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Many real-world complex systems include macroscopic sub-
systems which influence one another. This arises, for exam-
ple, in competing or mutually reinforcing neural populations 

in the brain1–3, spreading dynamics of viruses4 or opinions5, and else-
where6,7. It is therefore important to understand how different types of 
inter-system interaction can influence the overall collective behaviour.

In 2010, substantial progress was made when the theory of 
percolation on interdependent networks was introduced8,9. This 
model showed that when nodes in one network depend on nodes 
in another to function, catastrophic cascades of failures and abrupt 
structural transitions arise, as observed in real-world systems10–12. 
However, interdependent percolation is limited to systems where 
functionality is determined exclusively by connectivity, thus pro-
viding only a partial understanding of real-world systems, where 
the network serves as the base on which dynamic processes occur.

Two fundamental and ubiquitous ways in which nodes in one 
system can influence nodes in another one are interdependence, as 
in critical infrastructures13 or financial networks14,15, and competi-
tion, as observed in ecological systems16,17, social networks5, or in 
the human brain1,18. Interdependent and competitive interactions 
may also occur simultaneously, as observed in predator–prey rela-
tionships in ecological systems19, and in binocular rivalry in the 
brain20. Recent work by Nicosia et al.18 showed how the two pro-
cesses of diffusion and synchronization can intertwine on a multi-
plex network, and how the phase space is impacted, including the 
possibility of explosive transitions. Special cases of cooperative21,22, 
antagonistic23–27 and asymmetric interactions28–30 between networks 
have been studied, but without a general framework capable of 
unveiling universal patterns.

Here we introduce a general framework where we define cross-
system dependency links by multiplying the coupling strength of a 
node to its neighbours in one network by a function of the instanta-
neous local order of a node in another, which we take as a proxy for 
its functionality (Fig. 1). If the function is increasing (decreasing),  

then the potential for local order of the two nodes is positively (neg-
atively) correlated, reflecting an interdependent (competitive) inter-
action. Because local order can be meaningfully defined for a wide 
range of statistical mechanical models, this framework can capture 
an unprecedented variety of coupled collective phenomena.

We apply our general approach to a system of two networks of 
Kuramoto oscillators and a system of two reversible (susceptible-
infected-susceptible (SIS)) epidemic processes, with different com-
binations of competitive and interdependent interactions. We find 
that under an interdependent interaction, the systems exhibit col-
lective behaviours familiar from interdependent percolation: abrupt 
phase transitions from order to disorder, and universal critical 
dynamics during collapse. Furthermore, because of the added rich-
ness of the dynamical models, we observe new features such as for-
ward (explosive) transitions from disorder to order and hysteresis. 
Similarly, under a competitive interaction, we find regions of coex-
istence, hysteresis and multistability. When the two types of interac-
tion are asymmetrically implemented, we observe novel collective 
phases and macroscopic chaotic behaviours. Because the couplings 
are expressed via local order functions, we are able to perform a 
mean-field approximation of the exact equations, which are solved 
numerically and verified with excellent agreement against extensive 
simulations on large synthetic networks.

Model
We begin by considering isolated dynamical systems composed of  
N nodes which evolve according to

∑λ̇ = +
=

x g x A h x x( ) ( , ) (1)i i i
j

N

ij i j
1

where xi is the dynamic state of node i, gi and h are scalar-valued 
functions of self-dynamics and pairwise interactions, respectively, 
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λ is a coupling strength and the network of interactions is repre-
sented by the adjacency matrix entries Aij, which are equal to one 
if nodes are connected and zero otherwise31. This family of models 
can exhibit thermodynamic phase transitions between disordered 
and ordered phases, characterized by the global order parameter 

= ∑ ∕ ∑Z t A z t A( ) : ( )i j ij i i j ij, , , where

O∑=
=

z t
k

A t( ) : 1 ( ) (2)i
i j

N

ij j
1

are local observables, measuring the instantaneous order around each 
dynamical unit, with = ∑k Ai j ij as the degree of connectivity of node 
i, and with O O≡ x( )i i  as a system-dependent ordering function.

We now consider the following question: how can a dependency 
relationship be defined between dynamical systems such as these? 
To this aim, we seek a process-based definition of a node’s local 
state that quantifies its functionality, which can then be used to pro-
mote or suppress the onset of functionality in another system. As 
explained in Supplementary Section 5, the local order is an effec-
tive and mathematically convenient proxy for quantifying the local 
functionality of nodes. We thus propose to model a dependency 
link between dynamical units via multiplication of the coupling 
strength λ of a node in one network by a function of the local order 
parameter zi(t) in another:

Dλ λ→ → t( ) (3)iB B
A B

where D →
i
A B is a function of z t( )i

A . Because the labelling of the nodes 
is arbitrary, we assume that node i in layer A affects node i in layer B. 
Alternatively, xi

A and xi
B can be taken to represent different features 

of the same node in a multiplex, where different layers reflect differ-
ent dynamics and hence different node states. As demonstrated in 
Fig. 1, a suitable choice of Di can represent an interdependent or a 
competitive interaction. Here we consider

D
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and leave more exotic interactions for future study.

In this manner, we can describe the evolution of the ith dynamic 
unit in layer σ of an M-layered ensemble interacting networked 
dynamical systems with the equations:

D∏ ∑λ̇ = +σ σ
σ

μ

μ σ σ σ σ

=

→

=

x g x A h x x( ) ( , ) (5)i i i

M

i
j

N

ij i j
1 1

where the gi and h functions are assumed the be the same in each net-
work—that is, the same process is taking place on each layer—and 
the two processes have equal timescales. We relax these assumptions 
in Supplementary Section 4, where we address the case of interac-
tions between entirely different processes. Without loss of generality, 
the node ordering is chosen so that the nodes i in each layer interact 
with each other. The product in equation (5) reflects the assumption 
that if the interaction term D μ σ→

i  goes to zero in any of the layers, it  
suppresses the coupling of node i in every layer, reflecting mutual 
interdependence (or competition). We can thus consider each D μ σ→

i   
term as the (μσ)-element of a set of supra-adjacency matrices  
D t( )i  describing the interactions between layers at node i, which for 
the case of two interacting networks A and B would be represented as:

D
D

D
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where we have assumed that there are no self-interactions.
Because each Di is determined entirely by the local order param-

eters (equation (2)), it is straightforward to analyse the inter-system 
dynamics of the model equation (5) within a heterogeneous mean-
field theory (see Methods and Supplementary Information for fur-
ther details), where each σzi  is replaced by the corresponding global 
quantity Zσ. For many physical systems described by equation (1), 
this approach enables the solution of the collective properties of 
equation (5) in terms of a low-dimensional system of equations. 
For two networks, we can derive a general system of coupled self-
consistent equations for (ZA, ZB) in the stationary regime, which in 
the continuous limit reads

G D∫ λ= ∣ ∣σ
σ

σ
σ σ σ

μ σ
+∞

→Z
kP k

k
Z k k

( )
( , ) d (6)
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Fig. 1 | Dynamic interdependence and competition. (Left) The process-based state of node i in network A is characterized by the local order zi
A measured 

over its nearest neighbours (see below and Supplementary Section 5 for more general interactions). This quantity modifies the coupling strength of node i 
in network B, according to a function D →

i
A B of zi

A, which can reflect cooperative, antagonistic or other interactions. Note that there are typically interactions 
in the opposite direction as well (that is, D →

i
B A), which have been omitted from this drawing for clarity. (Right) Summary of the dynamical interaction 

strategies considered here: interdependence (blue), competition (green) and no interactions (red).
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where D μ σ→  equals the mean-field term (|Zμ| for interdependent 
and 1−​|Zμ| for competitive interactions), Gσ is a dynamics-depen-
dent function based on the mean-field solution of the single layer 
case, and Pσ is the degree distribution of the layer σ =​ A, B. The net-
works are not required to have the same topology, but we assume 
both of them to belong to the uncorrelated configuration model. 
Note also that equation (6) holds when all the dynamical units in 
each layer are mutually (one-to-one) coupled. In Methods, we pro-
vide the generalized equation for the case where only fractions fA, 
fB <​ 1 of randomly chosen nodes are dynamically coupled.

We now apply our framework to Kuramoto oscillators and revers-
ible (SIS) epidemics in three configurations: mutually interdepen-
dent; mutually competitive; and one way interdependent and one 
way competitive (asymmetric). All three cases have real-world moti-
vations, and are studied with full (f =​ 1) and partial (f <​ 1) couplings.

Interdependent and competitive synchronization. Synchronization 
is a common phenomenon observed in diverse systems32. Its sponta-
neous onset in populations of phase oscillators, in particular, has been 
the subject of intense research after the seminal papers by Winfree33, 
and especially by Kuramoto, whose model we investigate hereafter34,35.

In the Kuramoto model, oscillators’ phases θi∈​[0, 2π​) evolve 
according to a system of equations of the form given in equation (1), 
where gi(θi) =​ ωi maps each node to its natural frequency and h(θi, 
θj) =​ sin(θj −​ θi). Following equation (5), we model the cross-system 
dynamics of two dependent networks of Kuramoto oscillators as

Dθ ω λ̇ = +σ σ
σ

μ σ σ σ θ→ − σ
k zIm( e ) (7)i i i i i

i i

where the functions Di are defined according to equation (4), 
and the local order parameters ≡ Ψz r ei i

i i as in equation (2) with 
O = θei

i i. In the form of equation (7), the oscillators interact only 
through zi and Di, which produces feedback between the syn-
chronization states (see Supplementary Section 5.1.2) of nodes in 
different layers. Being otherwise decoupled, equation (7) can be 
solved using the heterogeneous mean-field theory, yielding the 
self-consistent equation (6) for the global coherences Rσ =​ |Zσ| with 
G ∫ ω ω ω≡ − ∕σ σ−

y k u ky( , ) ( ) 1 d
ky

kyKura , where the uσ are the distri-
bution of the oscillators’ natural frequencies, assumed to be uni-
modal and symmetric around zero. In Methods and Supplementary 
Sections 2  and 5.1.2 we extend the results to arbitrary frequency 
distributions and partial couplings. For simplicity, we analyse the 
symmetric case, with uA≡​uB uniform and Erdös–Rényi (ER) nets 
with equal average degree.

We first consider the interdependent case, where the dynamics 
follows equation (7), where D =μ σ μ→ ri i  for a fraction f of the nodes. 
Since the local synchronizabilities of both networks are positively 
correlated, we observe collective patterns resembling the mutual 
giant component in interdependent percolation8. In particular, for 
any f ≠​ 0, we find that the global synchronization levels undergo dis-
continuous desynchronization transitions as the coupling strengths 
are decreased. However, unlike percolation models, we can now 
investigate the forward (that is, disorder-to-order) transition, where 
a giant synchronized cluster might spontaneously emerge. When 
f =​ 1, we find that the incoherent phase is absorbing, and becomes 
unstable only because of the existence of a nearby saddle point 
(Fig. 2a and Supplementary Fig. 2) and large enough fluctuations 
due to the quenched disorder of the natural frequencies (Fig. 2b  
and Supplementary Fig. 1). For f <​ 1, the desynchronized phase 
becomes unstable even in the thermodynamic limit, and the sys-
tem spontaneously jumps to the synchronized branch (Fig. 2c and 
Supplementary Fig. 4) after crossing the metastable region (Fig. 2d 
and Supplementary Fig. 3).

These abrupt forward transitions and hysteretic patterns are 
absent in the classical Kuramoto model, and have been reported ear-
lier in the context of explosive synchronization36,37, or in modelling 
amplification mechanisms in cavity-coupled Josephson junctions38.

Turning to the case of competitive synchronization, which is 
relevant for competing neural populations1, in particular in mul-
tistable perception39 or visual processing of optical illusions40, we 
can follow the same steps as above but with D = −r1i i. This system 
shows pronounced metastability without phase coexistence for f =​ 1 
(Supplementary Figs. 5 and 6) and intriguing coupled collective 
phenomena when f <​ 1. In addition to the simple states of global 
incoherence or domination by one network on the other, we find 
chimera-like regimes (purple and green regions in Fig. 3a) in which 
the decoupled nodes synchronize whereas the competitively coupled 
nodes remain desynchronized, leading to a partial synchronization 
level bounded by f, with a two-stage transition between the phases 
(Fig. 3b). Following alternative paths in the mean-field phase dia-
gram, we observe other non-trivial transitions (Supplementary Fig. 
9). We further find quadristability for a small region of the phase 
space (Fig. 3a and Supplementary Figs. 7 and 8), whose existence 
depends on the frequency distribution adopted (see Supplementary 
Section 2.2 and Supplementary Fig. 10d).

Finally, we consider the asymmetric case, in which the synchro-
nization of nodes in network A suppresses the onset of synchroni-
zation of nodes in network B, while synchronization in network B 
enhances the synchronizability in network A (see Supplementary 
Section 2.2). Similar behaviour is observed in binocular rivalry, in 
which neurons associated with the dominant eye synchronize more 
strongly when the weak eye is stimulated, but the weak eye synchro-
nizes less strongly when the dominant eye is stimulated20. We find 
spiral sink solutions when f <​ 1 (Fig. 4a–c), and macroscopic chaos 
when f =​ 1 (Fig. 4d, e). The chaotic behaviour is due to oscillations 
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Fig. 2 | Interdependent synchronization. a, Mean-field phase diagram for 
fully (f =​ 1) interdependent ER (〈​k〉​ =​ 12) networks of Kuramoto oscillators. 
There are two regions: red where no network is synchronized, and cyan-
on-red where both synchronized and desynchronized solutions are stable. 
b, Difference in final synchronization depending on initial conditions for 
systems of size N =​ 213. The yellow area represents the metastable region 
found in simulations and the orange line its mean-field prediction, having 
accounted for fluctuations of the coherences of nominal size Δ​R ≈​ 0.2.  
c, Predicted phase diagram for partially (f =​ 1/2) interdependent ER 
networks. In addition to the phases shown in a, we have network 1 (2) 
only marked in blue (yellow), which coexists with the both-synchronized 
solution where the cyan region overlaps. Additionally, we have a cyan-only 
region where the zero-solution is now unstable. d, The metastable region 
and its mean-field prediction for the partially interdependent case.
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in the order parameter causing oscillations in the effective coupling 
term, which is known to lead to chaos41.

Besides the rich and realistic patterns uncovered, a unique 
advantage of our model is that, because the coupling between the 
networks is on the level of order and not of phase, we are now able 
to model the cooperative onset of synchronization at different fre-
quency bands. This is significant in light of the complex interactions 

between neural populations of different frequencies42,43, which can-
not be captured by existing multilayer models44,45, and the potential 
for understanding learning tasks46, modelling fundamentally multi-
frequency phenomena such as hearing47 and physiological synchro-
nization among organ systems in the body48.

With the future aim of addressing these phenomena using the idea 
of order affecting order, we have applied our framework to networks 
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of Winfree oscillators (see Methods and Supplementary Section 2). 
In this way, going beyond the weak-coupling limit of Kuramoto-like 
models, we can naturally incorporate pulse-like interactions and 
phase-response curves, commonly obtained from experiments.

Interacting epidemics. Epidemic models are another impor-
tant family of dynamical processes where the model in equation 
(5) can be successfully applied. Multiple diseases or strains can 
spread cooperatively21,22,49, with the onset of one disease increasing 
the susceptibility to contract others, or antagonistically23,50, as in 
cross-immunization processes, where the contraction of an infec-
tion increases the resilience of its host in contracting another. At 
the same time, if awareness (and an immunizing response) of the 
infection spreads among the same agents via their social network, 
the disease layer can enhance the immunizing awareness layer even 

as the latter suppress the former28,29,51. Several attempts have been 
made so far to cast these diverse settings and ad-hoc models into a 
unified framework for interacting epidemics50,52. Our work comple-
ments these efforts and provides a simpler and more general frame-
work for analysing interacting epidemics in the broader context of 
dynamical systems.

Here, we consider the SIS model53, whose dynamics in an 
isolated network is represented by γ β̇ = − + − ∑x x x A x(1 )i i i j ij j, 
where γ, β∈​[0,1] are the recovery and infection rates of the pro-
cess, respectively, and xi is the probability that node i is infected. 
With O ≡x x( )  for the ordering function, a set of local fields Θ​i can  
be defined according to equation (2), leading to the epidemics  
analogue of equation (5):

Dβ Θ̇ = − + −σ σ
σ

μ σ σ σ σ→x x k x(1 ) (8)i i i i i i
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a, Interdependent phase diagram. The mean-field solution of equation (8) based on equation (12) yields four phases: yellow (only network 2 infected), 
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Hysteresis. Integrating the full system along the main diagonal depicted in a, we obtain the predicted hysteretic pattern. Blue and red curves are almost 
indistinguishable because the system is symmetric with respect to the networks’ settings. c, Competitive phase diagram. Phases follow the same colour 
legend as in a. Note the absence of multistable regimes. d, Coexistence. As in b, but following the anti-diagonal phase path depicted in c. We observe the 
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diagram for asymmetric SIS dynamics. f, In the asymmetric case, the disease level can be decreased substantially just by increasing the communicability in 
the other layer. System size for numerical results is N =​ 103.
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for two SIS processes, where the couplings Di activate local feed-
back between the nodes’ epidemic state (see Supplementary Section 
5.1.1), and hence of the networks’ infectious levels. Note that in 
writing equation (8) we assumed for simplicity γσ ≡​ 1 so that the two 
processes have equal timescales.

Applying the heterogeneous mean-field theory shown in 
Methods to equation (8), we obtain a self-consistent solution 
for (ΘA, ΘB) in equation (6), where now G = ∕ +σ y k ky ky( , ) (1 )SIS .  
Looking at the results of these interactions on ER networks, we 
recover many relevant phenomena recently reported in the litera-
ture, and also find novel ones. In the interdependent case, we find 
hybrid phase transitions for f =​ 1 (Fig. 5a) and hysteretic behaviour 
with abrupt forward and backward transitions (Fig. 5c,d) whenever 
f <​ 1. In practical terms, the existence of abrupt forward transitions 
exposes the system to the risk of explosive pandemics22,52, which 
might happen without warning. On the other hand, interventions 
which lower β during endemic infections can trigger cascades 
of eradication which can abruptly jump the system to its healthy 
phase. However, the hysteretic property means that it is much 
harder (that is, requires reducing communicability to a lower value) 
to eradicate an outbreak than it is to keep it from breaking out. 
Finally, a consequence of the bistability observed when f =​ 1 (red-
on-cyan phase in Fig. 5a) is that, in sharp contrast to isolated SIS 
epidemics, the healthy state has a finite basin of stability (Fig. 5b and 
Supplementary Fig. 13), meaning that small outbreaks are expected 
to die out even for comparatively high transmission rates.

In the competitive case we find behaviours which differ from 
the ones observed in synchronization. Instead of metastability and 
abrupt transitions, we find that partially competing diseases con-
tinuously transition from mutual exclusion behaviours to broad 
coexistence regimes (Fig. 5e, f and Supplementary Fig. 14) where 
neither disease excludes the other and both reach epidemic pro-
portions50, presenting a challenge to optimize cross-immunization 
strategies. For asymmetric couplings, the mean-field predictions 
(Supplementary Fig. 11c, d) resemble the ones uncovered in the 
synchronization case (Fig. 4a, b). We observe a broad region of 
coexistence and phase-paths-dependent cooperative behaviours, a 
direction so far overlooked in the epidemic community, that reflect 
intriguing three-stage awakening transitions (see Supplementary 
Fig. 15) where the immunizing layer is first ‘awakened’ by the out-
break from the diseased state, and eventually transitions spontane-
ously to the healthy phase. In particular, when f =​ 1 we observe that 
more than the 75% of the network can be healed just by increasing  
the transmission of awareness (Fig. 5e, f). In contrast with the 
synchronization case, the system does not display any macro-
scopic chaotic behaviour but exhibits spiral sink endemic solu-
tions (Supplementary Fig. 16d, h), a novel feature of interacting SIS 
spreading processes.

Discussion
We argue here (and more extensively in Supplementary Section 5) 
that our model represents a natural generalization of the concept of 
dependency from percolation to dynamical processes. Equation (3) 
can be interpreted as a dynamic dependency link since it has the same 
impact on dynamic-based order that the percolation dependency 
link has on the connectivity-based order. In particular, when imple-
menting interdependent interactions as in equation (4), we find that 
as long as node i is locally disordered in network B (that is, ∣ ∣ ≈z 0i

B ),  
then so is its ‘replica’ in network A, being effectively cut off from its 
own neighbours. This reflects a dynamical counterpart of interde-
pendent percolation8, where the local order of a node is defined as 
whether any of its neighbours leads to the mutual giant connected 
component. Like interdependent percolation, dynamic interdepen-
dence increases the vulnerability of the system13, as reflected in higher 
critical thresholds and abrupt transitions. In the backward direction, 
we find that all the above systems exhibit universal dynamics near 
criticality, characterized by slow transient processes immediately 
after the transition (Fig. 6). Although these ‘plateau’ stages have been 
interpreted as critical branching processes in interdependent perco-
lation54,55, here we observe them emerging whenever the system is 
close to a saddle-node bifurcation, whose fingerprint clearly appears 
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Fig. 6 | Universal scaling in interdependent dynamics. a,b, Below the 
critical thresholds at which the abrupt backward (order-to-disorder) 
transitions take place, the collective behaviours of interdependent 
systems are characterized by slow transient dynamics with universal 
features. Here the system’s state spends the bulk of its relaxation 
time, with the order parameter maintaining an approximately constant 
value (the ‘plateau’ stage), before collapsing exponentially to the 
disordered phase. This process is comparable in (either partially or fully) 
interdependent synchronization of Kuramoto oscillators (a) and  
epidemics in SIS processes (b). c, From the theory of dynamical 
systems59, we expect that the time spent by the trajectory of the state to 
pass the bottleneck created by the remnant of a saddle-node bifurcation 
scales with an exponent of −​1/2 below criticality, which we observe in 
both systems above the backward transitions. The x axis is λc −​ λ (βc −​ β) 
for the synchronization (epidemic) data. The same exponent is observed 
near the hybrid transitions reported in interdependent percolation8 and 
in k-core pruning processes55. Results are obtained for ER networks 
with 〈​k〉​ =​ 50, N =​ 2 ×​ 103 for SIS epidemics and N =​ 215 for Kuramoto 
oscillators, averaged over 20 runs. Error bars show standard deviations 
around means, calculated from all points in each logarithmically  
spaced interval.
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with the square-root scaling τ λ λ~ − − ∕( )c
1 2 (Fig. 6c). When f =​ 1, the 

saddle-node is the only bifurcation, resulting in a hybrid phase tran-
sition, as in interdependent percolation56. For f <​ 1, the saddle-node 
describes the large-amplitude branch of a subcritical bifurcation57 
yielding hysteresis. Therefore, moving in the forward direction, we 
have been able to explore the effects that dependencies have on the 
collective dynamics of the system—an elusive task for percolation 
models with antagonistic or asymmetric interactions—showing the 
universal emergence of explosive phase transitions.

This generalization of dependent interactions from percolation 
to dynamical systems allows for the development of new models for 
neural, social and technological systems that better capture the sub-
tle ways in which different systems can affect one another. Although 
we focused only on the fundamental interactions of interdepen-
dence and competition, more exotic couplings can be described by 
this framework by suitably replacing the simple linear functions of 
|zi| in equation (4), and more than two layers can be considered. 
We find that the phenomenology recovers key features of interde-
pendent percolation as well as uncovers new phenomena, not previ-
ously linked to inter-system interactions.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41567-018-0343-1.
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Methods
Heterogeneous mean-field theory. We sketch the main steps performed in 
deriving the system of equation (6), here generalized to the case of finite fractions 
of dependency links. For simplicity, let us consider a system of M =​ 2 interacting 
networks having factorized pairwise dynamics h(xi, xj) =​ h1(xi)h2(xj) (refs 59,60), in 
which case equation (5) reads

D ∑λ̇ = +σ σ σ
σ

μ σ σ σ σ σ σ→

=

x g x h x A h x( ) ( ) ( ) (9)i i i i i
i

N

ij j1
1

2

The latter suggests the natural choice O ≡σ
σh2  for the ordering functions 

defined in equation (2). Searching for steady states, one can in principle solve 
equation (9) with self-consistent arguments by defining the auxiliary functions 
R ≡ − ∕g hi i 1 for each node in each layer. Steady solutions hence have the form 
R Dλ=σ σ

σ
σ μ σ σ→x k z( )i i i i i , which (assuming that each Ri is invertible) lead to self-

consistent equations for each σzi :

Q D∑ λ=σ
σ

σ σ
σ

σ μ σ σ

=

→z
k

A k z1 ( ) (10)i
i j

N

ij i i i i
1

where Q R≡ ∘ −hi i2
1 (see Supplementary equation (11) and details therein). 

To reduce the computational complexity of the problem and allow analytical 
tractability, we consider an ensemble of uncorrelated random graphs with 
prescribed degree sequences61–64. Adopting the so-called annealed network 
approximation65–67, we thus replace the entries of the adjacency matrices with their 
graph-ensemble averages, so that

G
⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⟨ ⟩ ≡ ≃

⟨ ⟩
σ σ σ

σ σ

σ

. . .
A A p

k k
N k

(11)ij ij ij
i jann netw approx

where σpij
 are the probabilities that vertices i and j with degree σki  and σkj , 

respectively, are connected in layer σ =​ A, B. In this approximation, each local order 
parameter (equation (2)) becomes independent of the node indices—that is zi ≡​ Z 
for every i =​ 1,…​,N. Rearranging the sums in equation (10) and performing the 
thermodynamic limit (N →​ ∞​), one eventually finds (see Supplementary equations 
(14)–(16)) the integral self-consistent equations

G∫ ∫ Γ λ=σ
σ

σ

μ σ
σ σ σ

+∞

−∞

+∞
→Z

kP k
k

x k Z x k x k
( )

( , ) ( , ) d d (12)
kmin

where the function Gσ  depends on Q σ  according to the mean-field solution of the 
single layer case, while Γμ→σ is the (generally degree-dependent) distribution of 
the dynamical dependencies D μ σ→  between the networks. In the present work we 
discussed the special case of randomly distributed dependencies with constant 
probabilities fA, fB∈​[0, 1], whose distributions among nodes can be thus succinctly 
written as

DΓ δ δ= − + − −μ σ
σ

μ σ
σ

→ →x f x f x( ) ( ) (1 ) ( 1) (13)

where δ(⋅​) is the Dirac delta distribution. We stress that, if fA =​ fB ≡​ 1 (that is fully 
dependent networks), we actually recover the self-consistent equation (6).

Reduced dynamics for two interacting networks of phase oscillators. Consider 
the system of equations

D B Wθ ω λ̇ = + +σ σ
σ

μ σ σ σ σ θ→ − σ
k ( Im{ e }) (14)i i i i i i

i i

where B W,i i depend on local properties of oscillators (for example, local order 
≡ Ψz r ei i

i i, connectivity, shear and so on), but not on the phases themselves. The 
system of equations (14) describes a broad family of coupled phase oscillator 
models, including neuronal models, Stuart–Landau oscillators, the Winfree model, 
and indeed the Kuramoto dynamics given by equation (7).

Adopting the Ott–Antonsen reduction68, we derive in Supplementary Section 
2 the equations for the low-dimensional dynamics of the model (equation (14)), 
which asymptotically attract the collective evolution of the system in the annealed 
approximation (equation (11)). For explanatory purposes, we considered there the 
case of interacting Winfree oscillators (see Supplementary equations (20)–(24))69, 
whose low-dimensional dynamics reduce to

G
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∫ ∫
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( , , ) ( ) ( , , , ) d

(15)
kmin

in the limit of weak couplings (see Supplementary Information for details). The 
system in equation (15) models the asymptotic evolution of the global order 
parameters =σ σ

ΨσZ R ei  for the Kuramoto model (equation (7)).
Stationary solutions of the system in equation (15) yield all the collective 

states of the model in equation (7) with time-independent coherences and 
frequencies Ω Ψ≡ ̇

σ σ . Because states with Rσ >​ 0 can be stationary only in 
reference frames co-rotating with their mean-fields70, we perform the transforms 

ω ω Ω↦ +σ σ σu u( ) ( ) which leave invariant equation (7). Imposing the stationarity 
conditions ∂​tZσ =​ 0 in the system of equation (15), we find



















































ω
λ

ω
λ

ω λ

ω
λ

λ
ω

=

− + − ∣ ∣ ≤

− − −
σ

Ψ σ σ σ σ
σ σ

σ σ

σ σ

− σA

i
kR x kR x

kR x

i
kR x

kR x
e

1

1 1 , otherwise

i

2

2

describing, respectively, phase-locked and drifting oscillators’ contributions 
(see Supplementary Equation (29)) to the order parameters of each subsystem71. 
Substituting the latter solutions into equation (15) and equating real and imaginary 
parts of the expressions obtained, we find a system of four self-consistent equations 
for (RA, Ω​A, RB, Ω​B) (Supplementary Equations (30–33)). In particular, assuming 
symmetric and unimodal natural frequency distributions uσ, two of the previous 
four equations simplify to Ω​σ =​ 〈​ω〉​σ, where 

R
∫ω ω ω ω⟨ ⟩ ≡σ σu ( ) d .

Notice that, even for symmetric and unimodal uσ, there will always be 
travelling wave states (that is, stationary solutions of equation (15) with Ω​σ ≠​ 0) in 
one of the two layers. Being an artefact of the choice of the rotating reference frame 
and having hence no physical relevance, we can further assume that both uσ have 
vanishing mean, so that Ω​σ =​ 0 for σ =​ A, B. These assumptions drastically simplify 
the analysis of the model (equation (7)), reducing the system of self-consistent 
equations (15) to

G∫ ∫ Γ λ=σ
σ

σ

μ σ
σ σ σ

+∞

−∞

+∞
→R

kP k
k

x k R x k x k
( )

( , ) ( , ) d d
k

Kura

min

where Gσ
Kura has the form introduced above, following equation (7).

The null solution RA =​ RB =​ 0, describing mutual incoherence, is always a trivial 
fixed point of the above system of equations, which can be stable or unstable 
depending on the choice of parameters in the phase diagram. Non-vanishing 
solutions can be instead found numerically for particular network topologies and 
frequency distributions, once the strategy for the dynamical interactions between 
the layers has been chosen. In Supplementary Section 2.2, we have analysed the 
cases of equal ER networks, first with uniform and then with Cauchy–Lorentz 
frequency distributions.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.
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