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Abstract

How to prevent the spread of human diseases is a great challenge for the scientific community and so
far there are many studies in which immunization strategies have been developed. However, these
kind of strategies usually do not consider that medical institutes may have limited vaccine resources
available. In this manuscript, we explore the susceptible-infected-recovered model with local dynamic
vaccination, and considering limited vaccines. In this model, susceptibles in contact with an infected
individual, are vaccinated -with probability w- and then get infected -with probability 5. However,
when the fraction of immunized individuals reaches a threshold V7, the vaccination stops, after which
only the infection is possible. In the steady state, besides the critical points 3. and w, that separate a
non-epidemic from an epidemic phase, we find for a range of V; another transition points, 3* > £,
and w" < w,, which correspond to a novel discontinuous phase transition. This critical value separates
a phase where the amount of vaccines is sufficient, from a phase where the disease is strong enough to
exhaust all the vaccination units. For a disease with fixed (3, the vaccination probability w can be
controlled in order to drastically reduce the number of infected individuals, using efficiently the
available vaccines. Furthermore, the temporal evolution of the system close to 3* or w*, shows that
after a peak of infection the system enters into a quasi-stationary state, with only a few infected cases.
Butif there are no more vaccines, these few infected individuals could originate a second outbreak,
represented by a second peak of infection. This state of apparent calm, could be dangerous since it may
lead to misleading conclusions and to an abandon of the strategies to control the disease.

1. Introduction

Human interactions have a structure that can be well described in the form of a complex network [1-4]. In the
last few years, new technologies allowed us to record large amount of data of contact patterns [5—8]. This data has
become accessible to researches that use data-driven network modeling approaches to analyze and understand
spreading in social systems, for example, how epidemic and even rumors spread in real populations.

Scientists have focused [9—-13], on modeling and analyzing disease spreading since it can lead to catastrophic
health consequences as well as large economic losses. Several mathematical approaches have been developed and
used to study different epidemic models, improving the understanding of disease spreading on complex
networks [14, 15] (and references therein).

Since one of the goals of health authorities is to minimize health catastrophes and economic impact of health
policies, many studies have focused on establishing immunization and mitigation strategies for enhancing the
functionality of a society and reduce the economic cost [16, 17]. For example, vaccination programs [ 18] are very
efficient in providing immunity to individuals and as a consequence, the final number of infected people
decreases considerably. However, these strategies are usually very expensive and unrealistic, because vaccines
against new strains are usually not available during the initial propagation stage. As a consequence, non-
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pharmaceutical interventions are needed to protect the society. One of the most effective and studied strategy to
slow an epidemic is quarantine. However, it has the disadvantage that full isolation has a negative impact on the
economy of the region and it is difficult to implement it in a large population. Thus, it is important to find a
balance between these two strategies. Another policy, such as social distancing strategies, have been modeled and
implemented in order to reduce the average contact time between individuals [19, 20]. This kind of strategies,
usually include closing schools, cough etiquette, travel restrictions, intermittent connections, etc.
Unfortunately, in most cases, these strategies do not prevent a pandemic, but only delays its spread.

One of the most remarkable cases of a disease spreading was the pandemic occurred by the HIN1 strain in
2009, which caused about 15.000 deaths. Initially, the disease propagated over the network of close contacts, and
then through the airline network, transporting infected individuals to different cities, thus finally spreading the
disease all over the world. One of the most used models to mimic these kind of epidemics is the susceptible-
infected-recovered (SIR) model [21-24]. In this model an individual can be in only one of three possible states:
susceptible (S), infected (I) or recovered (R). An individual in state Sin contact with an I, changes to an I state
with probability 5. After a period of time ¢, the infected individual changes to an R state and stops transmitting
the disease. This model presents, in the steady state, two regimes governed by an effective probability of
contagionT = T, = 1 — (1 — B)",suchthatfor T < T,the system is in an epidemic-free phase and for
T > T,itisin an epidemic phase, where the disease reaches a high fraction of the population. The SIR model has
been also successfully applied to model the case of SARS and other diseases of influenza type [25, 26]. For
decades, researchers have studied different scenarios of the SIR epidemic model [27-30] and develop mitigation
strategies to prevent the epidemic [18, 31-34], such as isolation, quarantine and random and targeted
vaccination. Particularly, Valdez et al [ 35] studied, using the SIR model, the effect of an intermittent social
distancing strategy on the propagation of epidemics in adaptive complex networks. Based on local information,
asusceptible individual interrupts the contact with an infected individual with a certain probability and restores
it after a fixed period of time. In a similar way [36], extended the model and was able to successfully predict the
date of extinction of the Ebola’s outbreak in Liberia in 2014. Ebola outbreaks have been studied by the scientific
community due to the high impact of this epidemic on certain regions of southwest Africa, mainly in Guinea,
Sierra Leona and Liberia. Fortunately, there exists available data for the scientific community enabling to study
more accurately the behavior and propagation of this disease [36, 37].

During this Ebola outbreak, a vaccine trial has been performed and used in Guinea in 2015 in the capital city.
Ithas been found that the strategy of the vaccine trial applied to mitigate the transmission of Ebola-virus-disease
(EVD) in Guinea in 2015, was very efficient [38]. The vaccine trial tested the efficacy of an experimental vaccine
against Ebola. The trial used a ‘ring’ vaccination strategy based on the approach that was used to eradicate the
smallpox [39]. This involves the identification of a newly diagnosed Ebola case, and then the vaccination of all his
contacts and the contacts of those contacts, which are usually their family members, neighbors, co-workers and
friends. In practical terms, the close contacts of a newly identified Ebola case have been vaccinated, if they
consent to it. This is the basis of the motivation of the present study where we immunize the neighbors of an
infected individual in network models. Moreover, the amount of vaccines, sometime due to economic
restrictions, may not be enough to protect all the susceptible neighbors of the infected individuals during the
whole spreading process. Thus, we propose and study here models with the scenario of limited vaccines
availability, i.e. not enough for all the vulnerable population. Generally speaking, the available resources to
control, avoid, or maybe enhance a spreading process are limited, and many studies have focused in how to
optimally use these scarce resources against a disease [40], or even to deal with illicit drug usage [41].

We are interested in testing how this limited amount of accessible vaccines affects the spread of the epidemic.
Motivated by this, we present here a model of localized vaccination that mimics the vaccine trial in Guinea, in
which only neighbors of infected individuals could be immunized using limited vaccination units. This could
help to understand how the propagation of a disease is affected by the localized and limited vaccination.
Therefore, the question we wish to answer is how to use, in an efficiently way, this limited amount of vaccines
with the aim of reducing the propagation of an epidemic.

In our model, the state of an individual can be susceptible (S), vaccinated (V'), infected (I) or recovered (R). A
susceptible individual in contact with an infected one will become vaccinated with probability w, until the total
number of vaccines V7 is used. If he does not become vaccinated, then with probability G he will become
infected. Then, after a certain period of time ¢,, the infected individuals will recover.

Using an edge-based compartmental model (EBCM) and the generating functions theory [24, 42], we obtain
and study the evolution equations for the fraction of S, I, R and Vindividuals and find a perfect agreement
between theoretical and simulation results. Then, we study the steady state of the epidemic process, for which
there are no more infected individuals. We find two different phases, an epidemic and a non-epidemic phase,
separated by a critical threshold 3., which depend on w. Below (3, the disease can not spread and the fraction of
recovered individuals R approaches to zero. On the other hand if 31is fixed, there is a critical vaccination
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probability w,, above which the epidemic can not develop, since the disease is successfully blocked by
immunized individuals.

Above (3, depending on the parameters, we find either a continuous phase transition or a discontinuous
phase transition for a second epidemic break at higher critical threshold 3*, which depends on V. Similarly for
fixed (3, below w. we find a discontinuous transition for w = w" in the fraction of recovered individuals. In
[43—45] the authors also found a discontinuous transition but in the density of infected individuals, and using an
endemic epidemic model (susceptible-infected-susceptible), where the recovery of sick individuals depends on
the availability of healing resources.

We also find, that depending on the parameters there are valuesof 3 = 37 > f*and w = o < w* that
characterize a crossover between two regimes, one for which the available amount of vaccines is sufficient to
immunize the population during the whole process and the other in which it is not.

2. The model

At the initial state, all the individuals in the network are susceptible except one, the patient zero, which is in the
infected compartment or state. Before spreading the disease, all the susceptible neighbors of this individual
receive a vaccine with probability w. Notice that this vaccination is local and dynamic, and is done through the
links that connect infected to susceptible nodes. Then the patient zero will try to infect all its neighbors that have
not been vaccinated, and this event will occur with probability (1 — w)(. In the next time step of the process, all
the susceptible neighbors of the infected nodes will be vaccinated with probability w again or will be infected with
probability (1 — w)g. The infected individuals will move to the recovered state R after ¢, units of time since they
become infected, and the vaccinated or immunized individuals will remain in state V. While the disease spreads
through the population, the number of vaccinated people increases, until the health institutes run out of
vaccines. We define V; as the fraction of available vaccines over the entire population. When this limit is reached,
no more individuals can be immunized and hence those in the infected state will infect their neighbors with
probability 3. In the steady state the epidemic is over when the fraction of infected individuals is zero, thus the
individuals can only be in state S, R or V. For demonstration of the model see figure 1.

This model is clearly different from random vaccination, in which a fraction of individuals selected at
random are immunized. In the random strategy, some vaccinated individuals may never be in contact with an
infected individual and thus would not be vaccinated, in the present strategy. On the other hand the dynamical
vaccination intends to create a barrier of immunized individuals that could stop the spreading of the disease,
thus making a more effective usage of the available vaccines.

3. Theoretical formalism

The EBCM [8, 24], was applied to model the SIR and was adapted by Valdez et al for discrete time, and a fixed
recovery time ¢, [27]. We can solve theoretically the evolution and the steady state of this model with unlimited
vaccines [46] and also adapt it here for the limited case. The EBCM is based on a generating function formalism,
implemented in branching and percolation processes on complex networks. This approach allows to study not
only the steady state but also the temporal evolution of the process. First, we derive the general equations for the
case of unlimited vaccines and then we explain the effect of the depletion of the vaccines. Denoting the fraction
of susceptible, infected, vaccinated and recovered individuals at time ¢ by S(¢), I(t), V(¢) and R(¥), respectively, the
EBCM approach lies on describing the evolution of the probability that a randomly chosen node is susceptible.
In order to compute S(#), a link is randomly chosen and then a direction is given, in which the node in the target
of the arrow is called the root node, and the base is its neighbor, called base node. We denote by 6, the probability
that at time #, the base node does not transmit the disease to the root node and neither induces the immunization
of the root node. In this approach, the state of the base node can not be affected by the root node, so that we can
treat the state of the roots neighbors as independent [23, 24, 27]. A node remains as susceptible if none of its k
neighbors cause its infection or immunization, then the fraction of individuals in the susceptible state at time # is
given by

S(t) = S_P(k)0F = Go(6y), )
k

where Gy(x) = Zk;ﬂz _ P(k)x* is the generating function of the degree distribution, P(k), of the network [47].
To compute 6, we have to take into account all the possible states of the base node. Suppose an edge that connects
the root node and the base node. Then this edge has not been used yet to infect or vaccinate the root node if the
base node is
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Figure 1. Schematic demonstration of the rules of the model with limited vaccines for a small network of size N = 10, a recovery time

t. = 1,and avaccination limit of V; = 3/10. The color of the nodes represents the different states: susceptible (S) ( ® ), infected (I)

( M ), vaccinated (V) (A), recovered (R) ( @ ). Att = 1 the patient zero induces the vaccination on its neighbors with probability w

or infects them with probability (1—w)(3. After a time t, the infected individuals move to the recovered state R, in this case t, = 1. At

t = 4 all the vaccines were used and hence the infected individual only tries to infect susceptible neighbors with probability 5. Att = 6
the steady state is reached and nodes can only be in state S, Ror V.

Table 1. Probabilities for the state of the base node, which is a neighbor
of the root node, in the edge-based compartmental model.

Quantity Possible states of the base node

Dy Susceptible

P, Infected and did not infect nor did it induce the vacci-
nation of the root node

3% Recovered and did not infect nor did it induce the vac-
cination of the root node

Dy Vaccinated

+ instate S, with probability ®s.

+ infected but did not spread the disease to the root node, nor induced the immunization of the root node,
which is expressed by ®;.

+ instate R but during the time it was infected, it did not propagate the disease to the root node, nor induced
vaccination to the root node. This probability is denoted by ®p.

+ vaccinated or immunized, with probability ®y.
We summarize these probabilities in table 1.

In figure 2(a) we demonstrate the configurations of the root and the base node.
Thus, accounting all these cases (see figure 2(b)), 6, is given by

0 = D5(t) + D1(t) + Pr() + Dy (1) 2

Similar to $(¢) in equation (1), we can write an expression for ®g(#) (see figure 2(b)). The neighbor of the root
node, with degree k, is in state S if the disease does not spread through its k — 1 linksand ifnone ofitsk — 1
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(a) 0=0,+D,+D, + D,

(b)
N S =G,(0)
0 @, = G,(0)

Figure 2. Diagram showing the relations between the variables used in the compartmental model. The aim is to calculate the
probability that the root node, denoted by a question mark, is susceptible. (a) The neighbor of the root node, called base node, does not
spread the disease to the root, nor induce the vaccination of the root node with probability 6. Shown are all the possible states of the
base node. (b) A node is susceptible if the disease does not spread through its k links, and if none of its k partners induce its vaccination.
We consider that the root node can not change the state of the base node, thus the latter node is susceptible if it does not get infected
throughits k — 1links, and if none ofits k — 1 neighbors other than the root, cause its immunization.

neighbors, omitting the root node, do not induce its vaccination. Recall that the edge coming from the root node
is not considered. Hence the probability that the base node is susceptible at time tis #* ' and thus

Ps(1) = G1(0p), 3)

where G;(x) = Zi‘f}; kP (k) / (k) x*~1is the generating function of the excess degree distribution of the

network and (k) is the average degree [48]. The evolution equations that describe the process for unlimited
vaccination, i.e. V; = 1, are (see appendix A for detailed derivation)

Al =—[w+ (1 — w)B]P(t)
ADs(t + 1) = Gi(O41) — G1(6))
APt + D) =—[w + (1 — w)B1P(t) — CgADs(t) + (1 — D C3ADs(t — 1,).
Ady(t + 1) = —C, Adg(1). 4)

In the first equation, ; decreases if the base node is infected at time t, and induces the vaccination of the root
node with probability w, or if it spreads the disease to the root, with probability (1 — w)(. Note that ®; takes into
account that the base node and the root node had no prior interaction. The second equation represents the
evolution of the probability that the base node is in state S, which is the finite difference of ® (see equation (3)).
The third equation is a bit more complicated. The root node has, with probability ®(f), an infected neighbor at
time ¢ that did not induce its immunization or caused its infection. This probability changes if the infected base
node causes the immunization of the root node or infects it, which is reflected in the first term. In the second
term we have the susceptible individuals that become infected at time t and will be in state I in the next time step.
Unlike [27], where the authors used the EBCM to solve the classical SIR model, this term does not account all the
variation of ®(#), since a fraction of the susceptible individuals go to state V. The fraction of the nodes in state S
that go to state I is weighted with the factor Cs = (1 — w)8/[w + (1 — w) 3], which is the probability that the
disease spreads through alink. The last term in the 3rd equation takes into account the susceptible individuals
that got infected at , time units earlier, and did not change the state of the root node during this time. The
probability that they do not spread the disease or induce the vaccination to the root node during this period of
timeis 1 — €2, where

Q=1-(01 - w1 — B)r, (%)

and (1 — w)*(1 — B) is the probability that during the period ¢, an infected base node did not infect nor
induced the vaccination to the root node. Finally, the last equation takes into account the immunized neighbors
of the root node. The variation of ®(¥) increases with time and is proportional to the negative change of ®s. In
this case the factor C, = w/[w + (I — w) 3], is the probability that the link between the root node and the base
node is used to immunize. We explain these additional probabilities in table 2.
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Table 2. Probabilities that take into account the different interactions between the root node and base node.

Probability Definition

0 The base node did not infect nor did it induce the vaccination of the root node
Cs A susceptible node adopts the state I if its state change

C, A susceptible node adopts the state Vifits state change

Q Alink is used to infect or vaccinate during ¢, units

After computing 6, using equation (4), we can compute the evolution of the fraction of susceptible, infected
and vaccinated individuals at time ¢ by

AS(t + 1) = Go(0r11) — Go(0)),
AV (t+1)=—-C,AS(),
ALt + 1) = C3(—=AS(t) + AS(t — t,)). (6)

Notice than using these magnitudes we can compute the fraction of recovered individuals,

R() =1 — S(@t) — I(t) — V(t). The derivation of these equations is similar to equation (4). In the first
equation, the change in the fraction of susceptible individuals is the finite difference of S (equation (1)). Next, in
the second equation the variation of the vaccinated individuals is proportional to the change in the susceptible
individuals. This is since AS < 0, and the factor C,, takes into account the transition from state Sto V. In the
third equation, the change in the fraction of infected individuals is also proportional to the variation of the
susceptible individuals, but here the factor Cgis related to the transition from state Sto I. Hence, —Cg AS(t) is
the fraction of new infected individuals at time #. On the other hand, —C3 AS(t — ¢,) is the fraction of
individuals that got infected #, temporal units earlier. Thus, this fraction represents the individuals that move to
state R at time t, and hence contribute negatively to the fraction of infected individuals.

The set of equations (4) and (6) describes the temporal evolution of the process with unlimited vaccines
(Vr = 1). Now we assume that we have a limited amount of vaccination units, lower than the number of
individuals in the system. Thus we impose alimit V; as the maximal fraction of vaccinated individuals.

The evolution of the system is the same as the unlimited case until V(#) reaches the vaccination limit, V. At
this point there is no available vaccines and thus the vaccination probability becomes zero, allowing the disease
to spread without barriers. Hence the equations should be iterated normally until V(t) = V7, and then setting
w = 0 for the rest of the process. Nevertheless, since in equation (6), V(t) changes by finite increments, it is
unlikely that V() matches with V; exactly. Thus it is not clear when iterating the equations, the precise moment
at which the immunization process has to be stopped. We explain in appendix B the procedure that has been
performed to solve this problem and to reproduce exactly the results from the computational simulations.

4, Results

We perform stochastic simulations of the localized and limited vaccination SIR model over single networks with
N = 10°nodes, whose degree distribution is Erds Rényi (ER) with an average degree (k) = 10. The networks
are built using the Molloy—Reed algorithm [49].

4.1. Temporal evolution

To demonstrate the validity of the theoretical formalism, in figure 3 we show simulations and theory of the
temporal evolution of the process for an infection probability 3 = 0.168, a vaccination probability w = 0.45,a
vaccination limit V; = 0.5,and arecovery time ¢, = 3. The dashed lines are the theoretical results from the
EBCM described in the previous section, while the solid lines represent different realizations of the stochastic
simulations. We can see the excellent agreement between the theoretical equations (6) and the simulation
results.

It can be seen from figure 3 that initially, as the fraction of infected and vaccinated individuals increase with
time, the fraction of susceptible individuals decreases. Each infected node reaches the state R after 3 units of time
and consequently the fraction of recovered individuals increases with time. In the classical SIR model, the
fraction of infected individuals reaches a maximum and then decreases, but in our case of limited vaccines, after
aspecific time the behavior of the curves changes. At this time the system runs out of vaccine units and thus no
more individuals can be immunized against the disease. At this point the fraction of susceptible nodes shows a
plateau, since as seen in figure 3(b), the epidemic almost vanished and there are only few infected individuals that
can infect the susceptible people. This plateau, which is also observed for the recovered individuals (figure 3(¢)),
seems to indicate that the system begins to stabilize, since the magnitudes change slowly with time. However,
when suddenly the vaccines are exhausted, the fraction of infected individuals starts to increase again, reaching a
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Figure 3. Temporal evolution of the SIR model with local vaccination for an ER network with (k) = 10, forw = 0.45, V; = 0.5,
t, = 3and 8 = 0.168. The solid lines represent different stochastic simulations, and the dashed lines are the theoretical results
obtained from the EBCM, equation (6). The black dotted—dashed lines indicate the time at which the vaccines are depleted, denoted by
t4. We can see the very good agreement between the simulations and the theory.

second peak (figure 3(b)) that could be even higher than the first one. This increase obviously cause a further
decrease and increase of the susceptible and recovered individuals respectively. Finally the disease starts to fade
away as the fraction of infected individuals decreases, then the system reaches the steady state and all the
magnitudes stabilize.

From now on, in the rest of the manuscript, our results will be based only from the theoretical equations,
since we find excellent agreement (figure 3) with the stochastic simulations.

Next we will show the temporal behavior of the process for different values of the infection probability, 3. In
the standard SIR model, without vaccination, there is a critical value 3. below which there is no epidemic. This
value satisfies the equality T, = 1/ [50], where T = 1 — (1 — ()" is the transmissibility, the effective
probability of contagion, and k = (k?) / (k) is the branching factor of the degree distribution of the network. (k)
and (k?) are the firstand second moments of the degree distribution respectively. From this relation, in which
T. = T (f,), the critical infection probability can be obtainedas 5, = 1 — (k — 2)/(x — 1)[21]. In the present
model of limited dynamical vaccination, the relation between T, and « holds but in this case the transmissibility
depends also on the vaccination probability w (see appendix D for the expression of T). Closed expressions of (3,
fort, > 1are quite complicated, however for f, = 1 the critical infection probability is simply
G.=1—(k —2)/((1 — w)(xk — 1)). We see that this probability depends on wbut not on the vaccination
limit V7. Besides (3, in our model there are also specific values of 3 associated with dramatic changes in the
behavior of the magnitudes at the steady state. Unlike 3, these values depend on the number of immunization
units. Next we will show how the magnitudes evolve with time when 31s one of these specific values.

Figure 4 exhibits the temporal evolution of all magnitudes for w = 0.45, V; = 0.4,¢, = 1 and for several
values of 8. For this particular set of parameters 3. = 0.1818, nevertheless in this figure we will focus on another
important value greater than 3, which we call §*. In figure 4(a) 8 = 3 = 0.25809, and we observe that in this
case the fraction of infected individuals shows only one peak, and also the other magnitudes show a standard
behavior. However if the infection probability is just a little higher, 3 = 0.2581, suddenly two peaks appear in
the fraction of infected nodes, as seen in the inset of figure 4(b). Similar to figure 3, when the fraction of
vaccinated individuals reaches the vaccination limit, in this case V; = 0.4, the fraction of susceptible and
recovered nodes enter in a quasi-stationary state, in which they barely change. At this stage there is a negligible
number of infected individuals, however since the vaccination stops, there are enough infected-susceptible pairs
to start a second outbreak. This causes the second peak and a further decrease in the number of susceptible
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Figure 4. Temporal evolution of the model for a ER network with (k) = 10, forw = 0.45, V; = 0.4and t, = 1. The curves represent
susceptible nodes (. .. .), infected (—), recovered (-...), and vaccinated (... ). (a) 5 = 0.258 09, (b) 5 = 0.258 1,(c) 3 = 0.2668

and (d) 8 = 0.4. The insets show a magnified image of the temporal fraction of infected individuals.

individuals, as well as a further increase in the fraction of recovered nodes. Thus, at 5" the steady state
experiences an abrupt transition with 5. We will see later in figures 5 and 7 how the nature of the abrupt
transitions depends highly on the limited vaccines units, V7.

In figures 4(c) and (d), for larger values of 3 we observe that the two peaks start to get closer, until eventually
they start to fuse together forming a single peak as in figure 4(a), but much higher. On the other hand, for larger 3
values the curves become smoother since there is only a single outbreak.

4.2. Steady state

To understand how the results are affected by the infection probability 5, in figure 5 we show the fraction of
vaccinated, recovered and susceptible individuals in the steady state as a function of 3 for a fixed vaccination
probabilityw = 0.45, t, = 1 and for different values of limited vaccines V7, for an ER network with (k) = 10.
The green solid lines represent the case of unlimited vaccines, .i.e., V; = 1.In figure 5(a) we see that for
increasing (3, the fraction of vaccinated individuals increases, since more infected individuals means more
susceptible neighbors to immunize. Nevertheless, we observe that this curve reaches a maximum and then
decreases for larger values of 3. This can be understood as follows. When the probability of infection becomes
high, the majority of neighbors of an infected node get infected instead of being immunized, and thus thereisa
decrease in the fraction of vaccinated individuals [46]. It is important to point out that the existence of this
maximum is highly influenced by the vaccination probability w and the topology of the network. In appendix E
(figure E2) we show the fraction of vaccinated and recovered individuals at the steady state for networks with a
heterogeneous power law degree distribution, and for different values of w.

Next we observe what happens if we impose a limit on the fraction of available vaccines. For V; = 0.5,
represented by the red squares, we see in figure 5(a) a plateau between two values of 3. This happens since V can
not surpass the vaccination limit. The lower of these values is 3%, which we introduce in figure 3, and we call the
other ', which is greater than 3" (see figure 5(a)). Between these two values is the range of 3 for which V reaches
its limit value, V;. Now we ask what is the effect of the vaccination limit on the fraction of recovered individuals.
In figure 5(b) we observe that between 3* and 3", denoted by the vertical dashed lines, the curves of recovered
fraction show significantly increased values compared to the case of unlimited vaccines. In this region at some
value, 37, the vaccine units are exhausted, and then the disease spreads without barriers, affecting a great number
of individuals that could not be immunized.
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Figure 5. Fraction of (a) vaccinated, (b) recovered and (c) susceptible individuals at the steady state as a function of the infection
probability 8. The degree distribution is ER with (k) = 10, kpin = 0, kinax = 40 and the recovery timeis ¢, = 1. The vaccination
probability isw = 0.45 and the vaccination limits are: V; = 1 ( ), Vi =0.5(5), VL =045 (p), VL = 0.4 (). The vertical
dashed lines indicate the values of 3" and 8" for V; = 0.4and V; = 0.5. In (c), we show in the inset the full curve of susceptible nodes.
In (d) we compute theoretically the time it takes the process to reach the steady state. Since the peaks are very close, in the inset we
show the curves near criticality for a better visualization. In this figure V; = 1. (4. ..),0.5 (- = .),0.45 (.. ..), 0.4 (—).

For example, for V; = 0.45, represented in figure 5 by black triangles, we observe a similar behavior. In in
this case 3" = 1, but an interesting phenomena takes place at 3* where a discontinuous jump occurs due to the
shortage of vaccination units. This abrupt transition, in figures 5(b) and (c), can be understood from figures 4(a)
and (b). Below 3" there is a single outbreak, while above it a second outbreak causes the abrupt jumps observed
in figure 5. It is expected therefore that for V; = 0.4, an even smaller supply of immunization units, the
condition of the population becomes worse, as seen in figure 5. The curve with blue circles shows that there is no
(3", and thus forany 3 > (3" the fraction of infected is significantly higher, compared to the case of unlimited
vaccines. The dashed lines that denote these points indicate the emergence of a second peak of infection, as can
be seen in figures 4(b) and (c).

In figure 5(c) we show the fraction of susceptible individuals, which decrease with S and also show a
discontinuous jump at %, associated with V.

In figure 5(d) we compute the time it takes the process to reach the steady state, as seen in figure 4. Processes
near the transition point usually have longer duration times compared to those far from this point, as found for
example in the process of cascading failures [51, 52]. Taking this into consideration, we can see that for V; = 1,
represented in this figure by a green dotted line, there is only one peak at 5. = 1/({k) (1 — w)) [46], which s
associated with a continuous phase transition. This peak is seen for all V7, since the critical point does not
depend on V;. However, for V; = 0.4, V; = 0.45and V; = 0.5, represented respectively by a blue solid line, a
dashed—dotted black line, and a red dashed line, we observe another peak at longer times, located at 3%, which
depends on V;. Consequently, if we return to figure 4, where we show the temporal evolution for V; = 0.4, we
see indeed that for §* = 0.2581 (figure 4(b)) the process takes much longer time to reach the steady state
compared to 3 = 0.25809 (figure 4(a)).

Thus, we can infer that, similar to (3, the probability of infection 3 denotes a transition point, that separates
aregion in which the immunization strategy stops the spreading of the disease, and another in which the
vaccination units are insufficient to stop it. On the other hand, we do not observe a peak at ﬂ*, indicating that this
is not a transition point. Instead, this point denotes a crossover between the regime of insufficient vaccines and a
regime in which the immunization units can not be used completely, since the probability of infection is too
high. Moreover we recall that the existence of 3" is related to the topology of the network, see appendix E (figure
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Figure 6. Fraction of vaccinated and recovered individuals as a function of w for fixed B values and for t, = 1. The curves represent
different vaccination limits: V; = 0.1(0),V; = 0.2 (0),V; =03 (A),V; = 0.4 (—),V; = 0.5 (¢ )and V; = 0.7 (—).In(a)
and (c) the infection probability is 5 = 0.2, whilein (b) and (d) § = 0.5. Note that for 5 = 0.5 (b) and (d), the number of recovered
and vaccinated individuals are larger compared to the case 8 = 0.2, (a) and (c). The dashed vertical lines indicate the jumps and the
arrows the values of w™ and w' for V; = 0.3. These values are different for 3 = 0.2and 8 = 0.5.

E2). To see also how the curves of figure 5 behave for a different recovery time t,, see figure E1 in appendix E
where we show the steady state for t, = 3 and for V; = 0.4, the vaccination limit used in figure 3.

Next we fix the infection probability 3 and analyze how the magnitudes at the steady state change with the
vaccination probability w. In figure 6 we show the fraction of recovered and vaccinated individuals as a function
of w for different vaccination limits. First we focus on the cases V; = 0.4 in figures 6(a) and (c), and V; = 0.7 in
figures 6(b) and (d). Similar to figure 5 the fraction of vaccinated individuals increases with w and reaches a
maximum, after which it starts decreasing. This occurs because many of the paths that would be used by the
disease to spread, are blocked by immunized individuals. Thus, since there are few people infected there are
fewer contacts around them to vaccinate. Furthermore, there is a critical vaccination probability w = w, for
which the disease stops to propagate, since all the paths are completely blocked due to vaccination. For t, = 1 we
canshow that w, = 1 — 1/(8(k)) [46]. We see that for these values of V the amount of vaccines is sufficient.
Next we examine smaller values of V7, for which the system runs out of vaccines at some point.

In all figures we observe that as w increases from zero, the number of vaccinated individuals rises and the
number of recovered individuals decreases, until a specific vaccination probability w = w', for which the
vaccines are depleted. We see in figures 6(a) and (b) that after this point the fraction of recovered individuals has
alower decline rate, being practically insignificant for small values of V;. For instance, from figure 6(b) it is clear
that vaccination with probability w = 0.1 orw = 0.7 yield the same results. However, suddenlyatw = w*,a
small increase in the fraction of immunized individuals can block many spreading paths of the disease, which
results in a dramatic drop in the number of recovered individuals. This discontinuous jump is analogous to the
behavior observed in figure 5 at 3, and one can easily relate w' to 3'.

Thus, for a disease with 3 fixed and for a fixed number of available vaccines V;, based on the vaccination rate
we can predict the number of infected individuals in the system when the epidemic comes to an end.
Furthermore and very importantly, for a given 3 and V;, we can chose the optimal rate of vaccination, w, such
that the fraction of infected be minimal or even zero.

The numerical values of 3%, 3", w* and w' can be calculated theoretically using the generating functions
formalism and branching theory [47, 53] (see appendix D for the derivation of the formula).

Finally in figure 7 we show the model phase diagrams, which exhibit different regions depending on the
parameters. In figure 7(a), where w = 0.45, the solid curve in the V; — (plane represents the values of 3" for
each V, while the dashed curve represents 3". This curves enclose the vaccines-depletion region (in purple),
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Figure 7. Phase diagram in (a) the plane 3~V withw = 0.45 and in (b) the plane w—V; with 3 = 0.5, for an ER network with (k) = 10
with t, = 1. The solid and dashed lines represent respectively 3" and A'in (a), and w* and w' in (b). The dotted lines denotes the critical
probabilities of infection, 3, in (a), and w, in (b).

where we see that for a small vaccination limit and a high infection probability the system runs out of
immunization units. On the other hand, the region of sufficient vaccines (in yellow), is characterized by (i) low
infection probabilities, for which little vaccines are needed to stop the disease, and (ii) if fand V; are both high,
the vaccines do not get exhausted. The reason for (ii) is that the disease rapidly spreads before all the vaccines can
be used. Finally the dotted line represents the value of 3, below which there is no epidemic.

In figure 7(b) we fix 6 = 0.5 and show the phase diagram in the plane V;—w. Here the solid and dashed
curves represent w* and w' respectively. Here we see that when w increases the depletion region becomes
broader because more vaccines are applied. However when w further increases, the immunization strategy gets
more effective against the disease, and then a smaller amount of vaccines is required to control the epidemic.
Furthermore when w > w,, the disease can not propagate since all the paths are blocked by immunized
individuals.

Using these phase diagrams we can learn how the regions of insufficient vaccines change with the available
immunization resources in medical institutes, the infection probability, which depends on the disease, and the
vaccination probability, which may depend on the medical workers.

5. Discussion

In this manuscript we have explored the implications of a limited number of vaccines in the SIR model with local
vaccination. We find that at the steady state, there is a region of values of the infection probability 3, in which the
medical institutions run out of immunization units. This region is delimited by 3* and 3" or, by " and 8 = 1
depending on the vaccination limit V;. We also find that 3" is a transition point, at which the curve of recovered
individuals has a discontinuous jump, whose height depends on V;. This type of behavior, in which a
discontinuous transition is observed, has been seen when the dynamics of propagation of epidemics is coupled
with social processes [54, 55]. Furthermore, we analyze the temporal evolution of the process close to 5*. We find
thatfor 3 2 %, the temporal evolution of the fraction of infected individuals presents two peaks. When the
disease is about to vanish the vaccines are exhausted, and then the infection probability 5* is sufficiently large for
an extremely small fraction of infected individuals to cause a sudden second outbreak. On the contrary, we
observed that 3" is not a transition point but a crossover, and that its existence depends on the topology of the
network.

On the other hand we analyze the steady state of the process as a function of w, finding other points of
interest. One of them is w', below which the vaccination probability is too low to use all the vaccines, thus the
immunization units are not exhausted but the epidemic is not effectively halted. Another point is w*, above
which the vaccination probability is high enough to control the epidemic with the available immunization
resources, and shows a discontinuous transition in the fraction of recovered individuals. These results are of
significant importance since the vaccination probability is one of the few parameters that can be controlled by
the health institutes. Thus, w can be chosen to minimize the number of infected individuals or even halt the
epidemic in the primary stages, according to the available resources.

We solved the model using an EBCM, finding an excellent agreement with the stochastic simulations. Also,
we used the branching theory to find the values of 5%, 57, w* and w'. In future studies we will analyze different
features of the local vaccination model, as the immunization of first and second neighbors of infected
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individuals. Thus, intending to imitate more accurately the ring vaccination strategy used against the Ebola
outbreak in Guinea during 2015.
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Appendix A. Edge-based compartmental model

In this appendix we derive the set of equations (4) using the EBCM. For simplicity we will assume continuous
time and rates rgand r, of infection and vaccination respectively. Also the recovery time ¢, is replaced by a
recovery rate . Once we derive the equations of temporal evolution we can adapt them for discrete time steps.

As we saw earlier the probability that the root node of the network, selected at random, do not get infected or
vaccinated through a link by the base node is 8, and satisfies equation (2). This variable can change only if the link
between the root and the base node is used to infect or vaccinate. Since these events occur with rates rgand r,,
respectively, thus

0=—(@r5+ 1,)®. (A1)
Therefore, since &5 = G(0) then
ds = — (13 + 1.)G/ () Pr. (A.2)

On the other hand, a node is in state Vif is not susceptible and if was more likely to receive a vaccine rather
than be infected, hence

T

V= (1 — Go(0)),
T+ 13
rw
Py = (1 = Gi(O)). (A.3)
r, + 3
Similar to equation (A.2) we can write
by = 1,G/(0) ;. (A4)

Next we study the variation of ®y, the probability that the base node is recovered and also, that during the
time it was infected did not cause the infection or the vaccination of the root node. Since individuals recover with
rate yhence

dp = 7P, (A.5)

To obtain P first we have to rewrite equation (A.1). The probability that the disease or the vaccination

spread through at least one link to the root nodeis 1 — fand thus
da — 0)
dt

Now combining equations (A.5) and (A.6)

v d1 - 0) _ d®r

= (13 + 1) Py (A.6)

. A7
3+ 1, dt dt &7
Now integrating this equation and considering that 1 — 6§ and ®y are negligible at the beginning of the
process, then simply
T _(1-6) = (A.8)
13+ 1,
Combining equations (2), (A.3) and (A.8) then
rLA)
O =0~ GO) — ——(1~0) - (1~ Gi(O), (A.9)
3 + 7, T, + 13
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and finally using equation (A.1) we can write a single differential equation for 6
0=—(n+ )0+ 71— 0) + r,(1 — Gi(B)). (A.10)

This equation together with S = Gy(0), V = 1, /(r, + 13)(1 — Go(9)), [=7RandS+I+R+ V=1
describes the evolution of the fraction of susceptible, infected, vaccinated and recovered individuals on a
complex network for continuous time.

Alternatively, we can derive equation (2) with respect to time and use equations (A.2), (A.4) and (A.5) to
write a differential equation for ®;

& = —(n, + 1) P + 153G/ ()P — 1Py (A.1D)

This equation, along with equations (A.1), (A.2), (A.4) are the continuous time version of the set (4) of
equations. For discrete time steps the derivatives become forward finite differences, i.e.,
f'(x(t)) — f(x¢11 — x¢), and also the rates rgand r,, become probabilities 5 and w respectively, while yis
replaced by the recovery time ¢,.

Appendix B. Temporal evolution of the discrete time equations close to the threshold V;

When iterating equation (4), one approach is to setw = 0 in the temporal step that V(¢) would surpass V7,
ensuring that V(#) < Vi, butnotthat V() = V; atthe steady state. This would cause many fluctuations when
computing V(#) as a function of 3 at the steady state. Thus, to reproduce exactly the results from the
computational simulations another approach should be used. Next we detail the procedure we use to avoid this
fluctuations. At time n* we calculate AV (n*), and if it turns out that V (n*) = V (n* — 1) + AV (n*)is greater
than V7, then we calculate what is the value of w* that satisfies V(n*) = V. Thus, instead of settingw = 0, we use
asmaller probability w* < wp, where wy is the vaccination probability at the beginning of the process. This
adjustment of w may have to be performed a couple of times until finally w = 0, butalso V(f) = V.

Thus in order deal with the limit of the vaccine units while iterating the equations, we have to use a
vaccination probability that has a slight dependence on time. Furthermore, we have to take into account how
this procedure affects €2, since it depends on w, as we can see in equation (5). Suppose that we choose a set of
parameters for which at some point the population runs out of vaccines and we iterate the theoretical equations.
Then, at the beginning of the process €)(f) is given by equation (5), and when the process ends
Q2 =1— (1 — B)", whichissimply the transmissibility of the SIR model [21]. Recall that {2 is the probability
thata node in state I infects one of its neighbors or induces its vaccination during the time that this node remains
in this state. Consider that during the time that a node is infected the probability of vaccination changes. Thus in
this case the effective probability of infection or immunization €2 is lower than the one described in equation (5)
but higher than the transmissibility of the SIR model. Considering the different probabilities of vaccination that
may have to be used during the process we can write a general expression for {2 at time ¢

t, Wi tin n
Q=3 01~ /8)"1(# + ﬁ) [T A= wep. (B.1)
n=1 I We—t4n j=1
This expression takes in account that w depends on time and is proved in detail in appendix C. If w, = wfor
all ¢, then equation (B.1) leads to equation (5):

Q=1-( - w1 — B)-

Appendix C. Derivation of {2 when w depends on time

Q) is the probability that a node infects one of its neighbors or induces its immunization during the time that it is
infected, which is the recovery time #,. In the standard SIR model this probability is known as the transmissibility
Tand is calculated as follows:

T=8+0—-B+1-BP8+..=>0-p"3
n=1
=1-(1- 3" (C.1)

Atn = 1 wesimply consider the probability of infection 3. At n = 2 we have to consider that the infection
did not occurat n = 1, which happens with probability 1 — (. Next for n = 3, now we have to consider that
there was no infectionatn = 1andn = 2, which happens with probability (1 — 3)* and so on.

For the vaccination model we have to include the immunization probability w. For simplicity we define 2,
and €2, as the effective probabilities of infection and immunization respectively, during ¢, units of time. Thus,
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similar to equation (C.1)
Q=0 -wp+1—-wdA-PHB+A—-w’l—-PB3)720+..
L=w+0A-wld-RHw+ A —-w?d - Bw+ ... (C.2)

Note thatifw = 0, then €2, is the same as equation (C.1). Thus §2; plays the role of the transmissibility in the
dynamical vaccination model. Furthermore, we can write equation (C.2) in a closed form

S0 - wpa - pyog = LA B
n=1

1 —-wp

, 1 -1 —-w(d-p)
= _ _ 1— (1 - w1 = p)"
— _ n—1 _ n—1, __
0, = ,;1(1 w1 = By lw A= wa -5 w, (C.3)
and thus
Q=0+ =1-010 - w1 — /), (C.4)

which is equation (5). When w depends on time, a closed expression can not be found. Suppose that w = w,, and
consider a node that was infected at ¢t = 0, then equation (C.2) takes the form

Q=0-w)bf+A—-w)d —w)d - BFP
+ (1 —w)d —w)d —w)d — B)PF+ ...
M=w+1A—-w) - Pw, + (1 — w1 — w)(1 — BPw, + ..,y (C.5)

which can be summarized in the following expressions

2(1— Byt ITa-w

70_)”]1

0, = Z(l _ a8 (- w. (C.6)
n=0

j=1
Equation (C.6) represents the immunization and infection transmission for ¢ = t,, since we are consideringa
single node infected at t = 0. We can generalize these equations for any time ¢ > t,

QU= (1 — By — T (1= w )

n=0 I - Wi—t,4n j=1

Qz(t)—Z(l — By~ 151‘[ (1 — W) (C.7)

j=1
and finally adding €2, (#) and €2 (¢) leads to equation (B.1).

Appendix D. Computation of 3* and 3"

In the steady state of our model, the fraction of vaccinated individuals when there is no limit in the number of
vaccines is [46]:
V==0C0 - G(1—TH£)), (D.1)
where Cgis the same factor used in equation (4) and f__ satisfies the transcendental equation
fo=1—G0—-Tf).
. is the probability that the branches of infection expand indefinitely, and T'is the probability that an
infected node spreads the disease through a link, also known as transmissibility [46]
L= (1= w1l = B
w+ B — wi
Note that this expression is the same as {2, in equation (C.3). If we compute the process for fixed w and start
increasing 3, when 3 = (3" the fraction of vaccinated nodes reach the limit V;. Then for greater values of 3 the
number of vaccinated individuals in the steady state is equal to V;, but beyond 3 = (" if exists, the vaccination
threshold is no more reached. If we observe closely figure 5, we see that for these values of (3, the unlimited
vaccines curve equals the vaccination limit V. Thus we can find 3* and 8" by solving the following system:
Vi=1-= Go(1 — Tpy fo)
fo=1—Gi( = Ty, f), (D.3)

T =

1 - w)p. (D.2)
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(b)

Figure D1. Graphical solution of equations (D.4) and (D.5). The solutions are given by the intersection of the r.h.s. of the equations
with the identity (- = -). (a) Solutions of equation (D.4) for w = 0.45. Solutions of equation (D.5) for 3 = 0.5. The curves represent
different values of vaccination limits: V; = 0.4 (——),V; = 0.5 (= =), V; = 0.574 (A ), V; = 0.606 (¢ )and V; = 0.7 (-+--- ).

where Tj+ , is the transmissibility for 3 = (" and fixed w. The same applies for (" and Tjt,.,. For a Poisson
network Gy (y) = G;(y) and hence we can write a single transcendental equation to find 5" or g

w {1 —exp[—<k>n,www]}— w (D.4)

XxX=—
Vil — w) w 1 —w

This equation has one, two, or none solutions between 0 and 1 depending on the parameters. Two different
solutions correspond to * and 3" while a single solution means that 3" does not exist. Moreover if V; is large
enough, there is no solution, which means that there are always available vaccines when needed.

Based on a similar reasoning we can find w* and w' for fixed 3. From equation (D.3) we can derive a similar
expression to equation (D.4) for a Poisson network:

Vi —yp
L exp () T, 2| - v

y = , D.5)

which has two or none solutions depending on V7.

In figure D1 we show the graphical solution of the previous equations for different values of V;. In (a) we
graphically solve equation (D.4) for fixed w = 0.45. For V; = 0.4 the curve intersects the identity in only one
point, which corresponds to 3*. On the contrary for V; = 0.5 there are two intersection points, which denotes
the existence of 3". For V; = 0.574 the curve is tangential to the identity, and thus 3* = 3. When V; > 0.574
there is no solution. Similarly we show in figure D1(b) the solutions of equation (D.4) for fixed 3 = 0.5. In this
case for V; = 0.4 now we have two intersection points, which correspond to w* and w'. For V; = 0.606 the
curve is tangential to the identity and hence there is a single solution, which means w* = w'. As we can see
beyond this point there is no solution.

Appendix E. Supplementary figures of the steady state

In figure E1 we show how the steady state changes when the recovery time t, is greater than 1. Note that this
figure is similar to figure 5, with the same vaccination probability w = 0.45, vaccination limits V; = 1and

Vi = 0.5, and adifferent recovery time t, = 3. We see that 3", unlike ﬁ* which barely changes, is lower than for
t. = 1. Furthermore, because the individuals are infected during a larger period of time, the fraction of
recovered is larger and so is the discontinuous jump.

On the other hand in figure E2(a) we show the fracion of vaccinated and recovered individuals in the steady
state as a function of the infection probability 3, for a network with a power law degree distribution, and for
different vaccination probabilities w. The vaccination limit and the recovery time are fixed, V; = landt, = 1.
We observe that for low values of w the curves of vaccinated individuals exhibit a maximum while, for larger
values they are monotonically increasing. As explained in the main text, 3" exists as long as the curve of
vaccinated individuals has a maximum, hence in this case for w > 0.6 only 3" exists. In addition, in figure E2(b)
we show the fraction of recovered individuals, which as expected decrease when the vaccination probability is
higher.
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Figure E1. Fraction of vaccinated, recovered and susceptible individuals at the steady state as a function of the infection probability 3.
The degree distribution is ER with (k) = 10 kpin = 0and k. = 40, and the recovery time t, = 3. The vaccination probability is
w = 0.45 and the vaccination limits V; = 1 (—)and V; = 0.5 (). The vertical dashed lines indicate the values of 3" and 5" for
Vi = 0.5.In(c), we show in the inset the full curve of susceptible nodes. In the last figure we compute theoretically the time it take to

the process to reach the steady state. Since the peaks are very close we show an inset for a better visualization. In this figure V; = 1

(anud); 0.5 (-0

VACCINATED
RECOVERED

Figure E2. Fraction of vaccinated and recovered individuals at the steady state as a function of the infection probability fort, = 1
and Vi = 1. The degree distribution is power law or scale-free with exponent A = 2.2, ki, = 3 and ko, = 500, and the recovery
time t, = 3. The different curves represent different vaccination probabilities, w = 0.1 (——),w = 0.2 (- = =),w = 0.3 (- =),
w=040¢)w=05(A)w=06(e),w=07(e),w=0.8(v)andw = 0.9 (%).
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