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Real data show that interdependent networks usually involve intersimilarity. Intersimilarity means that a pair
of interdependent nodes have neighbors in both networks that are also interdependent [Parshani et al. Europhys.
Lett. 92, 68002 (2010)]. For example, the coupled worldwide port network and the global airport network are
intersimilar since many pairs of linked nodes (neighboring cities), by direct flights and direct shipping lines, exist
in both networks. Nodes in both networks in the same city are regarded as interdependent. If two neighboring
nodes in one network depend on neighboring nodes in the other network, we call these links common links. The
fraction of common links in the system is a measure of intersimilarity. Previous simulation results of Parshani et al.
suggest that intersimilarity has considerable effects on reducing the cascading failures; however, a theoretical
understanding of this effect on the cascading process is currently missing. Here we map the cascading process
with intersimilarity to a percolation of networks composed of components of common links and noncommon
links. This transforms the percolation of intersimilar system to a regular percolation on a series of subnetworks,
which can be solved analytically. We apply our analysis to the case where the network of common links is an
Erdős-Rényi (ER) network with the average degree K , and the two networks of noncommon links are also ER
networks. We show for a fully coupled pair of ER networks, that for any K ! 0, although the cascade is reduced
with increasing K , the phase transition is still discontinuous. Our analysis can be generalized to any kind of
interdependent random network systems.
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I. INTRODUCTION

Single isolated networks have been extensively studied
in the past decade [1–14]. Recently, much interest has been
devoted to interdependent networks [15–27], which can model
some real world catastrophic events, such as the electrical
blackout in Italy on 28 September 2003 [28] and the US-
Canada power system outage on 14 August 2003 [29]. Failures
of a small number of power stations can cause further
malfunction of nodes in their communication control network,
which in turn leads to the shutdown of power stations [15,28].
This cascading process continues until no more nodes fail
due to percolation or due to interdependence failures. In
contrast to single networks where the percolation transition
is continuous, in interdependent networks the transition is
abrupt [15,16].

Real interdependent networks are sometimes coupled ac-
cording to some intersimilarity features. Intersimilarity means
the tendency of neighboring nodes in one network to be
interdependent of neighboring nodes in the other network.
Such coupled networks are more robust against cascading
failures than randomly coupled interdependent networks.
To quantify self-similarity, Parshani et al. introduced the
interclustering coefficient (ICC), which measures the average
number of common links per pair of interdependent nodes [30].
Common links are defined as follows: Given two coupled
networks A and B, and two nodes ak and al which are linked
in A, if their interdependent counterparts bk (corresponds to
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ak) and bl (corresponds to al) in B are also linked (in B),
this pair of links is called a common link. Common links
can be interpreted as follows: if two nodes in one network
are linked, the tendency (probability) of their interdependent
counterparts in the other network to be linked is a measure
of the intersimilarity. Thus, the density of the common links
reflects the intersimilarity of the two networks. In the extreme
case where every pair of links is a common link, the two
networks are identical. In this case no cascading failure will
occur, since a failure in network A will cause an identical
failure in B and there will be no cascading failure feedback to
A. It is therefore expected that the more common links appear
in the coupled networks system, the more robust it becomes.
In the example of the coupled worldwide port network and the
airline network, illustrated in Fig. 1, the fraction of common
links is 0.12 for the port network and 0.18 for the airline
network [30]. Therefore, developing a method to analyze cases
where certain common topologies exist in the interdependent
networks can help to understand the vulnerabilities of coupled
complex systems in the real world as well as for designing
robust infrastructures.

In this paper we introduce a method to analytically calculate
the cascading process of failures in interdependent networks
with common links. To analyze this problem, we consider the
cluster components of the network composed of only common
links after the initial attack. We will illustrate that all nodes in
such a component will survive or fail simultaneously during
the cascading process. Based on this fundamental feature, we
divide the system into subnetworks according to the sizes of
the components, and then contract all nodes in each component
into a single node. After contraction, the system degenerates
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Common Links

FIG. 1. (Color online) Common links in the interdependent
geographic worldwide port network and the global airport network
system. In the coupled network system, we identify common links
if neighboring nodes (cities with direct transportation lines) in one
network are also neighbors in the other network. For clarity, in the
figure, 200 nodes are randomly chosen, and only common links
attached to these nodes are plotted as solid (red) lines. Cities are
shown as (blue) dots. Because two types of nodes (ports and airports)
approximately correspond to the same cities, we just use single dots
to denote them in the worldwide map.

into two randomly coupled networks without common links,
which will be solved analytically. Here we find the exact
solution for the case where A and B are fully interdependent
Erdős-Rényi (ER) networks each of average degree k and the
network of common links is also an ER network with the
average degree K . In this case we show that the interdependent
networks system undergoes a first order transition for all
K ! 0.

The paper is organized as follows. In Sec. II we introduce
the model of cascading failures in interdependent networks
with common links. In Sec. III we analyze the cascading
process and the final state. In Sec. IV we derive the theoretical
solutions using multivariable generating functions. In Sec. V
we show the first order transition for both the general case and
the special case where common links form an ER network.

II. THE MODEL

For simplicity and without loss of generality we analyze the
percolation process in a system of two fully interdependent
networks A and B of the same size N with no-feedback

condition [21] in the presence of common links. The no-
feedback means that each A node ak has one and only
one dependency counterpart bk in network B, and bk must
depend only on ak . Initially, a fraction 1 − p of A nodes are
removed randomly. Due to interdependency, a corresponding
fraction of B nodes also fail. We denote by A0 and B0 the
remaining networks of size N0 = pN . Nodes of A0 and B0
are represented by ai and bi , respectively, i = 1, . . . ,N0, and
ai interdepends on bi for all i = 1,2, . . . ,N . The pair (i,j ) is
a common link if ai is linked to aj and bi is also linked to
bj . We introduce a network C0 that includes all N0 nodes but
only links that are common links. This means that the nodes
ci and cj of C0 will be linked if and only if both ai,aj and
bi,bj are linked. Analogously, we define a network C which
is the collection of common links in the original networks A
and B. Thus network C reduces to C0 due to the initial attack.
As shown in Fig. 2, we denote Ã0 and B̃0 to be the networks
that are composed of the same N0 nodes in A0 and B0 but only
those links which are not common links. Therefore, networks
A0 and B0 can be written as matrix summations:

A0 = Ã0 + C0, B0 = B̃0 + C0. (1)

We will investigate the robustness of such a system after
the initial attack. Notice that when C has no links since there
is no common links in this system. This is the case of random
coupling studied by Buldyrev et al. [15], since the probability
to have a common link in random coupling approach to zero for
large N . We will provide a method for analyzing the case when
network C0 has a given topological structure. Let R0(m),m =
1,2, . . . ,M be the component size distribution of C0. That
is to say, if we randomly choose a node in network C0, the
probability that it belongs to a component of size m in network
C0 is R0(m). This distribution is a characterization of both the
degree and the structure of intersimilarity of the network. In the
simulations, this distribution is used to construct the adjacency
matrix of C0 artificially. We also generate the matrices Ã0 and
B̃0 directly and obtain networks A0 and B0 using the matrix
addition.

The initial attack leads to failures of some other nodes in
A0 since those nodes will lose connectivity with the giant
component A1 of A0 (a percolation failure). Consequently,
in B0, all nodes that depend on those nodes that have been
removed in A0 will fail due to interdependency relations (a
dependency failure). We use B1 to denote the remaining nodes

FIG. 2. (Color online) Decomposition of networks according to the common links. Dots in the upper plane are the nodes from network A0

and those in the lower plane are the nodes from network B0. Interdependent nodes are connected by dashed lines. Solid thick (red) lines are
the common links, and other links are shown in solid thin lines. Network C0 is composed of common links. Ã0 and B̃0 are the complementary
networks with respect to C0. ai and aj are linked nodes in network A0; their interdependent counterparts bi and bj are also linked in network
B0. Thus the link is a common link and appears in network C0.
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in B0. Then, similarly, a percolation failure will occur in B1.
This will induce an iterative process of percolation failures and
dependency failures in the system [31]. Finally, if no further
failure occurs, this cascading process will end with a total
collapse or two remaining giant components of the same size.
We are interested here in the relationship between p and the
size of the final mutual giant component.

Notice that during the cascading process, if a node in a
component of C0 survives, the whole component will survive,
and if a node in a component fails, the whole component will
fail. Inspired by this basic fact, as shown in Fig. 3, we divide
networks A0 and B0 respectively according to the component
sizes in network C0. That is to say, in network A0, all those
nodes that belong to components of size m = 1,2, . . . ,M in C0

compose a subnetwork denoted by A
(m)
0 . Here M is the largest

component size of network C0. Network B0 can be divided
into B

(m)
0 analogously. In this way the size of each subnetwork

A
(m)
0 or B

(m)
0 is N

(m)
0 = R0(m)N0, where m = 1,2, . . . ,M .

As depicted in Fig. 3, we also contract A0 and B0
according to the components of network C0. In other words,
in network A0, all m nodes that belong to each component
of size m in C0 are merged into a single new node, and
all links connected to at least one of these m nodes are
also merged on the new node. All of these merged nodes
and links form a contracted network A′

0 with subnetworks

FIG. 3. (Color online) A sketch of the method of dividing and
contracting the system after the initial attack. (a) The remaining
interdependent networks A0 and B0 right after the initial attack.
Thick (red) lines are the common links. Other links are shown
in (black) solid thin lines. Interdependent nodes are connected by
dashed lines. (b) Nodes in the same component of C0 are contracted.
Nodes that are within one circle belong to the same component in
network C0. Because of the first principle we propose, all the nodes
from one component either survive together or die together. Thus the
component can be regarded as a super node (if survived). The links
between nodes from different components are now links between the
two components. (c) The contracted network is further decomposed
into subnetworks according to the component size in C0. For example,
A

′(2)
0 is the collection of super nodes of component size 2 in A0, etc.

A
′(m)
0 , m = 1,2, . . . ,M . Network B0 is contracted similarly.

In this way the size of each subnetwork A
′(m)
0 or B

′(m)
0 is just

the number of components of size m in network C0, that is,
N

′(m)
0 = R0(m)N0

m
,m = 1,2, . . . ,M . And the size of A′

0 or B ′
0

is N ′
0 =

∑M
m=1 N

(m)
0 =

∑M
m=1

R0(m)N0
m

= N0
∑M

m=1
R0(m)

m
. We

denote 〈m〉 = (
∑M

m=1
R0(m)

m
)−1 as the average component size

in C0. Thus, we have N ′
0 = N0

〈m〉 .
As shown in Fig. 3(c), common links do not exist any

more in the contracted system, because each common link
always lies inside a component of network C0. In fact, after the
initial attack, the cascading process in the contracted system is
equivalent to the cascading on the original system. Therefore,
we only need to focus on the cascade process in the contracted
system.

III. THEORETICAL APPROACH

Here we exhibit, step by step, the theoretical analysis for
the cascading process starting from A′

0 and B ′
0. In the first

stage, the size of the remaining functional giant component
A′

1 can be obtained using the method proposed by Leicht
and D’Souza [32]. We regard A′

0 as a system of M coupled
subnetworks A

′(m)
0 , m = 1,2, . . . ,M . If the degree distribution

pmm′

A′
0

from a randomly chosen node in A
′(m)
0 to all nodes in A

′(m′)
0

(called m → m′ degrees) can be exactly evaluated, then the
whole system can be described using multivariable generating
functions. Usually, we analyze the cascading process by three
steps to obtain the recursive system [15].

We use g
(m)
A′

0
(p1,p2, . . . ,pM ) to denote the fraction of nodes

in the giant component of A
′(m)
0 after randomly removing a

fraction 1 − pm′ of nodes in each subnetwork A
′(m′)
0 , m′ =

1,2, . . . ,M . Here we contract the two coupled networks after
the initial attacking. It implies that pm′ = 1 at the beginning of
the cascading process on the contracted two coupled networks.
Thus, the remaining functional part in each subnetwork is
ψ

(m)
1 = g

(m)
A′

0
(1,1, . . . ,1) in the first stage. Note that at each time

step n during the cascading process, the accumulative failures
in networks A

′(m)
0 (or B

′(m)
0 ) can be equivalently regarded as

randomly attacking certain fractions 1 − ψ ′(m)
n (or 1 − φ′(m)

n )
of nodes in networks A

′(m)
0 (or B

′(m)
0 ), and ψ (m)

n (or φ(m)
n ) are

used to denote the resulting giant component sizes in A
′(m)
0

(or B
′(m)
0 ).

The second stage [15] is equivalent to randomly attacking
a fraction 1 − ψ

(m)
1 of nodes in each subnetwork B

′(m)
0 , m =

1,2, . . . ,M . We let φ
′(m)
1 = ψ

(m)
1 . Therefore, the remaining gi-

ant component of B ′
0 is φ

(m)
1 = φ

′(m)
1 g

(m)
B ′

0
(φ′(1)

1 ,φ
′(2)
1 , . . . ,φ

′(M)
1 ).

The third stage is equivalent to randomly re-
moving a fraction 1 − g

(m)
B ′

0
(φ(1)

1 ,φ
(2)
1 , . . . ,φ

(M)
1 ) of nodes

in A
′(m)
0 . We let ψ

′(m)
2 = g

(m)
B ′

0
(φ(1)

1 ,φ
(2)
1 , . . . ,φ

(M)
1 ), m =

1,2, . . . ,M . Thus, the remaining fraction in A′
0 is ψ

(m)
2 =

ψ
′(m)
2 g

(m)
A′

0
(ψ ′(1)

2 ,ψ
′(2)
2 , . . . ,ψ

′(M)
2 ).

Generally, we have ψ ′(m)
n = g

(m)
B ′

0
(φ′(1)

n−1,φ
′(2)
n−1, . . . ,φ

′(M)
n−1 ),

and ψ (m)
n = ψ ′(m)

n g
(m)
A′

0
(ψ ′(1)

n ,ψ ′(2)
n , . . . ,ψ ′(M)

n ); φ′(m)
n = g

(m)
A′

0

(ψ ′(1)
n ,ψ ′(2)

n , . . . ,ψ ′(M)
n ), and φ(m)

n = φ′(m)
n g

(m)
B ′

0
(φ′(1)

n ,φ′(2)
n , . . . ,
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φ′(M)
n ), m = 1,2, . . . ,M . From these we can calculate the giant

component sizes in the whole original networks A and B.
For example, the fraction of nodes in the giant component of
network A is

µAn =
∑M

m=1 ψ (m)
n N

′(m)
0 m

N
= p

M∑

m=1

ψ (m)
n R0(m). (2)

In the final stage, where the process of cascading failures
ceases, we have ψ ′(m)

n = ψ
′(m)
n−1 = φ′(m)

n = φ
′(m)
n−1 for all m. Let

xm = ψ ′(m)
n , and ym = φ′(m)

n . We arrive a system of xm and ym:

xm = g
(m)
A′

0
(y1,y2, . . . ,yM ), ym = g

(m)
B ′

0
(x1,x2, . . . ,xM ),

(3)

where m = 1,2, . . . ,M .

IV. ANALYTICAL SOLUTION

This system can be analytically solved using M-variant
generating functions. Similar to Ref. [32], for a system of M

interconnected subnetworks A
′(m)
0 , we define the generating

function for the degree distributions for each subnetwork as

G
(m)
A′

0
(ξ1,ξ2, . . . ,ξM ) =

∑

k1,k2,...,kM

p
(m)
k1,k2,...,kM

ξ k1
1 ξ k2

2 . . . ξ kM

M ,

(4)

where p
(m)
k1,k2,...,kM

is the probability that a randomly chosen
node in A

′(m)
0 has km′ m → m′ degrees. Moreover, the gener-

ating function for the underlying branching processes for each
subnetwork is

G
(mm′)
A′

0
(ξ1,ξ2, . . . ,ξM )

=
∂

∂ξm′
G

(m)
A0

(ξ1,ξ2, . . . ,ξM )
∂

∂ξm′
G

(m)
A0

(ξ1,ξ2, . . . ,ξM ) |ξ1=ξ2=...=ξM=1

, (5)

where m′ = 1,2, . . . ,M . Then the fraction of nodes in the
giant component after randomly removing a fraction 1 − pm

of nodes in each subnetwork A
′(m)
0 is

g
(m)
A′

0
(p1,p2, . . . ,pM ) = 1 − G

(m)
A′

0
(1 − p1(1 − u1m),1 − p2(1 − u2m), . . . ,1 − pM (1 − uMm)). (6)

Here um′m satisfies

um′m = Gm′m
A′

0
(1 − p1(1 − u1m′ ),1 − p2(1 − u2m′ ), . . . ,1 − pM (1 − uMm′)), (7)

where m,m′ = 1,2, . . . ,M. For network B ′
0, we can define the analogous generating functions and obtain similarly the giant

component size.
For simplicity, we assume that all m → m′ degree distributions in A′

0 and B ′
0 are Poisson distributions, whose average degrees

are k
A′

0
mm′ and k

B ′
0

mm′ , respectively. For example, if both Ã and B̃ are Erdős-Rényi (ER) networks with average degrees a and b,
respectively, and the initial attack on network A is random, then these m → m′ degrees in A0 have Poisson distributions for all
m and m′. Then, according to the result in Ref. [32], we have

Gm
A′

0
= Gmm′

A′
0

= exp

(

−
M∑

m′=1

k
A′

0
mm′(1 − ξm′)

)

, Gm
B ′

0
= Gmm′

B ′
0

= exp

(

−
M∑

m′=1

k
B ′

0
mm′(1 − ξm′)

)

. (8)

Here the average m → m′ degrees in A′
0 and B ′

0 are k
A′

0
mm′ = ampR0(m′) and k

B ′
0

mm′ = bmpR0(m′), respectively. Notice that, in this
case, um1 = um2 = · · · = umM " um, m = 1,2, . . . ,M . Therefore,

g
(m)
A′

0
(p1,p2, . . . ,pM ) = 1 − um(p1,p2, . . . ,pM ), (9)

where um(p1,p2, . . . ,pM ), m = 1,2, . . . ,M is the solution of the following set of equations:

um = Gm
A′

0
(1 − p1(1 − u1),1 − p2(1 − u2), . . . ,1 − pM (1 − uM )) = exp

(

−
M∑

m′=1

k
A′

0
mm′pm′(1 − um′ )

)

, (10)

where m = 1,2, . . . ,M. Similarly, for network B ′
0,

g
(m)
B ′

0
(p1,p2, . . . ,pM ) = 1 − vm(p1,p2, . . . ,pM ), (11)

where vm satisfies

vm = Gm
B ′

0
(1 − p1(1 − v1),1 − p2(1 − v2), . . . ,1 − pM (1 − vM )) = exp

(

−
M∑

m′=1

k
B ′

0
mm′pm′(1 − vm′)

)

(12)
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ψ
n

FIG. 4. (Color online) The evolution during cascading failures of
the giant component size of network A, µAn, for both the theory and
simulations. Here, a = b = 3, K = 0.8, N = 100 000, and Mmax =
50. The (blue) full circles show eight realizations of simulations with
total collapse at the critical threshold p = pc = 0.5528. The (red)
dashed rectangles show the theoretical prediction for pc = 0.551.

where m = 1,2, . . . ,M . Thus, the giant component size µAn at
time step n can be predicted theoretically according to Eq. (2).
Figure 4 shows this cascading process for both the theory
and simulations near criticality when Ã, B̃, and C are all ER
networks, and their average degrees are a = 3, b = 3, and
K = 0.8.

The system of the final stage can be written as

xm = 1 − um(y1,y2, . . . ,yM ), ym = 1 − vm(x1,x2, . . . ,xM ).

(13)

By excluding xm and ym, we finally obtain

um = exp

(

−
M∑

m′=1

k
A′

0
mm′(1 − um′)(1 − vm′ )

)

,

(14)

vm = exp

(

−
M∑

m′=1

k
B ′

0
mm′(1 − um′)(1 − vm′ )

)

.

Therefore,

um = exp

(

−amp

M∑

m′=1

R0(m′)(1 − um′)(1 − vm′ )

)

,

(15)

vm = exp

(

−bmp

M∑

m′=1

R0(m′)(1 − um′)(1 − vm′)

)

,

where m = 1,2, . . . ,M .
By solving this system, we can get µ

(m)
∞ = (1 − um)(1 −

vm), m = 1,2, . . . M . This is the fraction of the mutual giant
component in each subnetwork A

′(m)
0 or B

′(m)
0 . The fraction of

the mutual giant component in the original system of A and B

is µ∞ = p
∑M

m=1 µ
(m)
∞ R0(m).

Notice that in Eq. (15), um = um
1 , and vm = u

mb/a
1 , m =

1,2, . . . ,M . Therefore, the system can be simplified to a single

equation for u1,

u1 = exp

(

−ap

M∑

m′=1

R0(m′)
(
1 − um′

1

)(
1 − u

m′b/a
1

)
)

. (16)

Thus, the fraction of the mutual giant component becomes

µ∞ = p

M∑

m=1

R0(m)
(
1 − um

1

)(
1 − u

mb/a
1

)
= − log u1

a
. (17)

V. RESULTS

One trivial solution of Eq. (16) is u1 = 1. In some cases,
other nontrivial solutions exist in the interval [0,1). The
smallest solution u1min corresponds to the size of the final
mutual giant component − log u1min/a. Consider F2(u1) =
exp(−ap

∑M
m′=1 R0(m′)(1 − um′

1 )(1 − u
m′b/a
1 )) and F1(u1) =

u1. Then the critical point u1c and pc is where a nontrivial so-
lution that satisfies F1(u1c) = F2(u1c) and F ′

1(u1c) = F ′
2(u1c)

emerges. Note that all the analysis is done here on the
contracted network system after the initial random removal,
which means there is no initial attacking on the contracted
system. If M is finite, at the solution u1 = 1, we have
F1(1) = F2(1) = 1, but F ′

1(1) = 1 '= F ′
2(1) = 0. This means

these two curves cannot be tangent to each other at u1 = 1.
Therefore, u1 = 1 cannot be a critical value for a second order
transition, and only first order phase transitions at u1c < 1
occur in systems with a finite M .

Here we further investigate the case where C (network
composed of common links) is an ER network with an average
degree K . After the random initial attack, C0 is also an ER
network, whose average degree becomes Kp. The component

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

µ ∞

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

p

N
O

I

K=0.2
K=0.5
K=0.8
theory

FIG. 5. (Color online) Comparison of the simulation results
(symbols) for µ∞ (top figure) against the theoretical results (curves)
when network C0 is an ER network. Here, we choose a = b = 3,
K = 0.2,0.5,0.8, and N = 100 000. We also show (bottom figure)
the number of iterative failures (NOI) in the simulation for the same
values of K . Usually the peak of NOI values indicates the value of
the critical threshold at the first order phase transition [31]. We can
see the excellent agreement between the theoretical and simulation
results.
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FIG. 6. (Color online) The dependence of the critical value pc

on the average degree K of common links for interdependent ER
networks systems. The average degrees of networks A0 and B0 are
a = b = 3, and that of C0 is K . The network size is N = 300 000,
and the number of realizations in simulations is 100. The curve is the
theoretical results (using Mmax = 50), and the (red) full circles are
the corresponding simulation results.

size distribution of C0 is R0(m) = 1
m! (mKp)m−1e−mKp,m =

1,2, . . .. In this case, M should be in principle infinite.
However, when we substitute this distribution into Eq. (16),
it is appropriate to use a truncation m = 1,2, . . . ,M < ∞ on
the infinite sum, since R0(m) decays exponentially, and the
largest cluster of network C0 cannot be as large as O(N ) when
Kp < 1. This means the transition point pc < 1/K . Therefore,
no matter for K < 1 or K ! 1, we can use Eq. (16) directly
to determine pc, and the transition is always discontinuous.
(Note that in the theory, N → ∞, and K is a finite constant
according to the definition of ER networks.) The theoretical
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=p
c)

K
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FIG. 7. (Color online) The dependence of the size of the jump at
the critical threshold of the first order phase transitions on the average
degree K of network C0. The average degrees of networks A0 and B0

are a = b = 3. The network size is N = 100 000, and the number of
realizations in simulations is 100. The dashed curve is the theoretical
result (M = 50), and the (green) solid squares are the corresponding
simulation results at the critical thresholds. From the shape of the
curve, we can see that the size of the jump at the critical point does
not reach 0 for a very large K , which strongly supports that if the two
mutually depending networks are not identical, the phase transition
is always discontinuous.

results are in excellent agreement with simulations, as shown
in Figs. 5, 6, and 7. Figure 5 shows the phase transitions for
three different K values. Figure 6 exhibits the effect of K
on the transition point pc. Note that when K is much larger
than a and b, pc will be very close to the transition point of a
single ER network pII

c = 1/K , since the system has only very
small differences from two identical networks. Surprisingly,
our results indicate that as long as a,b > 0, which means two
networks are not identical, the equation describing the system
will become Eq. (16), and the transition will move suddenly
from second order when a = b = 0 to first order. Moreover,
Fig. 7 illustrates that when K gets larger, the jump at the
transition point will converge to 0 when K → +∞, since
0 # µ∞(p = pc) # pc < 1/K → 0, but it will never reach 0
at any finite K .

VI. SUMMARY

In this paper we provide an exact solution for interdepen-
dent networks with common links (representing intersimilarity
in the system), which can be found in many real world
network systems. We treat the components composed of
intersimilar links as a new kind of nodes, and these new
nodes form a new mutually interdependent network system
with degree correlation, which comes from the correlation
between component sizes. In order to deal with this kind of
degree correlation, we decompose the new network system into
a series of subnetworks according to their component sizes.
That is, the new node corresponds to the same component size
in each of subnetworks respectively. Then we employ a high
dimensional generating function to describe this system and
obtain the exact percolation equations, which can be solved
numerically. If the two mutually interdependent networks
are fully intersimilar or identical (a = b = 0), we know that
the percolation is exactly the same with that on a single
network and must be a second order phase transition. From
the above analysis, we surprisingly find that when the two
mutually interdependent networks are not identical (a,b > 0),
the transition is totally different from single networks and is
always of first order. Notice that our method can be simplified
to a single equation only for ER networks. Moreover, the cutoff
M cannot be used if a giant component exists in C0. Therefore,
we will try to develop new methods to solve other cases, such
as power-law networks, in future works.

After this paper was submitted, we learned of a re-
lated analytical work on multiplex networks (specific
case of interdependent networks) submitted recently to
arXiv [33].
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