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Abstract
How to prevent the spread of human diseases is a great challenge for the scientific community and so
far there aremany studies inwhich immunization strategies have been developed. However, these
kind of strategies usually do not consider thatmedical institutesmay have limited vaccine resources
available. In thismanuscript, we explore the susceptible-infected-recoveredmodel with local dynamic
vaccination, and considering limited vaccines. In thismodel, susceptibles in contact with an infected
individual, are vaccinated -with probabilityω- and then get infected -with probabilityβ. However,
when the fraction of immunized individuals reaches a thresholdVL, the vaccination stops, after which
only the infection is possible. In the steady state, besides the critical pointsβc andωc that separate a
non-epidemic from an epidemic phase, wefind for a range ofVL another transition points,β

*> βc
andω*< ωc, which correspond to a novel discontinuous phase transition. This critical value separates
a phasewhere the amount of vaccines is sufficient, from a phasewhere the disease is strong enough to
exhaust all the vaccination units. For a disease withfixedβ, the vaccination probabilityω can be
controlled in order to drastically reduce the number of infected individuals, using efficiently the
available vaccines. Furthermore, the temporal evolution of the system close toβ* orω*, shows that
after a peak of infection the system enters into a quasi-stationary state, with only a few infected cases.
But if there are nomore vaccines, these few infected individuals could originate a second outbreak,
represented by a second peak of infection. This state of apparent calm, could be dangerous since itmay
lead tomisleading conclusions and to an abandon of the strategies to control the disease.

1. Introduction

Human interactions have a structure that can bewell described in the formof a complex network [1–4]. In the
last few years, new technologies allowed us to record large amount of data of contact patterns [5–8]. This data has
become accessible to researches that use data-driven networkmodeling approaches to analyze and understand
spreading in social systems, for example, how epidemic and even rumors spread in real populations.

Scientists have focused [9–13], onmodeling and analyzing disease spreading since it can lead to catastrophic
health consequences aswell as large economic losses. Severalmathematical approaches have been developed and
used to study different epidemicmodels, improving the understanding of disease spreading on complex
networks [14, 15] (and references therein).

Since one of the goals of health authorities is tominimize health catastrophes and economic impact of health
policies,many studies have focused on establishing immunization andmitigation strategies for enhancing the
functionality of a society and reduce the economic cost [16, 17]. For example, vaccination programs [18] are very
efficient in providing immunity to individuals and as a consequence, the final number of infected people
decreases considerably. However, these strategies are usually very expensive and unrealistic, because vaccines
against new strains are usually not available during the initial propagation stage. As a consequence, non-
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pharmaceutical interventions are needed to protect the society. One of themost effective and studied strategy to
slow an epidemic is quarantine. However, it has the disadvantage that full isolation has a negative impact on the
economy of the region and it is difficult to implement it in a large population. Thus, it is important tofind a
balance between these two strategies. Another policy, such as social distancing strategies, have beenmodeled and
implemented in order to reduce the average contact time between individuals [19, 20]. This kind of strategies,
usually include closing schools, cough etiquette, travel restrictions, intermittent connections, etc.
Unfortunately, inmost cases, these strategies do not prevent a pandemic, but only delays its spread.

One of themost remarkable cases of a disease spreadingwas the pandemic occurred by theH1N1 strain in
2009, which caused about 15.000 deaths. Initially, the disease propagated over the network of close contacts, and
then through the airline network, transporting infected individuals to different cities, thusfinally spreading the
disease all over theworld.One of themost usedmodels tomimic these kind of epidemics is the susceptible-
infected-recovered (SIR)model [21–24]. In thismodel an individual can be in only one of three possible states:
susceptible (S), infected (I) or recovered (R). An individual in state S in contact with an I, changes to an I state
with probabilityβ. After a period of time tr the infected individual changes to anR state and stops transmitting
the disease. Thismodel presents, in the steady state, two regimes governed by an effective probability of
contagionT T 1 1t

t
, r

rb= = - -b ( ) , such that forT�Tc the system is in an epidemic-free phase and for
T> Tc it is in an epidemic phase, where the disease reaches a high fraction of the population. The SIRmodel has
been also successfully applied tomodel the case of SARS and other diseases of influenza type [25, 26]. For
decades, researchers have studied different scenarios of the SIR epidemicmodel [27–30] and developmitigation
strategies to prevent the epidemic [18, 31–34], such as isolation, quarantine and random and targeted
vaccination. Particularly, Valdez et al [35] studied, using the SIRmodel, the effect of an intermittent social
distancing strategy on the propagation of epidemics in adaptive complex networks. Based on local information,
a susceptible individual interrupts the contact with an infected individual with a certain probability and restores
it after a fixed period of time. In a similar way [36], extended themodel andwas able to successfully predict the
date of extinction of the Ebolaʼs outbreak in Liberia in 2014. Ebola outbreaks have been studied by the scientific
community due to the high impact of this epidemic on certain regions of southwest Africa,mainly inGuinea,
Sierra Leona and Liberia. Fortunately, there exists available data for the scientific community enabling to study
more accurately the behavior and propagation of this disease [36, 37].

During this Ebola outbreak, a vaccine trial has been performed and used inGuinea in 2015 in the capital city.
It has been found that the strategy of the vaccine trial applied tomitigate the transmission of Ebola-virus-disease
(EVD) inGuinea in 2015, was very efficient [38]. The vaccine trial tested the efficacy of an experimental vaccine
against Ebola. The trial used a ‘ring’ vaccination strategy based on the approach thatwas used to eradicate the
smallpox [39]. This involves the identification of a newly diagnosed Ebola case, and then the vaccination of all his
contacts and the contacts of those contacts, which are usually their familymembers, neighbors, co-workers and
friends. In practical terms, the close contacts of a newly identified Ebola case have been vaccinated, if they
consent to it. This is the basis of themotivation of the present studywherewe immunize the neighbors of an
infected individual in networkmodels.Moreover, the amount of vaccines, sometime due to economic
restrictions,may not be enough to protect all the susceptible neighbors of the infected individuals during the
whole spreading process. Thus, we propose and study heremodels with the scenario of limited vaccines
availability, i.e. not enough for all the vulnerable population. Generally speaking, the available resources to
control, avoid, ormaybe enhance a spreading process are limited, andmany studies have focused in how to
optimally use these scarce resources against a disease [40], or even to deal with illicit drug usage [41].

We are interested in testing how this limited amount of accessible vaccines affects the spread of the epidemic.
Motivated by this, we present here amodel of localized vaccination thatmimics the vaccine trial inGuinea, in
which only neighbors of infected individuals could be immunized using limited vaccination units. This could
help to understand how the propagation of a disease is affected by the localized and limited vaccination.
Therefore, the questionwewish to answer is how to use, in an efficiently way, this limited amount of vaccines
with the aimof reducing the propagation of an epidemic.

In ourmodel, the state of an individual can be susceptible (S), vaccinated (V ), infected (I) or recovered (R). A
susceptible individual in contact with an infected onewill become vaccinatedwith probabilityω, until the total
number of vaccinesVL is used. If he does not become vaccinated, thenwith probabilityβ hewill become
infected. Then, after a certain period of time tr, the infected individuals will recover.

Using an edge-based compartmentalmodel (EBCM) and the generating functions theory [24, 42], we obtain
and study the evolution equations for the fraction of S, I,R andV individuals and find a perfect agreement
between theoretical and simulation results. Then, we study the steady state of the epidemic process, for which
there are nomore infected individuals.Wefind two different phases, an epidemic and a non-epidemic phase,
separated by a critical thresholdβc, which depend onω. Belowβc the disease can not spread and the fraction of
recovered individualsR approaches to zero. On the other hand ifβ is fixed, there is a critical vaccination
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probabilityωc, abovewhich the epidemic can not develop, since the disease is successfully blocked by
immunized individuals.

Aboveβc, depending on the parameters, we find either a continuous phase transition or a discontinuous
phase transition for a second epidemic break at higher critical thresholdβ*, which depends onVL. Similarly for
fixedβ, belowωcwefind a discontinuous transition forω= ω* in the fraction of recovered individuals. In
[43–45] the authors also found a discontinuous transition but in the density of infected individuals, and using an
endemic epidemicmodel (susceptible-infected-susceptible), where the recovery of sick individuals depends on
the availability of healing resources.

We alsofind, that depending on the parameters there are values of *b b b= >† and *w w w= <† that
characterize a crossover between two regimes, one forwhich the available amount of vaccines is sufficient to
immunize the population during thewhole process and the other inwhich it is not.

2. Themodel

At the initial state, all the individuals in the network are susceptible except one, the patient zero, which is in the
infected compartment or state. Before spreading the disease, all the susceptible neighbors of this individual
receive a vaccine with probabilityω. Notice that this vaccination is local and dynamic, and is done through the
links that connect infected to susceptible nodes. Then the patient zerowill try to infect all its neighbors that have
not been vaccinated, and this eventwill occur with probability (1−ω)β. In the next time step of the process, all
the susceptible neighbors of the infected nodeswill be vaccinatedwith probabilityω again orwill be infectedwith
probability (1−ω)β. The infected individuals willmove to the recovered stateR after trunits of time since they
become infected, and the vaccinated or immunized individuals will remain in stateV.While the disease spreads
through the population, the number of vaccinated people increases, until the health institutes run out of
vaccines.We defineVL as the fraction of available vaccines over the entire population.When this limit is reached,
nomore individuals can be immunized and hence those in the infected state will infect their neighbors with
probabilityβ. In the steady state the epidemic is over when the fraction of infected individuals is zero, thus the
individuals can only be in state S,R orV. For demonstration of themodel see figure 1.

Thismodel is clearly different from randomvaccination, in which a fraction of individuals selected at
randomare immunized. In the random strategy, some vaccinated individualsmay never be in contact with an
infected individual and thuswould not be vaccinated, in the present strategy.On the other hand the dynamical
vaccination intends to create a barrier of immunized individuals that could stop the spreading of the disease,
thusmaking amore effective usage of the available vaccines.

3. Theoretical formalism

The EBCM [8, 24], was applied tomodel the SIR andwas adapted byValdez et al for discrete time, and afixed
recovery time tr [27].We can solve theoretically the evolution and the steady state of thismodel with unlimited
vaccines [46] and also adapt it here for the limited case. The EBCM is based on a generating function formalism,
implemented in branching and percolation processes on complex networks. This approach allows to study not
only the steady state but also the temporal evolution of the process. First, we derive the general equations for the
case of unlimited vaccines and thenwe explain the effect of the depletion of the vaccines. Denoting the fraction
of susceptible, infected, vaccinated and recovered individuals at time t by S(t), I(t),V(t) andR(t), respectively, the
EBCMapproach lies on describing the evolution of the probability that a randomly chosen node is susceptible.
In order to compute S(t), a link is randomly chosen and then a direction is given, inwhich the node in the target
of the arrow is called the root node, and the base is its neighbor, called base node.We denote by θt the probability
that at time t, the base node does not transmit the disease to the root node and neither induces the immunization
of the root node. In this approach, the state of the base node can not be affected by the root node, so that we can
treat the state of the roots neighbors as independent [23, 24, 27]. A node remains as susceptible if none of its k
neighbors cause its infection or immunization, then the fraction of individuals in the susceptible state at time t is
given by

S t P k G , 1
k

t
k

t0å q q= =( ) ( ) ( ) ( )

where G x P k xk k
k k

0
min

max= å =( ) ( ) is the generating function of the degree distribution, P(k), of the network [47].
To compute θtwe have to take into account all the possible states of the base node. Suppose an edge that connects
the root node and the base node. Then this edge has not been used yet to infect or vaccinate the root node if the
base node is
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• in state S, with probabilityΦS.

• infected but did not spread the disease to the root node, nor induced the immunization of the root node,
which is expressed byΦI.

• in stateR but during the time it was infected, it did not propagate the disease to the root node, nor induced
vaccination to the root node. This probability is denoted byΦR.

• vaccinated or immunized, with probabilityΦV.

We summarize these probabilities in table 1.
Infigure 2(a)wedemonstrate the configurations of the root and the base node.
Thus, accounting all these cases (see figure 2(b)), θt is given by

t t t t . 2t S I R Vq = F + F + F + F( ) ( ) ( ) ( ) ( )

Similar to S(t) in equation (1), we canwrite an expression forΦS(t) (see figure 2(b)). The neighbor of the root
node, with degree k, is in state S if the disease does not spread through its k−1 links and if none of its k−1

Figure 1. Schematic demonstration of the rules of themodel with limited vaccines for a small network of sizeN= 10, a recovery time
tr= 1, and a vaccination limit ofVL= 3/10. The color of the nodes represents the different states: susceptible (S) ( ), infected (I)
( ), vaccinated (V ) ( ), recovered (R) ( ). At t= 1 the patient zero induces the vaccination on its neighbors with probabilityω
or infects themwith probability (1−w)β. After a time tr the infected individualsmove to the recovered stateR, in this case tr= 1. At
t= 4 all the vaccineswere used and hence the infected individual only tries to infect susceptible neighbors with probabilityβ. At t= 6
the steady state is reached and nodes can only be in state S,R orV.

Table 1.Probabilities for the state of the base node, which is a neighbor
of the root node, in the edge-based compartmentalmodel.

Quantity Possible states of the base node

ΦS Susceptible
ΦI Infected and did not infect nor did it induce the vacci-

nation of the root node
ΦR Recovered and did not infect nor did it induce the vac-

cination of the root node
ΦV Vaccinated
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neighbors, omitting the root node, do not induce its vaccination. Recall that the edge coming from the root node
is not considered. Hence the probability that the base node is susceptible at time t is t

k 1q - and thus

t G , 3S t1 qF =( ) ( ) ( )
where G x kP k k xk k

k k
1

1
min

max= å á ñ=
-( ) ( ) is the generating function of the excess degree distribution of the

network and ká ñ is the average degree [48]. The evolution equations that describe the process for unlimited
vaccination, i.e.VL= 1, are (see appendix A for detailed derivation)

t
t G G
t t C t C t t

t C t

1
1
1 1 1 .

1 . 4

t I

S t t

I I S S r

V S

1

1 1 1

q w w b
q q
w w b

D =- + - F
DF + = -
DF + =- + - F - DF + - W DF -
DF + =- DF

b b

w

+

+

[ ( ) ] ( )
( ) ( ) ( )
( ) [ ( ) ] ( ) ( ) ( ) ( )
( ) ( ) ( )

In thefirst equation, θt decreases if the base node is infected at time t, and induces the vaccination of the root
nodewith probabilityω, or if it spreads the disease to the root, with probability (1−ω)β. Note thatΦI takes into
account that the base node and the root node had no prior interaction. The second equation represents the
evolution of the probability that the base node is in state S, which is thefinite difference ofΦS (see equation (3)).
The third equation is a bitmore complicated. The root node has, with probabilityΦI(t), an infected neighbor at
time t that did not induce its immunization or caused its infection. This probability changes if the infected base
node causes the immunization of the root node or infects it, which is reflected in the first term. In the second
termwehave the susceptible individuals that become infected at time t andwill be in state I in the next time step.
Unlike [27], where the authors used the EBCM to solve the classical SIRmodel, this term does not account all the
variation ofΦS(t), since a fraction of the susceptible individuals go to stateV. The fraction of the nodes in state S
that go to state I is weightedwith the factor C 1 1w b w w b= - + -b ( ) [ ( ) ], which is the probability that the
disease spreads through a link. The last term in the 3rd equation takes into account the susceptible individuals
that got infected at tr time units earlier, and did not change the state of the root node during this time. The
probability that they do not spread the disease or induce the vaccination to the root node during this period of
time is 1−Ω, where

1 1 1 , 5t tr rw bW = - - -( ) ( ) ( )
and 1 1t tr rw b- -( ) ( ) is the probability that during the period tr an infected base node did not infect nor
induced the vaccination to the root node. Finally, the last equation takes into account the immunized neighbors
of the root node. The variation ofΦV(t) increases with time and is proportional to the negative change ofΦS. In
this case the factor C 1w w w b= + -w [ ( ) ], is the probability that the link between the root node and the base
node is used to immunize.We explain these additional probabilities in table 2.

Figure 2.Diagram showing the relations between the variables used in the compartmentalmodel. The aim is to calculate the
probability that the root node, denoted by a questionmark, is susceptible. (a)The neighbor of the root node, called base node, does not
spread the disease to the root, nor induce the vaccination of the root nodewith probability θ. Shown are all the possible states of the
base node. (b)Anode is susceptible if the disease does not spread through its k links, and if none of its k partners induce its vaccination.
We consider that the root node can not change the state of the base node, thus the latter node is susceptible if it does not get infected
through its k−1 links, and if none of its k−1 neighbors other than the root, cause its immunization.
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After computing θt using equation (4), we can compute the evolution of the fraction of susceptible, infected
and vaccinated individuals at time t by

S t G G
V t C S t
I t C S t S t t

1 ,
1 ,
1 . 6

t t

r

0 1 0q qD + = -
D + =- D
D + = -D + D -

w

b

+( ) ( ) ( )
( ) ( )
( ) ( ( ) ( )) ( )

Notice than using thesemagnitudes we can compute the fraction of recovered individuals,
R t S t I t V t1= - - -( ) ( ) ( ) ( ). The derivation of these equations is similar to equation (4). In thefirst
equation, the change in the fraction of susceptible individuals is thefinite difference of S (equation (1)). Next, in
the second equation the variation of the vaccinated individuals is proportional to the change in the susceptible
individuals. This is sinceΔS�0, and the factorCω takes into account the transition from state S toV. In the
third equation, the change in the fraction of infected individuals is also proportional to the variation of the
susceptible individuals, but here the factorCβ is related to the transition from state S to I. Hence, C S t- Db ( ) is
the fraction of new infected individuals at time t. On the other hand, C S t tr- D -b ( ) is the fraction of
individuals that got infected tr temporal units earlier. Thus, this fraction represents the individuals thatmove to
stateR at time t, and hence contribute negatively to the fraction of infected individuals.

The set of equations (4) and (6) describes the temporal evolution of the process with unlimited vaccines
(VL= 1). Nowwe assume that we have a limited amount of vaccination units, lower than the number of
individuals in the system. Thuswe impose a limitVL as themaximal fraction of vaccinated individuals.

The evolution of the system is the same as the unlimited case untilV(t) reaches the vaccination limit,VL. At
this point there is no available vaccines and thus the vaccination probability becomes zero, allowing the disease
to spreadwithout barriers. Hence the equations should be iterated normally untilV(t)= VL, and then setting
ω= 0 for the rest of the process. Nevertheless, since in equation (6),V(t) changes by finite increments, it is
unlikely thatV(t)matches withVL exactly. Thus it is not clearwhen iterating the equations, the precisemoment
at which the immunization process has to be stopped.We explain in appendix B the procedure that has been
performed to solve this problem and to reproduce exactly the results from the computational simulations.

4. Results

Weperform stochastic simulations of the localized and limited vaccination SIRmodel over single networkswith
N= 106 nodes, whose degree distribution is Erdős Rényi (ER)with an average degree k 10á ñ = . The networks
are built using theMolloy–Reed algorithm [49].

4.1. Temporal evolution
Todemonstrate the validity of the theoretical formalism, infigure 3we show simulations and theory of the
temporal evolution of the process for an infection probabilityβ= 0.168, a vaccination probabilityω= 0.45, a
vaccination limitVL= 0.5, and a recovery time tr= 3. The dashed lines are the theoretical results from the
EBCMdescribed in the previous section, while the solid lines represent different realizations of the stochastic
simulations.We can see the excellent agreement between the theoretical equations (6) and the simulation
results.

It can be seen fromfigure 3 that initially, as the fraction of infected and vaccinated individuals increase with
time, the fraction of susceptible individuals decreases. Each infected node reaches the stateR after 3 units of time
and consequently the fraction of recovered individuals increases with time. In the classical SIRmodel, the
fraction of infected individuals reaches amaximumand then decreases, but in our case of limited vaccines, after
a specific time the behavior of the curves changes. At this time the system runs out of vaccine units and thus no
more individuals can be immunized against the disease. At this point the fraction of susceptible nodes shows a
plateau, since as seen infigure 3(b), the epidemic almost vanished and there are only few infected individuals that
can infect the susceptible people. This plateau, which is also observed for the recovered individuals (figure 3(c)),
seems to indicate that the systembegins to stabilize, since themagnitudes change slowlywith time.However,
when suddenly the vaccines are exhausted, the fraction of infected individuals starts to increase again, reaching a

Table 2.Probabilities that take into account the different interactions between the root node and base node.

Probability Definition

θ The base node did not infect nor did it induce the vaccination of the root node
Cβ A susceptible node adopts the state I if its state change
Cω A susceptible node adopts the stateV if its state change
Ω A link is used to infect or vaccinate during tr units
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second peak (figure 3(b)) that could be even higher than the first one. This increase obviously cause a further
decrease and increase of the susceptible and recovered individuals respectively. Finally the disease starts to fade
away as the fraction of infected individuals decreases, then the system reaches the steady state and all the
magnitudes stabilize.

Fromnowon, in the rest of themanuscript, our results will be based only from the theoretical equations,
sincewe find excellent agreement (figure 3)with the stochastic simulations.

Next wewill show the temporal behavior of the process for different values of the infection probability, β. In
the standard SIRmodel, without vaccination, there is a critical valueβc belowwhich there is no epidemic. This
value satisfies the equalityTc= 1/κ [50], whereT 1 1 trb= - -( ) is the transmissibility, the effective
probability of contagion, and k k2k = á ñ á ñ is the branching factor of the degree distribution of the network. ká ñ
and k2á ñare thefirst and secondmoments of the degree distribution respectively. From this relation, inwhich
T Tc cbº ( ), the critical infection probability can be obtained as 1 2 1cb k k= - - -( ) ( ) [21]. In the present
model of limited dynamical vaccination, the relation betweenTc andκ holds but in this case the transmissibility
depends also on the vaccination probabilityω (see appendixD for the expression ofT). Closed expressions ofβc
for tr> 1 are quite complicated, however for tr= 1 the critical infection probability is simply

1 2 1 1cb k w k= - - - -( ) (( )( )).We see that this probability depends onω but not on the vaccination
limitVL. Besidesβc, in ourmodel there are also specific values ofβ associatedwith dramatic changes in the
behavior of themagnitudes at the steady state. Unlikeβc, these values depend on the number of immunization
units. Nextwewill showhow themagnitudes evolvewith timewhenβ is one of these specific values.

Figure 4 exhibits the temporal evolution of allmagnitudes forω= 0.45,VL= 0.4, tr= 1 and for several
values ofβ. For this particular set of parametersβc= 0.1818, nevertheless in thisfigure wewill focus on another
important value greater thanβc, whichwe callβ

*. Infigure 4(a)β= β*= 0.25809, andwe observe that in this
case the fraction of infected individuals shows only one peak, and also the othermagnitudes show a standard
behavior. However if the infection probability is just a little higher,β= 0.2581, suddenly two peaks appear in
the fraction of infected nodes, as seen in the inset offigure 4(b). Similar tofigure 3, when the fraction of
vaccinated individuals reaches the vaccination limit, in this caseVL= 0.4, the fraction of susceptible and
recovered nodes enter in a quasi-stationary state, inwhich they barely change. At this stage there is a negligible
number of infected individuals, however since the vaccination stops, there are enough infected-susceptible pairs
to start a second outbreak. This causes the second peak and a further decrease in the number of susceptible

Figure 3.Temporal evolution of the SIRmodel with local vaccination for an ERnetworkwith k 10á ñ = , forω= 0.45,VL= 0.5,
tr= 3 andβ= 0.168. The solid lines represent different stochastic simulations, and the dashed lines are the theoretical results
obtained from the EBCM, equation (6). The black dotted–dashed lines indicate the time at which the vaccines are depleted, denoted by
td.We can see the very good agreement between the simulations and the theory.
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individuals, as well as a further increase in the fraction of recovered nodes. Thus, atβ* the steady state
experiences an abrupt transitionwithβ.Wewill see later infigures 5 and 7 how the nature of the abrupt
transitions depends highly on the limited vaccines units,VL.

Infigures 4(c) and (d), for larger values ofβwe observe that the two peaks start to get closer, until eventually
they start to fuse together forming a single peak as infigure 4(a), butmuch higher. On the other hand, for largerβ
values the curves become smoother since there is only a single outbreak.

4.2. Steady state
Tounderstand how the results are affected by the infection probabilityβ, infigure 5we show the fraction of
vaccinated, recovered and susceptible individuals in the steady state as a function ofβ for afixed vaccination
probabilityω= 0.45, tr= 1 and for different values of limited vaccinesVL, for an ERnetworkwith k 10á ñ = .
The green solid lines represent the case of unlimited vaccines, .i.e.,VL= 1. Infigure 5(a)we see that for
increasingβ, the fraction of vaccinated individuals increases, sincemore infected individualsmeansmore
susceptible neighbors to immunize. Nevertheless, we observe that this curve reaches amaximumand then
decreases for larger values ofβ. This can be understood as follows.When the probability of infection becomes
high, themajority of neighbors of an infected node get infected instead of being immunized, and thus there is a
decrease in the fraction of vaccinated individuals [46]. It is important to point out that the existence of this
maximum is highly influenced by the vaccination probabilityω and the topology of the network. In appendix E
(figure E2)we show the fraction of vaccinated and recovered individuals at the steady state for networks with a
heterogeneous power law degree distribution, and for different values ofω.

Next we observewhat happens if we impose a limit on the fraction of available vaccines. ForVL= 0.5,
represented by the red squares, we see infigure 5(a) a plateau between two values ofβ. This happens since V can
not surpass the vaccination limit. The lower of these values isβ*, whichwe introduce infigure 3, andwe call the
otherβ†, which is greater thanβ* (see figure 5(a)). Between these two values is the range ofβ for whichV reaches
its limit value,VL. Nowwe askwhat is the effect of the vaccination limit on the fraction of recovered individuals.
Infigure 5(b)we observe that betweenβ* andβ†, denoted by the vertical dashed lines, the curves of recovered
fraction show significantly increased values compared to the case of unlimited vaccines. In this region at some
value,β*, the vaccine units are exhausted, and then the disease spreads without barriers, affecting a great number
of individuals that could not be immunized.

Figure 4.Temporal evolution of themodel for a ER networkwith k 10á ñ = , forω= 0.45,VL= 0.4 and tr= 1. The curves represent
susceptible nodes ( ), infected ( ), recovered ( ), and vaccinated ( ). (a)β= 0.258 09, (b)β= 0.258 1, (c)β= 0.2668
and (d)β= 0.4. The insets show amagnified image of the temporal fraction of infected individuals.
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For example, forVL= 0.45, represented infigure 5 by black triangles, we observe a similar behavior. In in
this caseβ†= 1, but an interesting phenomena takes place atβ*where a discontinuous jumpoccurs due to the
shortage of vaccination units. This abrupt transition, infigures 5(b) and (c), can be understood fromfigures 4(a)
and (b). Belowβ* there is a single outbreak, while above it a second outbreak causes the abrupt jumps observed
infigure 5. It is expected therefore that forVL= 0.4, an even smaller supply of immunization units, the
condition of the population becomesworse, as seen infigure 5. The curvewith blue circles shows that there is no
β†, and thus for anyβ> β* the fraction of infected is significantly higher, compared to the case of unlimited
vaccines. The dashed lines that denote these points indicate the emergence of a second peak of infection, as can
be seen infigures 4(b) and (c).

Infigure 5(c)we show the fraction of susceptible individuals, which decrease withβ and also show a
discontinuous jump atβ*, associatedwithVL.

Infigure 5(d)we compute the time it takes the process to reach the steady state, as seen infigure 4. Processes
near the transition point usually have longer duration times compared to those far from this point, as found for
example in the process of cascading failures [51, 52]. Taking this into consideration, we can see that forVL= 1,
represented in this figure by a green dotted line, there is only one peak at k1 1cb w= á ñ -( ( )) [46], which is
associatedwith a continuous phase transition. This peak is seen for allVL, since the critical point does not
depend onVL. However, forVL= 0.4,VL= 0.45 andVL= 0.5, represented respectively by a blue solid line, a
dashed–dotted black line, and a red dashed line, we observe another peak at longer times, located atβ*, which
depends onVL. Consequently, if we return tofigure 4, wherewe show the temporal evolution forVL= 0.4, we
see indeed that forβ*= 0.2581 (figure 4(b)) the process takesmuch longer time to reach the steady state
compared toβ= 0.25809 (figure 4(a)).

Thus, we can infer that, similar toβc, the probability of infectionβ
* denotes a transition point, that separates

a region inwhich the immunization strategy stops the spreading of the disease, and another inwhich the
vaccination units are insufficient to stop it. On the other hand, we do not observe a peak atβ†, indicating that this
is not a transition point. Instead, this point denotes a crossover between the regime of insufficient vaccines and a
regime inwhich the immunization units can not be used completely, since the probability of infection is too
high.Moreover we recall that the existence ofβ† is related to the topology of the network, see appendix E (figure

Figure 5. Fraction of (a) vaccinated, (b) recovered and (c) susceptible individuals at the steady state as a function of the infection
probabilityβ. The degree distribution is ERwith k 10,á ñ = kmin= 0, kmax= 40 and the recovery time is tr= 1. The vaccination
probability isω= 0.45 and the vaccination limits are:VL= 1 ( ),VL= 0.5 ( ),VL= 0.45 ( ),VL= 0.4 ( ). The vertical
dashed lines indicate the values ofβ* andβ† forVL= 0.4 andVL= 0.5. In (c), we show in the inset the full curve of susceptible nodes.
In (d)we compute theoretically the time it takes the process to reach the steady state. Since the peaks are very close, in the inset we
show the curves near criticality for a better visualization. In thisfigureVL= 1. ( ), 0.5 ( ), 0.45 ( ), 0.4 ( ).
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E2). To see also how the curves offigure 5 behave for a different recovery time tr, see figure E1 in appendix E
wherewe show the steady state for tr= 3 and forVL= 0.4, the vaccination limit used infigure 3.

Next wefix the infection probabilityβ and analyze how themagnitudes at the steady state changewith the
vaccination probabilityω. Infigure 6we show the fraction of recovered and vaccinated individuals as a function
ofω for different vaccination limits. First we focus on the casesVL= 0.4 infigures 6(a) and (c), andVL= 0.7 in
figures 6(b) and (d). Similar tofigure 5 the fraction of vaccinated individuals increases withω and reaches a
maximum, after which it starts decreasing. This occurs becausemany of the paths that would be used by the
disease to spread, are blocked by immunized individuals. Thus, since there are few people infected there are
fewer contacts around them to vaccinate. Furthermore, there is a critical vaccination probabilityω= ωc for
which the disease stops to propagate, since all the paths are completely blocked due to vaccination. For tr= 1we
can show that k1 1cw b= - á ñ( ) [46].We see that for these values ofVL the amount of vaccines is sufficient.
Nextwe examine smaller values ofVL, for which the system runs out of vaccines at some point.

In allfigures we observe that asω increases from zero, the number of vaccinated individuals rises and the
number of recovered individuals decreases, until a specific vaccination probabilityω= ω†, for which the
vaccines are depleted.We see infigures 6(a) and (b) that after this point the fraction of recovered individuals has
a lower decline rate, being practically insignificant for small values ofVL. For instance, from figure 6(b) it is clear
that vaccinationwith probabilityω= 0.1 orω= 0.7 yield the same results. However, suddenly atω= ω*, a
small increase in the fraction of immunized individuals can blockmany spreading paths of the disease, which
results in a dramatic drop in the number of recovered individuals. This discontinuous jump is analogous to the
behavior observed infigure 5 atβ*, and one can easily relateω† toβ†.

Thus, for a diseasewithβfixed and for afixed number of available vaccinesVL, based on the vaccination rate
we can predict the number of infected individuals in the systemwhen the epidemic comes to an end.
Furthermore and very importantly, for a given b andVL, we can chose the optimal rate of vaccination,ω, such
that the fraction of infected beminimal or even zero.

The numerical values ofβ*,β†,ω* andω† can be calculated theoretically using the generating functions
formalism and branching theory [47, 53] (see appendixD for the derivation of the formula).

Finally infigure 7we show themodel phase diagrams, which exhibit different regions depending on the
parameters. Infigure 7(a), whereω= 0.45, the solid curve in theVL−β plane represents the values ofβ* for
eachVL, while the dashed curve representsβ

†. This curves enclose the vaccines-depletion region (in purple),

Figure 6. Fraction of vaccinated and recovered individuals as a function ofω for fixedβ values and for tr= 1. The curves represent
different vaccination limits:VL= 0.1 (d),VL= 0.2 ( ),VL= 0.3 ( ),VL= 0.4 ( ),VL= 0.5 ( ) andVL= 0.7 ( ). In (a)
and (c) the infection probability isβ= 0.2, while in (b) and (d)β= 0.5.Note that forβ= 0.5 (b) and (d), the number of recovered
and vaccinated individuals are larger compared to the caseβ= 0.2, (a) and (c). The dashed vertical lines indicate the jumps and the
arrows the values ofω* andω† forVL= 0.3. These values are different forβ= 0.2 andβ= 0.5.
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wherewe see that for a small vaccination limit and a high infection probability the system runs out of
immunization units. On the other hand, the region of sufficient vaccines (in yellow), is characterized by (i) low
infection probabilities, for which little vaccines are needed to stop the disease, and (ii) ifβ andVL are both high,
the vaccines do not get exhausted. The reason for (ii) is that the disease rapidly spreads before all the vaccines can
be used. Finally the dotted line represents the value ofβc, belowwhich there is no epidemic.

Infigure 7(b)we fixβ= 0.5 and show the phase diagram in the planeVL–ω. Here the solid and dashed
curves representw* andw† respectively. Herewe see that whenω increases the depletion region becomes
broader becausemore vaccines are applied. However whenω further increases, the immunization strategy gets
more effective against the disease, and then a smaller amount of vaccines is required to control the epidemic.
Furthermorewhenω�ωc, the disease can not propagate since all the paths are blocked by immunized
individuals.

Using these phase diagramswe can learn how the regions of insufficient vaccines changewith the available
immunization resources inmedical institutes, the infection probability, which depends on the disease, and the
vaccination probability, whichmay depend on themedical workers.

5.Discussion

In thismanuscript we have explored the implications of a limited number of vaccines in the SIRmodel with local
vaccination.Wefind that at the steady state, there is a region of values of the infection probabilityβ, inwhich the
medical institutions run out of immunization units. This region is delimited byβ* andβ† or, byβ* andβ= 1
depending on the vaccination limitVL.We alsofind thatβ* is a transition point, at which the curve of recovered
individuals has a discontinuous jump, whose height depends onVL. This type of behavior, inwhich a
discontinuous transition is observed, has been seenwhen the dynamics of propagation of epidemics is coupled
with social processes [54, 55]. Furthermore, we analyze the temporal evolution of the process close toβ*.Wefind
that forββ*, the temporal evolution of the fraction of infected individuals presents two peaks.When the
disease is about to vanish the vaccines are exhausted, and then the infection probability β* is sufficiently large for
an extremely small fraction of infected individuals to cause a sudden second outbreak. On the contrary, we
observed thatβ† is not a transition point but a crossover, and that its existence depends on the topology of the
network.

On the other handwe analyze the steady state of the process as a function ofω,finding other points of
interest. One of them isω†, belowwhich the vaccination probability is too low to use all the vaccines, thus the
immunization units are not exhausted but the epidemic is not effectively halted. Another point isω*, above
which the vaccination probability is high enough to control the epidemicwith the available immunization
resources, and shows a discontinuous transition in the fraction of recovered individuals. These results are of
significant importance since the vaccination probability is one of the few parameters that can be controlled by
the health institutes. Thus,ω can be chosen tominimize the number of infected individuals or even halt the
epidemic in the primary stages, according to the available resources.

We solved themodel using an EBCM, finding an excellent agreementwith the stochastic simulations. Also,
we used the branching theory tofind the values ofβ*,β†,ω* andω†. In future studies wewill analyze different
features of the local vaccinationmodel, as the immunization offirst and second neighbors of infected

Figure 7.Phase diagram in (a) the planeβ–VLwithω= 0.45 and in (b) the planeω–VLwithβ= 0.5, for an ERnetworkwith k 10á ñ =
with tr= 1. The solid and dashed lines represent respectivelyβ* andβ† in (a), andω* andω† in (b). The dotted lines denotes the critical
probabilities of infection,βc in (a), andωc in (b).
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individuals. Thus, intending to imitatemore accurately the ring vaccination strategy used against the Ebola
outbreak inGuinea during 2015.
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AppendixA. Edge-based compartmentalmodel

In this appendixwe derive the set of equations (4) using the EBCM. For simplicity wewill assume continuous
time and rates rβ and rω of infection and vaccination respectively. Also the recovery time tr is replaced by a
recovery rate γ. Oncewe derive the equations of temporal evolutionwe can adapt them for discrete time steps.

Aswe saw earlier the probability that the root node of the network, selected at random, do not get infected or
vaccinated through a link by the base node is θ, and satisfies equation (2). This variable can change only if the link
between the root and the base node is used to infect or vaccinate. Since these events occurwith rates rβ and rw
respectively, thus

r r . A.1Iq = - + Fb w˙ ( ) ( )
Therefore, sinceΦS= G1(θ) then

r r G . A.2S I1 qF = - + ¢ Fb w˙ ( ) ( ) ( )
On the other hand, a node is in stateV if is not susceptible and if wasmore likely to receive a vaccine rather

than be infected, hence
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Similar to equation (A.2)we canwrite

r G . A.4V I1 qF = ¢ Fw˙ ( ) ( )
Nextwe study the variation ofΦR, the probability that the base node is recovered and also, that during the

time it was infected did not cause the infection or the vaccination of the root node. Since individuals recover with
rate γ hence

. A.5R IgF = F˙ ( )
To obtainΦRfirst we have to rewrite equation (A.1). The probability that the disease or the vaccination

spread through at least one link to the root node is 1−θ and thus
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Now combining equations (A.5) and (A.6)
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Now integrating this equation and considering that 1−θ andΦR are negligible at the beginning of the
process, then simply
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Combining equations (2), (A.3) and (A.8) then

G
r r

r
r r

G1 1 , A.9I 1 1q q
g

q qF = - -
+

- -
+

-
b w

w

w b
( ) ( ) ( ( )) ( )

12

New J. Phys. 20 (2018) 083025 MADiMuro et al



and finally using equation (A.1)we canwrite a single differential equation for θ

r r r G1 1 . A.101q q g q q= - + + - + -w b w˙ ( ) ( ) ( ( )) ( )
This equation together with S= G0(θ),V r r r G1w 0 q= + -w b( )( ( )), I Rg=˙ and S+ I+ R+ V= 1

describes the evolution of the fraction of susceptible, infected, vaccinated and recovered individuals on a
complex network for continuous time.

Alternatively, we can derive equation (2)with respect to time and use equations (A.2), (A.4) and (A.5) to
write a differential equation forΦI

r r r G . A.11I I I I1 q gF = - + F + ¢ F - Fw b b˙ ( ) ( ) ( )
This equation, alongwith equations (A.1), (A.2), (A.4) are the continuous time version of the set (4) of

equations. For discrete time steps the derivatives become forwardfinite differences, i.e.,
f x t f x xt t1¢ l -+( ( )) ( ), and also the rates rβ and rω become probabilitiesβ andω respectively, while γ is
replaced by the recovery time tr.

Appendix B. Temporal evolution of the discrete time equations close to the thresholdVL

When iterating equation (4), one approach is to setω= 0 in the temporal step thatV(t)would surpassVL,
ensuring thatV(t)�VL, but not thatV(t)= VL at the steady state. This would causemany fluctuationswhen
computingV(t) as a function ofβ at the steady state. Thus, to reproduce exactly the results from the
computational simulations another approach should be used.Next we detail the procedure we use to avoid this
fluctuations. At time n*we calculate V n*D ( ), and if it turns out thatV n V n V n1* * *= - + D( ) ( ) ( ) is greater
thanVL, thenwe calculate what is the value ofω

* that satisfiesV(n*)= VL. Thus, instead of settingω= 0, we use
a smaller probability 0*w w< , whereω0 is the vaccination probability at the beginning of the process. This
adjustment ofωmay have to be performed a couple of times untilfinallyω= 0, but alsoV(t)= VL.

Thus in order deal with the limit of the vaccine units while iterating the equations, we have to use a
vaccination probability that has a slight dependence on time. Furthermore, we have to take into account how
this procedure affectsΩ, since it depends onω, as we can see in equation (5). Suppose that we choose a set of
parameters for which at some point the population runs out of vaccines andwe iterate the theoretical equations.
Then, at the beginning of the processΩ(t) is given by equation (5), andwhen the process ends

1 1 trbW = - -( ) , which is simply the transmissibility of the SIRmodel [21]. Recall thatΩ is the probability
that a node in state I infects one of its neighbors or induces its vaccination during the time that this node remains
in this state. Consider that during the time that a node is infected the probability of vaccination changes. Thus in
this case the effective probability of infection or immunizationΩ is lower than the one described in equation (5)
but higher than the transmissibility of the SIRmodel. Considering the different probabilities of vaccination that
may have to be used during the process we canwrite a general expression forΩ at time t
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This expression takes in account thatω depends on time and is proved in detail in appendix C. Ifωt= ω for
all t, then equation (B.1) leads to equation (5):

1 1 1 .t tr rw bW = - - -( ) ( )

AppendixC.Derivation ofΩwhenωdepends on time

Ω is the probability that a node infects one of its neighbors or induces its immunization during the time that it is
infected, which is the recovery time tr. In the standard SIRmodel this probability is known as the transmissibility
T and is calculated as follows:

T 1 1 ... 1
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åb b b b b b b
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= + - + - + º -
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( ) ( )
At n= 1we simply consider the probability of infectionβ. At n= 2we have to consider that the infection

did not occur at n= 1, which happens with probability 1−β. Next for n= 3, nowwe have to consider that
therewas no infection at n= 1 and n= 2, which happenswith probability (1−β)2, and so on.

For the vaccinationmodel we have to include the immunization probabilityω. For simplicity we defineΩ1

andΩ2 as the effective probabilities of infection and immunization respectively, during tr units of time. Thus,

13

New J. Phys. 20 (2018) 083025 MADiMuro et al



similar to equation (C.1)

1 1 1 1 1 ...
1 1 1 1 ... . C.2
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Note that ifω= 0, thenΩ1 is the same as equation (C.1). ThusΩ1 plays the role of the transmissibility in the
dynamical vaccinationmodel. Furthermore, we canwrite equation (C.2) in a closed form
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and thus

1 1 1 , C.4t t
1 2 r rw bW º W + W = - - -( ) ( ) ( )

which is equation (5).Whenω depends on time, a closed expression can not be found. Suppose thatω= ωt, and
consider a node thatwas infected at t= 0, then equation (C.2) takes the form
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which can be summarized in the following expressions
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Equation (C.6) represents the immunization and infection transmission for t= tr, since we are considering a
single node infected at t= 0.We can generalize these equations for any time t�tr
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and finally addingΩ1(t) andΩ1(t) leads to equation (B.1).

AppendixD. Computation ofβ* andβ†

In the steady state of ourmodel, the fraction of vaccinated individuals when there is no limit in the number of
vaccines is [46]:

V C G T f1 1 , D.10= - -b ¥( ( )) ( )
whereCβ is the same factor used in equation (4) and f¥ satisfies the transcendental equation

f G T f1 1 .1= - -¥ ¥( )
f¥ is the probability that the branches of infection expand indefinitely, andT is the probability that an

infected node spreads the disease through a link, also known as transmissibility [46]
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Note that this expression is the same asΩ1 in equation (C.3). If we compute the process forfixedω and start
increasingβ, whenβ= β* the fraction of vaccinated nodes reach the limitVL. Then for greater values ofβ the
number of vaccinated individuals in the steady state is equal toVL, but beyondβ= β† if exists, the vaccination
threshold is nomore reached. If we observe closelyfigure 5, we see that for these values ofβ, the unlimited
vaccines curve equals the vaccination limitVL. Thuswe can findβ

* andβ† by solving the following system:
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whereT ,*b w is the transmissibility forβ= β* andfixedω. The same applies forβ† andT ,b w† . For a Poisson
network G y G y0 1º( ) ( ) and hencewe canwrite a single transcendental equation tofindβ* orβ†:
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This equation has one, two, or none solutions between 0 and 1 depending on the parameters. Two different
solutions correspond toβ* andβ†while a single solutionmeans thatβ† does not exist.Moreover ifVL is large
enough, there is no solution, whichmeans that there are always available vaccines when needed.

Based on a similar reasoningwe can findw* andw† forfixedβ. From equation (D.3)we can derive a similar
expression to equation (D.4) for a Poisson network:
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which has two or none solutions depending onVL.
InfigureD1we show the graphical solution of the previous equations for different values ofVL. In (a)we

graphically solve equation (D.4) forfixedω= 0.45. ForVL= 0.4 the curve intersects the identity in only one
point, which corresponds toβ*. On the contrary forVL= 0.5 there are two intersection points, which denotes
the existence ofβ†. ForVL= 0.574 the curve is tangential to the identity, and thusβ*= β†.WhenVL> 0.574
there is no solution. Similarly we show infigureD1(b) the solutions of equation (D.4) forfixedβ= 0.5. In this
case forVL= 0.4 nowwe have two intersection points, which correspond toω* andω†. ForVL= 0.606 the
curve is tangential to the identity and hence there is a single solution, whichmeansω*= ω†. Aswe can see
beyond this point there is no solution.

Appendix E. Supplementary figures of the steady state

Infigure E1we showhow the steady state changes when the recovery time tr is greater than 1.Note that this
figure is similar tofigure 5, with the same vaccination probabilityω= 0.45, vaccination limitsVL= 1 and
VL= 0.5, and a different recovery time tr= 3.We see thatβ*, unlikeβ†which barely changes, is lower than for
tr= 1. Furthermore, because the individuals are infected during a larger period of time, the fraction of
recovered is larger and so is the discontinuous jump.

On the other hand infigure E2(a)we show the fracion of vaccinated and recovered individuals in the steady
state as a function of the infection probabilityβ, for a networkwith a power law degree distribution, and for
different vaccination probabilitiesω. The vaccination limit and the recovery time are fixed,VL= 1 and tr= 1.
We observe that for low values ofω the curves of vaccinated individuals exhibit amaximumwhile, for larger
values they aremonotonically increasing. As explained in themain text,β† exists as long as the curve of
vaccinated individuals has amaximum, hence in this case forω> 0.6 onlyβ* exists. In addition, infigure E2(b)
we show the fraction of recovered individuals, which as expected decreasewhen the vaccination probability is
higher.

FigureD1.Graphical solution of equations (D.4) and (D.5). The solutions are given by the intersection of the r.h.s. of the equations
with the identity ( ). (a) Solutions of equation (D.4) forω= 0.45. Solutions of equation (D.5) forβ= 0.5. The curves represent
different values of vaccination limits:VL= 0.4 ( ),VL= 0.5 ( ),VL= 0.574 ( ),VL= 0.606 ( ) andVL= 0.7 ( ).
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