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Abstract
Many real systems such as, roads, shipping routes, and infrastructure systems can bemodeled based
on spatially embedded networks. The inter-links between two distant spatial networks, such as those
formed by transcontinental airlineflights, play a crucial role in optimizing communication and
transportation over such long distances. Still, little is known about how inter-links affect the structural
resilience of such systems.Here, we develop a framework to study the structural resilience of
interlinked spatially embedded networks based on percolation theory.We find that the inter-links can
be regarded as an external field near the percolation phase transition, analogous to amagnetic field in a
ferromagnetic–paramagnetic spin system. By defining the analogous critical exponents δ and γ, we
find that their values for various inter-links structures followWidom’s scaling relations. Furthermore,
we study the optimal robustness of ourmodel and compare it with the analysis of real-world networks.
The framework presented here not only facilitates the understanding of phase transitionswith external
fields in complex networks but also provides insight into optimizing real-world infrastructure
networks.

1. Introduction

Robustness is of crucial importance inmany complex systems and plays an important role inmitigating damage
[1]. It has been studiedwidely in both single networks [2–4], interdependent networks [5–10] andmultiplex
networks [11, 12]. Percolation theory has demonstrated its great potential as a versatile tool for understanding
system structural resilience based on both dynamical and structural properties [13, 14], and has been applied to
many real systems [15–17]. Recently, a theoretical framework has been developed to study the structural
resilience of communities formed of either Erdős–Rényi (ER) and scale-free networks that have inter-links
between themusing percolation theory [18]. It has been found that the inter-links affect the percolation phase
transition in amanner similar to an external field in a ferromagnetic–paramagnetic spin system.However,many
real systems, such as, transportation networks [19, 20], infrastructure networks [21] and others, are spatially
embedded and the influence of this feature has not been considered. Herewe study how the inter-links (e.g. air
flights) between two spatial networks (e.g., countries) affect the overall structural resilience. Furthermore, we
will search for an optimal structure (ormost robust point) of ourmodel and consider it in a real transportation

OPEN ACCESS

RECEIVED

3 June 2018

REVISED

5August 2018

ACCEPTED FOR PUBLICATION

24August 2018

PUBLISHED

5 September 2018

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2018TheAuthor(s). Published by IOPPublishing Ltd on behalf ofDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aadceb
https://orcid.org/0000-0003-1954-4641
https://orcid.org/0000-0003-1954-4641
https://orcid.org/0000-0001-5273-8363
https://orcid.org/0000-0001-5273-8363
mailto:j.fang.fan@gmail.com
mailto:jun.meng.phy@gmail.com
https://doi.org/10.1088/1367-2630/aadceb
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aadceb&domain=pdf&date_stamp=2018-09-05
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aadceb&domain=pdf&date_stamp=2018-09-05
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


system.Wewill do so by developing a framework to study the structural resilience of spatial networks with inter-
links and by analyzing possible optimal structures for ourmodel/s and in real transport systems.

The structure of our paper is as follows: in the next section, we describe and introduce themodel. In
section 3, the results are presented and discussed. Finally, in section 4 a short summary and outlook are
provided.

2.Model

Ourmodel ismotivated bymany real-world networkswhere nodes and links are spatially embeddedwithin the
same region (module), but only some nodes have connections to other regions (modules).We denote the links in
the samemodule as intralinks and the links between differentmodules as interlinks. Figure 1(a) demonstrates the
topological structure of the global transportation network including railway roads and airline routes [22].We
demonstrate in the figure that the airports are connected via interlinks and can be regarded as interconnected
nodes.We showhere that the interlinks behave, regarding breakdown of the network, in amanner analogous to
an externalfield fromphysics nearmagnetic–paramagnetic phase transition [23, 24]. To study this effect, for
simplicity andwithout loss of generalization, we carried out extensive simulations on a network of twomodules
eachwith the same number of nodes,N1=L×L, where L is the linear size of the lattice, representing the spatial
networks.Within eachmodule the nodes are only connectedwith their neighbors in space as defined by a two-
dimensional square lattice. Between differentmodules, we randomly select a fraction r of nodes to be
interconnected nodes, e.g, airports, and randomly assignMinter interlinks among nodes in the twomodules. A
network generated fromourmodel is shown infigure 1(b). Ourmodel is realistic and can represent coupled
transport systems, i.e, the nodes in the same latticemodule are localized railroad or road networkswithin the
same regionwhile the interlinks represent interregional airline routes.

To quantify the structural resilience of ourmodel, we carried out extensive numerical simulations of the size
of the giant connected component S(p, r) after a fraction of 1−pnodes are randomly removed.Note that our
model is distinct from the case of interdependent networks [5], where the failure of nodes in one network leads
to the failure of dependent nodes in other networks. Ourmodel is also different from the interconnected
modulesmodel [25], where interconnected nodes are attacked. In ourmodel, the interconnections between
different communities are additional connectivity links [26] and randomly chosen nodes are attacked [18]. For a
given set of parameters [p, r; L], we carried out 10 000Monte Carlo realizations and took the average of these
results to obtain S(p, r).

Figure 1. (a)The topological structure of the global transport network. The yellow links are railway lines, the red nodes are railway
intersections, and the blue lines are global airline routes. (b)Ourmodel.We assume two separate lattice networks, representing two
continents (or countries)with railway networks.We addMinter inter-links to a fraction r of nodes, representing cities with airports
having flights to the other continent. Interconnected nodes and their respective interlinks are highlighted in gray.Here, we chose
r=0.1 andMinter=50.
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3. Results

Similar to our earlier studies [18, 27], we find that the parameter r, governing the fraction of interconnected
nodes, has effects analogous to amagnetic field in a spin system, near criticality. This analogy can be seen
through the facts that: (i) the non-zero fraction of interconnected nodes destroys the original phase transition
point of the singlemodule; (ii) critical exponents (defined below) of values derived frompercolation theory can
be used to characterize the effect of externalfield on S(p, r). Figure 2(a) shows our simulation results for the size
of the giant component S(p, r)with L=4096,Minter=2×L×L for various r.We note that in the limit of
r=0 ourmodel recovers the critical threshold of single square lattices, pc≈0.592 746 [28].We find that

> =( ) ( )S p r S p, , 0 0c c for r>0, showing that the interconnected nodes remove the phase transition of the
single lattice.

Next, we investigate the scaling relations and critical exponents, with S(p, r), p and r serving as our analogy
formagnetization (order parameter), temperature, and the external field, respectively [23]. To quantify how the
externalfield, r, affects the phase transition, we define the critical exponents δ, which relates the order parameter
at the critical point to themagnitude of thefield
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where pc is the site percolation threshold for a single two-dimensional square lattice network.
The simulation results for δ in ourmodel are shown infigure 2(b).We obtain 1/δ=0.055 from simulations,

which agrees verywell with the known exponent value for standard percolation on square lattices 1/δ=5/91
[13, 14]. The dashed line is the best fit-line for the data withR-square>0.999.

We next investigate the critical exponent, γ, whichwe claim to be analogous tomagnetic susceptibility
exponentwith the scaling relation given in equation (2). Figure 2(c)presents our results for γ.We obtain
γ=2.389 for p<pc and r=10−4, which agrees again verywell with the known value γ=43/18 in

Figure 2. (a)The giant component (order parameter), S(p, r), as a function of the fraction of non-removed nodes p for several values of
r; (b) S(pc, r) as a function of rwith the exponent δ; (c)

¶
¶
( )S p r

r

, as a function of -p pc with r=10−4 and the exponent γ; (d) same as (c)
but for several r. Here, L=4096,Minter=2×L×L, pc=0.592 746. The dashed line is the bestfit-line for the data, which is found
to have a slope 1/δ=0.055 andR-square> 0.999.
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percolation [13, 14]. Infigure 2(d)we also plot our results for different r values: r=10−4, 10−3, 10−2 to highlight
the changes in the range of the scaling region.Wefind that as r decreases, the scaling region becomes larger, this
is expected since for smaller r the system approaches closer to criticality (r=0). Similar effects in terms of the
scaling range are also observed for changingMinter with respect to the critical exponent 1/δ and equation (1), as
seen infigure S1 available online at stacks.iop.org/NJP/20/093003/mmedia.

We note that for a single 2d square lattice, the scaling exponentβ, defined by the relation ~ - b( )S p pc , has
a value ofβ=5/36 [13, 14]. The critical exponentβ together with δ and γ characterize the percolation
universality class for ourmodel. Since the various thermodynamic quantities are related, these critical exponents
are not independent, but rather can be uniquely defined in terms of only two of them [29].Wefind that the
scaling hypothesis is also valid for ourmodel and note that our values for these exponents are consistent with the
Widom’s identity δ−1=γ/β[14].

In the following, we test our framework on a real world example involving global transportation networks.
We consider two railway networks, one in Europe (EU) and the other inNorthAmerica (NA). The two railway
networks haveNEU=8354 andNNA=933 nodes (stations), as well asMEU=11128 andMNA=1273
intralinks, respectively. As an example of adding long distanceflights, we addMflight interconnected links among
r fraction of the nodes (airport hubs). Note that, these nodes are not chosen randomly but based on the real
international airports.We usedMflight=1864, which is the actual number of direct flights between the two
continents. Figure 3 shows our results for the systemof the two real networks.Wefind that, the values of the
critical exponents δ and γ for the real networks (figures 3(b) and (c)) are consistent with the results obtained
fromourmodel. One should note that the percolation threshold pc is different in eachmodule when they are
separated, since the number of nodes and links is not the same in bothmodules. To obtain the percolation
threshold, pc for each real railway network, we analyzed the second largest component, S2 (p, 0). The size of the
second largest cluster is known to be at amaximumat pc [30].We obtained =p 0.764c

EU and =p 0.758c
NA by

utilizing the peak of ( )S p, 02 for the EU andNAnetworks, respectively (see inset offigure 3(a)). For comparison,
we also show in figures S2 and S3 the results for the cases where rnodes are chosen randomly and the links
(airlines) between the two spatial sub-networks were assigned randomly.Wefind that it does not influence the
main conclusions: (1) the values of critical exponents are not changed, δ≈0.05 and γ≈2.39; (2) there still
exists an optimal amount of interconnected nodes.

To analyze the robustness of ourmodel, we define an effective percolation threshold, pcut, by using a small
cut-off value of the giant component Scut, as shown infigure 4(a). The threshold pcut is defined as the point where
S(p, r) reaches Scut.We assume that when S(p, r) is very small as Scut or below it is not functional. Interestingly, we
find an optimal r in ourmodel. Itmeans that for a certain r=ropt the system ismost robust i.e., pcut isminimal.
Indeed,figure 4(b) shows a specific example with Scut=0.01, wherewefind the optimal point to be ropt≈0.05.
In our framework, this suggests that if 5%of the cities have interconnected flights the network ismost robust to
random failures. The origin of this optimization phenomenon is due to the percolation competition between the
individual latticemodule and the interconnected ‘network’ composed of r interconnected nodes/inter-links.
When r is small enough, the behavior of the giant component S(p, r) is dominated by the single latticemodule
(see figure 4(a)), and the threshold pcut is large and close to pc (see figure 4(b), with small r); when r is increasing,
the effect of the giant component of a single latticemodule becomes weaker, but the effect from the
interconnected nodes/inter-links becomes stronger resulting the decreasing of pcut; however, when r is large, the
behavior of the giant component is dominated by the interconnected nodes/inter-links, pcut is proportional to r
(see figure 4(b), with large r). In particular, ourmodel will become like a randomnetwork, when r=1.We also

Figure 3. (a) S(p, 0), versus the fraction of non-removed nodes, p, for real-data of the European (EU) andNorth America (NA) railway
networks; (b) S(pc, r) as a function of r; (c)

¶
¶
( )S p r

r

, as a function of -p pc for r=10−2. Inset in (a) shows the second largest component

S2(p, 0) as a function of p.We obtain our values of pc based on the peak of S2(p, 0), which gives =p 0.7641c
EU and =p 0.7578c

NA . The
dashed lines in (b) are the guidelines for the datawith slopes 1/δ=0.054. The network sizes areNEU=8354,MEU=11128;
NNA=933,MNA=1273,Mflight=1864.
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find that, infigure 4(b), there are no significant finite-size effects for our system since the three curves with
L=1024, 2048, 4096 are nearly overlapping. The results on how pcut changes with Scut and r are shown in
figure 4(c).

Figure 5(a) presents how pcut changes with Scut and r for a real network. These results are qualitatively similar
to ourmodel results (figure 4(c)).We also observe that there exists an optimal value of r in the real transportation
network. Figure 5(b) shows three specific cases with Scut=0.01, 0.05, 0.1.Wefind that the optimal point is
around ropt≈0.1. Suggesting that if 10%of cities have intercontinental flights the system is optimally robust
against random failures. For comparison, we also show in the figure the fraction of interconnected nodes in the
real data: rEU=0.005 5 and rNA=0.05.

Note that the number of interconnected links,Minter, is kept constant whenwe change r in ourmodel, i.e,
á ñkinter is proportional to 1/r.We also performed the same analysis to identify how the externalfield affects the
structural resilience, i.e., the critical exponents δ, γ and effective percolation threshold of the spatial and ER
networkswhen á ñkinter isfixed andMinter changes, according to á ñ = á ñ ( )k M rNinter inter . The results are
presented and discussed in supplementalmaterials.

4. Summary

In our earlier study [18], wemainly focused on the critical exponents of phase transition in networkswith
communities, where these communities were not spatially embedded.However,many real systems are spatially
embedded.Here, we study the structural resilience of spatial networks (two-dimensional square latticemodel)
with inter-links and by analyze possible optimal structures for ourmodel/s and in real transport systems. Our
model ismore realistic and can represent, e.g., coupled transportation systems. In addition, wefind that the
critical exponents δ and γ are constant and do not changewith á ñkinter in our spatial networks. However,

Figure 4.The effective percolation threshold, pcut, for ourmodel. (a)Definition of pcut as the intersection between S(p, r) and Scut. (b)
pcut as a function of rwith Scut=0.01. (c) pcut as a function of r and Scut.
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different fromourmodel, the value of á ñkinter significantly influences the critical exponents in ERnetworks: only
for large á ñkinter are equations (1) and (2) satisfiedwith themean-field values δ=2, γ=1 for themodel in [18].

We have developed a framework to study the structural resilience of coupled spatial networkswherewe
show that the inter-links act analogously to an externalfield in amagnetic–paramagnetic system.Using
percolation theorywe studied the dynamical evolution of the giant component, and found the scaling relations
governing the externalfield.We defined the critical exponents δ and γ using S, p and r, which serve as analogs of
the totalmagnetization, temperature and external field, respectively. The values of the critical exponents are
universal and relate well with the known values previously obtained for standard percolation on a 2d lattice.
Furthermore, we find that our scaling relations obey theWidom’s identity.

We next defined the effective percolation threshold to quantify the robustness of ourmodel.We found that
there exists an optimal amount of interconnected nodes, which is also predicted and observed in real-world
networks. Our approach provides a perspective on the structural resilience of networks with spatial community
structure and gives insight on its response to increasing interlinks in analogy to an external field. Lastly, our
model provides amethod for optimizing real world interconnected infrastructure networks which could be
implemented by practitioners in thefield.
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