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Abstract

Many real systems such as, roads, shipping routes, and infrastructure systems can be modeled based
on spatially embedded networks. The inter-links between two distant spatial networks, such as those
formed by transcontinental airline flights, play a crucial role in optimizing communication and
transportation over such long distances. Still, little is known about how inter-links affect the structural
resilience of such systems. Here, we develop a framework to study the structural resilience of
interlinked spatially embedded networks based on percolation theory. We find that the inter-links can
be regarded as an external field near the percolation phase transition, analogous to a magnetic field in a
ferromagnetic—paramagnetic spin system. By defining the analogous critical exponents ¢ and v, we
find that their values for various inter-links structures follow Widom’s scaling relations. Furthermore,
we study the optimal robustness of our model and compare it with the analysis of real-world networks.
The framework presented here not only facilitates the understanding of phase transitions with external
fields in complex networks but also provides insight into optimizing real-world infrastructure
networks.

1. Introduction

Robustness is of crucial importance in many complex systems and plays an important role in mitigating damage
[1]. It has been studied widely in both single networks [2—4], interdependent networks [5—10] and multiplex
networks [11, 12]. Percolation theory has demonstrated its great potential as a versatile tool for understanding
system structural resilience based on both dynamical and structural properties [13, 14], and has been applied to
many real systems [15—17]. Recently, a theoretical framework has been developed to study the structural
resilience of communities formed of either Erd6s—Rényi (ER) and scale-free networks that have inter-links
between them using percolation theory [18]. It has been found that the inter-links affect the percolation phase
transition in a manner similar to an external field in a ferromagnetic—paramagnetic spin system. However, many
real systems, such as, transportation networks [19, 20], infrastructure networks [21] and others, are spatially
embedded and the influence of this feature has not been considered. Here we study how the inter-links (e.g. air
flights) between two spatial networks (e.g., countries) affect the overall structural resilience. Furthermore, we
will search for an optimal structure (or most robust point) of our model and consider it in a real transportation

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Figure 1. (a) The topological structure of the global transport network. The yellow links are railway lines, the red nodes are railway
intersections, and the blue lines are global airline routes. (b) Our model. We assume two separate lattice networks, representing two
continents (or countries) with railway networks. We add M;y, inter-links to a fraction r of nodes, representing cities with airports
having flights to the other continent. Interconnected nodes and their respective interlinks are highlighted in gray. Here, we chose

r = 0.1 and M,y = 50.

system. We will do so by developing a framework to study the structural resilience of spatial networks with inter-
links and by analyzing possible optimal structures for our model/s and in real transport systems.

The structure of our paper is as follows: in the next section, we describe and introduce the model. In
section 3, the results are presented and discussed. Finally, in section 4 a short summary and outlook are
provided.

2. Model

Our model is motivated by many real-world networks where nodes and links are spatially embedded within the
same region (module), but only some nodes have connections to other regions (modules). We denote the links in
the same module as intralinks and the links between different modules as interlinks. Figure 1(a) demonstrates the
topological structure of the global transportation network including railway roads and airline routes [22]. We
demonstrate in the figure that the airports are connected via interlinks and can be regarded as interconnected
nodes. We show here that the interlinks behave, regarding breakdown of the network, in a manner analogous to
an external field from physics near magnetic—paramagnetic phase transition [23, 24]. To study this effect, for
simplicity and without loss of generalization, we carried out extensive simulations on a network of two modules
each with the same number of nodes, N; = L x L, where Lis the linear size of the lattice, representing the spatial
networks. Within each module the nodes are only connected with their neighbors in space as defined by a two-
dimensional square lattice. Between different modules, we randomly select a fraction r of nodes to be
interconnected nodes, e.g, airports, and randomly assign M., interlinks among nodes in the two modules. A
network generated from our model is shown in figure 1(b). Our model is realistic and can represent coupled
transport systems, i.e, the nodes in the same lattice module are localized railroad or road networks within the
same region while the interlinks represent interregional airline routes.

To quantify the structural resilience of our model, we carried out extensive numerical simulations of the size
of the giant connected component S(p, r) after a fraction of 1 — pnodes are randomly removed. Note that our
model is distinct from the case of interdependent networks [5], where the failure of nodes in one network leads
to the failure of dependent nodes in other networks. Our model is also different from the interconnected
modules model [25], where interconnected nodes are attacked. In our model, the interconnections between
different communities are additional connectivity links [26] and randomly chosen nodes are attacked [18]. Fora
given set of parameters [p, r; L], we carried out 10 000 Monte Carlo realizations and took the average of these
results to obtain S(p, ).
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Figure 2. (a) The giant component (order parameter), S(p, r), as a function of the fraction of non-removed nodes p for several values of

13 (b) S(p» 1) as a function of r with the exponent 6; (c) % asafunctionof p. — pwithr = 10 *and the exponent 7; (d) same as (c)

but for several r. Here, L = 4096, Miper = 2 X L X L,p. = 0.592 746. The dashed line is the best fit-line for the data, which is found
to haveaslope 1/6 = 0.055 and R-square > 0.999.

3. Results

Similar to our earlier studies [18, 27], we find that the parameter r, governing the fraction of interconnected
nodes, has effects analogous to a magnetic field in a spin system, near criticality. This analogy can be seen
through the facts that: (i) the non-zero fraction of interconnected nodes destroys the original phase transition
point of the single module; (ii) critical exponents (defined below) of values derived from percolation theory can
be used to characterize the effect of external field on S(p, r). Figure 2(a) shows our simulation results for the size
of the giant component S(p, r) with L = 4096, M. = 2 X L X Lfor various r. We note that in the limit of

r = 0 our model recovers the critical threshold of single square lattices, p, &~ 0.592 746 [28]. We find that

S(p, r) > S(p, 0) = 0forr > 0,showing that the interconnected nodes remove the phase transition of the
single lattice.

Next, we investigate the scaling relations and critical exponents, with S(p, r), p and r serving as our analogy
for magnetization (order parameter), temperature, and the external field, respectively [23]. To quantify how the
external field, r, affects the phase transition, we define the critical exponents 8, which relates the order parameter
at the critical point to the magnitude of the field

S(p, ) ~ r'/9, ey
and -, which describes the susceptibility near criticality
oS(p, r
(—(p )) ~lp—pl7, @
or )

where p, is the site percolation threshold for a single two-dimensional square lattice network.

The simulation results for 6 in our model are shown in figure 2(b). We obtain 1/6 = 0.055 from simulations,
which agrees very well with the known exponent value for standard percolation on square lattices 1/6 = 5/91
[13, 14]. The dashed line is the best fit-line for the data with R-square >0.999.

We next investigate the critical exponent, 7, which we claim to be analogous to magnetic susceptibility
exponent with the scaling relation given in equation (2). Figure 2(c) presents our results for 7. We obtain
v = 2.389forp < p.andr = 10 * which agrees again very well with the known value y = 43/18 in

3
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Figure 3. (a) S(p, 0), versus the fraction of non-removed nodes, p, for real-data of the European (EU) and North America (NA) railway

networks; (b) S(p,, ) as a function of ; (c) asg; )

S»(p, 0) as a function of p. We obtain our values of p. based on the peak of S(p, 0), which gives pCEU = 0.7641and chA = 0.7578.The

dashed lines in (b) are the guidelines for the data with slopes 1/6 = 0.054. The network sizes are Ny = 8354, Mgy = 11128;
Nna = 933, Mna = 1273, Mpign = 1864.

asafunctionof p — p forr = 102 Inset in (a) shows the second largest component

percolation [13, 14]. In figure 2(d) we also plot our results for different r values: r = 1074,1073,10 2 to highlight
the changes in the range of the scaling region. We find that as r decreases, the scaling region becomes larger, this
is expected since for smaller r the system approaches closer to criticality (r = 0). Similar effects in terms of the
scaling range are also observed for changing M;,,.., with respect to the critical exponent 1/6 and equation (1), as
seen in figure S1 available online at stacks.iop.org/NJP/20/093003 /mmedia.

We note that for a single 2d square lattice, the scaling exponent 3, defined by the relation S ~ (p — p)”, has
avalue of 5 = 5/36[13, 14]. The critical exponent (3 together with § and y characterize the percolation
universality class for our model. Since the various thermodynamic quantities are related, these critical exponents
are not independent, but rather can be uniquely defined in terms of only two of them [29]. We find that the
scaling hypothesis is also valid for our model and note that our values for these exponents are consistent with the
Widom’sidentity 6 — 1 = /3 [14].

In the following, we test our framework on a real world example involving global transportation networks.
We consider two railway networks, one in Europe (EU) and the other in North America (NA). The two railway
networks have Np; = 8354 and Ny, = 933 nodes (stations), as well as My = 11128 and My, = 1273
intralinks, respectively. As an example of adding long distance flights, we add Mfp;g1, interconnected links among
rfraction of the nodes (airport hubs). Note that, these nodes are not chosen randomly but based on the real
international airports. We used Mg, = 1864, which is the actual number of direct flights between the two
continents. Figure 3 shows our results for the system of the two real networks. We find that, the values of the
critical exponents ¢ and +y for the real networks (figures 3(b) and (¢)) are consistent with the results obtained
from our model. One should note that the percolation threshold p, is different in each module when they are
separated, since the number of nodes and links is not the same in both modules. To obtain the percolation
threshold, p, for each real railway network, we analyzed the second largest component, S, (p, 0). The size of the
second largest cluster is known to be at a maximum at p. [30]. We obtained pCEU = 0.764 and pCNA = 0.758 by
utilizing the peak of S, (p, 0) for the EU and NA networks, respectively (see inset of figure 3(a)). For comparison,
we also show in figures S2 and S3 the results for the cases where r nodes are chosen randomly and the links
(airlines) between the two spatial sub-networks were assigned randomly. We find that it does not influence the
main conclusions: (1) the values of critical exponents are not changed, § ~ 0.05and vy ~ 2.39; (2) there still
exists an optimal amount of interconnected nodes.

To analyze the robustness of our model, we define an effective percolation threshold, p ., by using a small
cut-off value of the giant component S, as shown in figure 4(a). The threshold p.,, is defined as the point where
S(p, r) reaches S, We assume that when S(p, r) is very small as S.,,; or below it is not functional. Interestingly, we
find an optimal rin our model. It means that for a certain r = r,, the system is most robust i.e., p,, is minimal.
Indeed, figure 4(b) shows a specific example with S, = 0.01, where we find the optimal point to be r,,; /= 0.05.
In our framework, this suggests that if 5% of the cities have interconnected flights the network is most robust to
random failures. The origin of this optimization phenomenon is due to the percolation competition between the
individual lattice module and the interconnected ‘network’ composed of r interconnected nodes/inter-links.
When ris small enough, the behavior of the giant component S(p, r) is dominated by the single lattice module
(see figure 4(a)), and the threshold p. is large and close to p, (see figure 4(b), with small r); when r is increasing,
the effect of the giant component of a single lattice module becomes weaker, but the effect from the
interconnected nodes/inter-links becomes stronger resulting the decreasing of p.,;; however, when ris large, the
behavior of the giant component is dominated by the interconnected nodes/inter-links, p.,, is proportional to r
(see figure 4(b), with large r). In particular, our model will become like a random network, when r = 1. Weaalso
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Figure 4. The effective percolation threshold, p ., for our model. (a) Definition of p,, as the intersection between S(p, r) and S,. (b)
Peuras afunction of rwith Sc,,; = 0.01. (¢) pey as a function of rand S

find that, in figure 4(b), there are no significant finite-size effects for our system since the three curves with
L = 1024,2048, 4096 are nearly overlapping. The results on how p.,,; changes with S, and rare shown in
figure 4(c).

Figure 5(a) presents how p.,; changes with S and r for a real network. These results are qualitatively similar
to our model results (figure 4(c)). We also observe that there exists an optimal value of rin the real transportation
network. Figure 5(b) shows three specific cases with S, = 0.01,0.05, 0.1. We find that the optimal point is
around rope /= 0.1. Suggesting that if 10% of cities have intercontinental flights the system is optimally robust
against random failures. For comparison, we also show in the figure the fraction of interconnected nodes in the
real data: rgy = 0.005 5and s = 0.05.

Note that the number of interconnected links, M., is kept constant when we change r in our model, i.e,
(kinter) 1s proportional to 1/r. We also performed the same analysis to identify how the external field affects the
structural resilience, i.e., the critical exponents 8, v and effective percolation threshold of the spatial and ER
networks when (kiyee) is fixed and Miy; changes, according to {kinter) = (Minter) / (rN). The results are
presented and discussed in supplemental materials.

4. Summary

In our earlier study [ 18], we mainly focused on the critical exponents of phase transition in networks with
communities, where these communities were not spatially embedded. However, many real systems are spatially
embedded. Here, we study the structural resilience of spatial networks (two-dimensional square lattice model)
with inter-links and by analyze possible optimal structures for our model/s and in real transport systems. Our
model is more realistic and can represent, e.g., coupled transportation systems. In addition, we find that the
critical exponents ¢ and 7y are constant and do not change with (ki) in our spatial networks. However,
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Figure 5. The effective percolation threshold for a real-world network. (a) p,, as a function of rand S.. (b) peuc as a function of rwith
Scur = 0.01,0.05,0.1.

different from our model, the value of (kiy.) significantly influences the critical exponents in ER networks: only
for large (kincer) are equations (1) and (2) satisfied with the mean-field values § = 2,y = 1 for the modelin [18].

We have developed a framework to study the structural resilience of coupled spatial networks where we
show that the inter-links act analogously to an external field in a magnetic—paramagnetic system. Using
percolation theory we studied the dynamical evolution of the giant component, and found the scaling relations
governing the external field. We defined the critical exponents 6 and vy using S, p and r, which serve as analogs of
the total magnetization, temperature and external field, respectively. The values of the critical exponents are
universal and relate well with the known values previously obtained for standard percolation on a 2d lattice.
Furthermore, we find that our scaling relations obey the Widom’s identity.

We next defined the effective percolation threshold to quantify the robustness of our model. We found that
there exists an optimal amount of interconnected nodes, which is also predicted and observed in real-world
networks. Our approach provides a perspective on the structural resilience of networks with spatial community
structure and gives insight on its response to increasing interlinks in analogy to an external field. Lastly, our
model provides a method for optimizing real world interconnected infrastructure networks which could be
implemented by practitioners in the field.

Acknowledgments

We acknowledge the BIU Center for Research in Applied Cryptography and Cyber Security, Italy-Israel project
OPERA, the Israel-Italian collaborative project NECST, the Israel Science Foundation, the Major Program of
National Natural Science Foundation of China (Grants 71690242, 91546118), ONR, Japan Science Foundation,
BSE-NSF, and DTRA (Grant no. HDTRA-1-10-1-0014) for financial support. This work was partially supported
by the National Natural Science Foundation of China (Grants 61403171, 71403105, 2015M581738 and
1501100B) and Key Research Program of Frontier Sciences, CAS, Grant No. QYZDJ-SSW-SYS019. JF thanks the
fellowship program funded by the Planning and Budgeting Committee of the Council for Higher Education of
Israel.

ORCIDiDs

Jingfang Fan ® https:/orcid.org/0000-0003-1954-4641
Louis M Shekhtman ® https: /orcid.org/0000-0001-5273-8363

References

[1] Gao], Barzel B and Barabasi A-L 2016 Universal resilience patterns in complex networks Nature 530 30712

[2] CohenR, Erez K, ben Avraham D and Havlin S 2000 Resilience of the Internet to random breakdowns Phys. Rev. Lett. 85 46268

[3] AlbertR,Jeong H and Barabasi A-L 2000 Error and attack tolerance of complex networks Nature 406 378

[4] Tanizawa T, Paul G, Cohen R, Havlin S and Stanley H E 2005 Optimization of network robustness to waves of targeted and random
attacks Phys. Rev. E71 047101

[5] Buldyrev SV, Parshani R, Paul G, Stanley H E and Havlin S 2010 Catastrophic cascade of failures in interdependent networks Nature
464 1025-8

[6] LeichtE A and D’Souza RM 2009 Percolation on interacting networksarXiv:0907.0894

6


https://orcid.org/0000-0003-1954-4641
https://orcid.org/0000-0003-1954-4641
https://orcid.org/0000-0003-1954-4641
https://orcid.org/0000-0003-1954-4641
https://orcid.org/0000-0001-5273-8363
https://orcid.org/0000-0001-5273-8363
https://orcid.org/0000-0001-5273-8363
https://orcid.org/0000-0001-5273-8363
https://doi.org/10.1038/nature16948
https://doi.org/10.1038/nature16948
https://doi.org/10.1038/nature16948
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.1038/35019019
https://doi.org/10.1103/PhysRevE.71.047101
https://doi.org/10.1038/nature08932
https://doi.org/10.1038/nature08932
https://doi.org/10.1038/nature08932
http://arxiv.org/abs/0907.0894

10P Publishing

NewJ. Phys. 20 (2018) 093003 JFanetal

[7] HuY, Ksherim B, Cohen R and Havlin S 2011 Percolation in interdependent and interconnected networks: abrupt change from
second- to first-order transitions Phys. Rev. E 84 066116
[8] GaoJ, BuldyrevSV,Havlin S and Stanley H E 2011 Robustness of a network of networks Phys. Rev. Lett. 107 195701
[9] Gao], BuldyrevSV, Stanley H E and Havlin § 2012 Networks formed from interdependent networks Nat. Phys. 8 40-8
[10] Shekhtman LM, ShaiS and Havlin S 2015 Resilience of networks formed of interdependent modular networks New J. Phys. 17 123007
[11] Hackett A, Cellai D, Gémez S, Arenas A and Gleeson ] 2016 Bond percolation on multiplex networks Phys. Rev. X 6 021002
[12] Solé-Ribalta A, Gémez S and Arenas A 2016 Congestion induced by the structure of multiplex networks Phys. Rev. Lett. 116 108701
[13] Stauffer D and Aharony A 2003 Introduction to Percolation Theory (London: Taylor and Francis)
[14] Bunde A and Havlin S 2012 Fractals and Disordered Systems (New York: Springer)
[15] Saberi A A 2015 Recentadvances in percolation theory and its applications Phys. Rep. 578 1-32
[16] LiD etal 2015 Percolation transition in dynamical traffic network with evolving critical bottlenecks Proc. Natl Acad. Sci. 112 669-72
[17] Meng], FanJ, Ashkenazy Y and Havlin S 2017 Percolation framework to describe El Nino conditions Chaos 27 035807
[18] Dong G et al 2018 Resilience of networks with community structure behaves as if under an external field Proc. Natl Acad. Sci. 115
6911-5
[19] Weiss D J et al 2018 A global map of travel time to cities to assess inequalities in accessibility in 2015 Nature 553 333—6
[20] Strano E eral 2017 The scaling structure of the global road network R. Soc. Open Sci. 4 170590
[21] Hines P, Blumsack S, Sanchez E C and Barrows C 2010 The topological and electrical structure of power grids 2010 43rd Hawaii Int.
Conf. on System Sciences (HICSS) (Piscataway, NJ: IEEE) pp 1-10
[22] The global railway and airports data are from Natural Earth, http://naturalearthdata.com/, The airline routes data are from
Opentflights, https://openflights.org/data.html (Accessed: March 2018)
[23] Stanley H E 1971 Phase Transitions and Critical Phenomena (Oxford: Clarendon)
[24] Reynolds P, Stanley H and Klein W 1977 Ghost fields, pair connectedness, and scaling: exact results in one-dimensional percolation
J. Phys. A: Math. Gen. 10 L203
[25] Shai S etal2015 Critical tipping point distinguishing two types of transitions in modular network structures Phys. Rev. E 92 062805
[26] LiD, Qin P, WangH, Liu Cand Jiang Y 2014 Epidemics on interconnected lattices Europhys. Lett. 105 68004
[27] Shekhtman LM et al 2018 Critical field-exponents for secure message-passing in modular networks New J. Phys. 20 053001
[28] Newman M E J and Ziff R M 2000 Efficient Monte Carlo algorithm and high-precision results for percolation Phys. Rev. Lett. 85 4104-7
[29] Domb C 2000 Phase Transitions and Critical Phenomenavol 19 (New York: Academic)
[30] Margolina A, Herrmann H ] and Stauffer D 1982 Size of largest and second largest cluster in random percolation Phys. Lett. A 93 73-5



https://doi.org/10.1103/PhysRevE.84.066116
https://doi.org/10.1103/PhysRevLett.107.195701
https://doi.org/10.1038/nphys2180
https://doi.org/10.1038/nphys2180
https://doi.org/10.1038/nphys2180
https://doi.org/10.1088/1367-2630/17/12/123007
https://doi.org/10.1103/PhysRevX.6.021002
https://doi.org/10.1103/PhysRevLett.116.108701
https://doi.org/10.1016/j.physrep.2015.03.003
https://doi.org/10.1016/j.physrep.2015.03.003
https://doi.org/10.1016/j.physrep.2015.03.003
https://doi.org/10.1073/pnas.1419185112
https://doi.org/10.1073/pnas.1419185112
https://doi.org/10.1073/pnas.1419185112
https://doi.org/10.1063/1.4975766
https://doi.org/10.1073/pnas.1801588115
https://doi.org/10.1073/pnas.1801588115
https://doi.org/10.1073/pnas.1801588115
https://doi.org/10.1073/pnas.1801588115
https://doi.org/10.1038/nature25181
https://doi.org/10.1038/nature25181
https://doi.org/10.1038/nature25181
https://doi.org/10.1098/rsos.170590
http://www.naturalearthdata.com/
https://openflights.org/data.html
https://doi.org/10.1088/0305-4470/10/11/007
https://doi.org/10.1103/PhysRevE.92.062805
https://doi.org/10.1209/0295-5075/105/68004
https://doi.org/10.1088/1367-2630/aabe5f
https://doi.org/10.1103/PhysRevLett.85.4104
https://doi.org/10.1103/PhysRevLett.85.4104
https://doi.org/10.1103/PhysRevLett.85.4104
https://doi.org/10.1016/0375-9601(82)90219-5
https://doi.org/10.1016/0375-9601(82)90219-5
https://doi.org/10.1016/0375-9601(82)90219-5

	1. Introduction
	2. Model
	3. Results
	4. Summary
	Acknowledgments
	References

