 is the mean
value on the network, N is the system size, and � · � denotes
an average over configurations. Pastore y Piontti et al. �11�
studied this mapping in scale-free �SF� networks �12� of
broadness � and size N using a surface relaxation growth

model �13� with nonconservative noise and found that for
��3 the saturation roughness Ws scales as Ws� ln N. Later,
the evolution equation for the interface in this model was
derived analytically �14� for any complex networks. The de-
rived evolution equation has nonlinear terms as a conse-
quence of the heterogeneity of the network that together with
the nonconservative noise are necessary to explain the Ws
� ln N behavior for ��3. However, there exist many physi-
cal processes where the noise is conservative and cannot be
modeled as a flux deposition on a surface. In models without
external flux, where particles are moved by diffusion, the
total volume of the system remains unchanged. Examples of
this kind of process are thermal fluctuations, diffusion by an
external agent such as an electric field, and load balance of
parallel processors where the total load in the system is con-
stant over a certain time interval. For the last example, the
only flux is due to diffusion of the load from a processor to
another. Though not extensively, conservative noise has al-
ready been studied in Euclidean lattices �15,16� and it was
found that Ws does not depend on the system size L. The
evolution equation of this process in Euclidean lattices can
be well represented by an Edwards-Wilkinson process �17�
with conservative noise. In this paper we study this model in
SF networks by simulations of the discrete model �Sec. II�
and derive analytically its evolution equation for any com-
plex networks �Sec. III�. Those networks represent better the
heterogeneity in the contacts in real systems, such as the
internet, the world wide web, the networks of routers, etc.
We applied the mean-field �MF� approximation to the evolu-
tion equation and show that the scaling behavior of Ws with
N �Sec. IV� is only due to finite-size effects. To our knowl-
edge this class of model was never studied before in complex
networks.

II. SIMULATIONS OF THE DISCRETE MODEL

In this model, at each time step a node i is chosen with
probability 1 /N. If we denote by vi the nearest-neighbor
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nodes of i, then �1� if hi�hj, ∀j�vi⇒ the scalar fields re-
mains unchanged, else �2� if hj �hn, ∀n� j�vi⇒hj =hj +1
and hi=hi−1. In that way the total height of the interface is
conserved and we have that the average height is constant.
We measure the roughness W for SF networks, characterized
by a power law tail in the degree distribution P�k��k−�,
where kmax�k�kmin is the degree of a node, kmax is the
maximum degree, kmin is the minimum degree, and � mea-
sures the broadness of the distribution �12�. To build the SF
network we use the Molloy-Reed �MR� �18� algorithm or
configurational model.

In Fig. 1 we plot W2 as a function of the time t for dif-
ferent system sizes and in Fig. 2 the steady state Ws

2 as a
function of N for �a� �=3.5 and �b� �=2.5. We can see that
Ws

2 increases with N but, as we will show later, this depen-
dence in the system size is only due to finite-size effects
introduced by the correlated nature �dissortative� of the MR
algorithm �19�. For all the results we use kmin=2 in order to
ensure that the network is fully connected �20� and assume
that the initial configuration of �hi� is randomly distributed in
the interval �−0.5,0.5�. Then, we have that 	h
=0.

III. DERIVATION OF THE STOCHASTIC
CONTINUUM EQUATION

Next we derive the analytical evolution equation for the
scalar field hi for every node i in the conservative model in
random graphs. The procedure chosen here is based on a
coarse-grained �CG� version of the discrete Langevin equa-
tions obtained from a Kramers-Moyal expansion of the mas-
ter equation �21–23�. The discrete Langevin equation for the
evolution of the height in any growth model is given by
�22,23�

�hi

�t
=

1

�
Ki

1 + �i, �1�

where Ki
1 takes into account the deterministic growth rules

that produce the evolution of the scalar field hi on node i,

�=N�t is the mean time of attempts to change the scalar
fields of the interface, and �i is a noise with zero mean and
covariance given by �22,23�

��i�t�� j�t��� =
1

�
Kij

2 ��t − t�� . �2�

More explicitly, Ki
1 and Kij

2 are the two first moments of
the transition rate and they are given by

Ki
1 = �

j=1

N

Aij�Pij − Pji� , �3�

Kij
2 =

1

�
Ki

1�ij −
1

�
�
n=1

N

Ain�Pin + Pni���nj − �ij� , �4�

where �Aij� is the adjacency matrix �Aij =1 if i and j are
connected and zero otherwise� and Pij is the rule that repre-
sents the growth contribution to node i by relaxation from its
neighbor j. In our model the network is undirected, then
Aij =Aji. As the rules for this model are very complex if we
allow degenerate scalar fields, we simplify the problem tak-
ing random initial conditions �see discrete rules in Sec. II�.
Thus,

Pij = ��hj − hi� �
n�vj

�1 − ��hi − hn�� ,

where � is the Heaviside function given by ��x�=1 if x
�0 and zero otherwise, with x=ht−hs��h. Without lost of
generality, we take �=1.

In the CG version �h→0; thus after expanding an ana-
lytical representation of ��x� in Taylor series around x=0 to
first order in x, we obtain
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FIG. 1. W2 as a function of t
for the discrete model for �a� �
=3.5 for N=64 ���, 128 ���, 256
���, 512 ���, 1024 ���, 2048
�+�, 3072 �� �, and 4096 �X� and
�b� �=2.5 for N=64 ���, 128 ���,
256 ���, 512 ���, 768 ���, 1024
�+�, and 1280 �� �. Each curve
was obtained with 10.000
realizations.
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FIG. 2. Ws
2 as a function of N

for �a� �=3.5 and �b� �=2.5 in
symbols for the same system sizes
of Fig. 1. The dashed lines repre-
sent the fitting with Eq. �12�, ob-
tained in the MF approximation
by considering the finite-size ef-
fects introduced by the MR
construction.
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Ki
1 = c0�

j=1

N

Aij�	�kj� − 	�ki�� + c1�
j=1

N

Aij�	�kj� + 	�ki��


�hj − hi� +
c1c0

�1 − c0��j=1

N

Aij	�kj� �
n=1,n�i

N

Ajn�hn − hi��
+ O���h�2� , �5�

where c0 and c1 are the first two coefficients of the expansion
of ��x� and 	�ki�= �1−c0�ki−1 is the weight on the link ij
introduced by the dynamic process.

Notice that the network is undirected and the noise is
conservative, thus the average noise correlation �see Eq. �2��
is 	�i�t�� j�t��
=0, where 	 
 represents average over all the
nodes of the network. Notice that in Eq. �5� the nonlinear
terms are disregarded. As we will show below, for this con-
servative noise model these terms are not necessary to ex-
plain the scaling behavior of Ws with N.

We numerically integrate our evolution equation �Eq. �1��
in SF networks using the Euler method with a representation
of the Heaviside function given by ��x�= �1+tanh�U�x
+z��� /2, where U is the width and z=1 /2 �23�. With
this representation, c0= �1+tanh�U /2�� /2 and c1= �1
−tanh2�U /2��U /2. We assume that the initial configuration
of �hi� is randomly distributed in the interval �−0.5,0.5� and
for the conservative noise we used the algorithm described in
�24�: at each time step, for every node in the network and for
any of its nearest neighbor we add a random number in the
interval �−0.5,0.5� and remove this amount to one of the
nearest-neighbor nodes.

In Fig. 3 we plot W2 as a function of t from the integration
of Eq. �1� for �a� �=3.5 and �b� �=2.5 and different values
of N with kmin=2. For the time step integration we chose
�t�1 /kmax according to Ref. �25�. In Fig. 4 we plot the
steady state Ws

2 as a function of N for �a� �=3.5 and �b� �
=2.5. We can see that Ws

2 depends weakly on N, but as

shown below this size dependence is due to finite-size effects
introduced by the MR construction. Next we derive the
mean-field approximation in order to explain the nature of
the corrections to the scaling.

IV. MEAN-FIELD APPROXIMATION
FOR THE EVOLUTION EQUATION

We apply a MF approximation to the linear terms of Eq.
�5�. In this approximation we consider 1�kmin�kmax. Tak-
ing Cij =Aij	�kj� and Tijn=AijAjn	�kj�, then

Ki
1 = c0�Ci − ki	�ki�� + c1Ci�

j=1

N
Cijhj

Ci
− hi�

+ c1	�ki�ki�
j=1

N
Aijhj

ki
− hi�

+
c1c0

�1 − c0�
Ti�

j=1

N

�
n=1,n�i

N
Tijnhn

Ti
− hi� , �6�

where

Ci = �
j=1

N

Cij ,

Ti = �
j=1

N

�
n=1,n�i

N

Tijn. �7�

Disregarding the fluctuations, we take � j=1
N Aijhj /ki�	h
,

� j=1
N Cijhj /Ci�	h
, and � j=1

N �n=1,n�i
N Tijnhn /Ti�	h
. From Eq.

�7�, we can approximate Ci by Ci�ki��ki�kmin

kmaxP�k �ki�	�k�dk
�6�, where P�k �ki� is the conditional probability that a node
with degree ki is connected to another with degree k. For
uncorrelated networks P�k �ki�=kP�k� / 	k
 �12�, then Ci�ki�
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FIG. 3. W2 as a function of t
from the integration of the evolu-
tion equation: �a� �=3.5 for N
=64 ���, 128 ���, 256 ���, 512
���, 1024 ���, 1536 �+�, and
2048 �� � and �b� �=2.5 for N
=64 ���, 128 ���, 256 ���, 512
���, 768 ���, 1024 �+�, and 1280
�� �. For all the integrations we
use U=0.5 and typically 1.000 re-
alizations of networks.
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FIG. 4. Ws
2 as a function of N

for �a� �=3.5 and �b� �=2.5 in
symbols for the same system sizes
of Fig. 3. The dashed lines repre-
sent the fitting with Eq. �12�, ob-
tained by considering the finite-
size effects introduced by the MR
construction.
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� I1ki / 	k
 with I1=�kmin

kmaxP�k�k	�k�dk. Making the same
assumption for Ti, we obtain Ti�ki�� I2ki / 	k
 with I2
=�kmin

kmaxP�k�k�k−1�	�k�dk. Then, the linearized evolution
equation for the heights in the MF approximation can be
written as

�hi

�t
= Fi�ki� + �i�ki��	h
 − hi� + �i, �8�

where Fi�ki�=c0ki�I1 / 	k
−	�ki�� represents a local driving
force and �i�ki�=c1ki�b+	�ki�� is a local superficial tension-
like coefficient with b= �I1+ I2c0 / �1−c0�� / 	k
. This mean-
field approximation reveals the network topology depen-
dence through P�k�.

Taking the average over the network in Eq. �8�, �	h
 /�t
=1 /N�i=1

N Fi=0, then 	h
 is constant in time. The solution of
Eq. �8� �21� is given by

hi�t� = �
0

t

e−�i�t−s��Fi + �i	h
 + �i�s��ds

=
Fi + �i	h


�i
�1 − e−�it� + �

0

t

e−�i�t−s��i�s�ds . �9�

Using Eq. �9� and the fact that in our model with the
initial conditions we use 	h
=0, we find the two-point corre-
lation function,

�hi�t1�hj�t2�� = �Fi

�i
��Fj

� j
��1 − e−�it��1 − e−�jt�

+ �
0

t2 �
0

t1

e−�i�t1−s1�e−�j�t2−s2�


��i�s1�� j�s2��ds1ds2.

For tmax�1 /�i�, we can write Ws as

Ws
2 = �	hi

2
� =
1

N
�
i=1

N �Fi

�i
�2

+
1

N
�
i=1

N
Kii

2

�i
, �10�

where Kii
2 �see Eq. �4�� is given by

Kii
2 = �

j=1

N

Aij�Pij + Pji� � c0ki I1

	k

+ 	�ki�� .

For SF networks it can be shown that I1 , I2�const
+kmax exp�−kmax const�, where kmax�N1/��−1� for MR net-
works; thus we can consider the quantities I1 and I2 as inde-
pendent of N.

From Eq. �10� and using the expressions for Fi, �i, and
Kii

2, we have

Ws
2 = � c0

c1
�2

B2 1

N
�
i=1

N

�f−�ki��2 +
c0

c1
B

1

N�
i=1

N

f+�ki� , �11�

where

f��ki� =

1 �
	k

I1

	�ki�

1 +
	k

I2

c0

1 − c0
	�ki�

and B=1 / �1+c0I2 / �1−c0�I1�. Taking the continuum limit we
find another expression for Eq. �11� as

Ws
2 = � c0

c1
�2

B2�
kmin

kmax

p�k��f−�k��2dk +
c0

c1
B�

kmin

kmax

p�k�f+�k�dk .

The function f��k� has a crossover at k=k�, where k� is
the crossover degree between the two different behaviors,
then

�1� for k�k�⇒ f��k�� � 	k
	�k� / I1 /2 and
�2� for kk�⇒ f��k��1.
As k� is the crossover between two different behaviors of

f��k� and the numerator of the function diverges faster than
the denominator, we have 1�	k
	�k�� / I1, thus k�

� ln�I1 / 	k
� / ln�1−c0�. Then,

Ws
2 = � c0

c1
�2

B2 +
c0

c1
B��

k�

kmax

p�k�dk

+ � c0B

2c1I1
�2

	k
2�
kmin

k�

p�k��	�k��2dk + � c0B

2c1I1
�


	k
�
kmin

k�

p�k�	�k�dk .

Even thought k� depends on kmax, it can be demonstrated
that the two last integrals depend weakly on N and can be
considered as constant. Then, introducing the corrections due
to finite-size effects trough kmax in 	k
, we obtain

Ws
2 � Ws

2����1 +
A1

N
+

A2

N��−2�/��−1� +
A3

N2���−2�/��−1��� ,

�12�

where A1, A2, and A3 do not depend on kmax.
In Figs. 2 and 4 the dashed lines represent the fitting of

the curves with Eq. �12� considering finite-size effects intro-
duced by the MR construction. We can see that this equation
represents very well the finite-size effects of this model. This
means that even though the networks is heterogeneous, the
nonlinear terms are not necessary to explain the N indepen-
dence of Ws when a conservative noise is used. Notice that
even when our network is correlated in the degree, the ex-
pression for Ws

2 found describes very well the scaling behav-
ior with N as shown in the insets of Figs. 2 and 4. This model
suggests a useful load balance algorithm suitable for proces-
sor synchronization in parallel computation. Our results
show that the algorithm could be useful when one want to
increase the number of processors and its general behavior is
well represented by a simple mean-field equation.

V. SUMMARY

In summary, in this paper we study a conservative model
in SF networks and find that the roughness of the steady state
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is a constant and its dependence on N for any � it is only due
to finite-size effects. We derive analytically the evolution
equation for the model and retain only linear terms because
they are enough to explain the scaling behavior of Ws. Fi-
nally, we apply the mean-field approximation to the equation
and we calculate explicitly the corrections to scaling of Ws.
This approximation describes very well the behavior of the

model and shows clearly that the corrections are due to
finite-size effects.
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