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Chapter 3

Scaling Properties of Complex Networks and
Spanning Trees

REUVEN COHEN and SHLOMO HAVLIN

We present a relation between three properties of networks: the fractal properties
of the percolation cluster at criticality, the optimal path between vertices in the
network under strong disorder (i.e., a broad distribution of edge weights) and the
minimum spanning tree. Based on properties of the percolation cluster we show
that the distance between vertices under strong disorder and on the minimum
spanning tree behaves as N1/3 for the N vertex complete graph and for Erdős–
Rényi random graphs, as well as for scale free networks with exponent γ > 4.
For scale free networks with 3 < γ < 4 the distance behaves as N (γ−3)/(γ−1). For
2 < γ < 3, our numerical results indicate that the distance scales as lnγ−1 N .
We also discuss a fractal property of some real world networks. These networks
present self similarity and a finite fractal dimension when measured using the box
covering method.

1. Random Graphs and Complex Networks

About 50 years ago a model for random networks was developed, combining
ideas from graph theory with ideas from probability theory. The model was
presented and its properties studied in a series of seminal papers by Erdős
and Rényi [24, 25, 26] (A somewhat similar model was discussed also by
Rapoport [38]). In this model, graphs consist of N vertices and M edges
randomly selected between them. That is, in this model all graphs contain-
ing N labeled vertices and M edges are equiprobable. This model has come
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to be known as the Erdős–Rényi (ER) model. An alternative and closely
related model [28] is obtained when considering N labeled vertices selecting
edges from the possible

(N
2

)
edges independently with some probability p.

This model has the advantage of avoiding correlations between edges that
are present in the original ER model. However, both models behave simi-
larly when the number of edges in not extremely small or extremely large
(See, e.g., [7]). We will refer to both models loosely as the “ER model”.

The ER model was presented and studied as an abstract mathematical
object due to its simplicity and elegance. It was also later applied by re-
searchers in different disciplines to describe various real world network mod-
els. In recent years it has become apparent that many of the networks in the
real world are not well described by the ER model. Watts and Strogatz [49]
observed that in many networks edges are not distributed completely ran-
domly between vertices, but rather, edges tend to cluster, i.e., form more
triangles than expected from a completely random distribution. Barabási
and Albert [3] observed that in many real world networks the degree distri-
bution is not Poissonian, as obtained in the ER model, but rather a broad,
power law, distribution. Faloutsos, Faloutsos and Faloutsos [27] observed
the same phenomenon in the Internet router network. For some more re-
cent reviews on the subject see [2, 32, 35, 23]. Several models have been
suggested, trying to better describe the nature of real world networks. Most
of the models studied today attempting to describe real world networks fall
into two main classes. One class of models is based on the Watts–Strogatz
small-world model [49], focusing on the small distance versus high cluster-
ing occurring in real networks by interpolating between a regular lattice
and a random graph. The second class is that of the Barabási–Albert scale
free model [3], focusing on the power law degree distribution observed in
real world networks, as opposed to the Poisson distribution occurring in ER
graphs.

Here we will focus mainly on ER networks and on scale free networks,
having degree distribution

(1) P (k) = ck−γ ,

where k is the degree (number of connections) of a vertex, c is a normaliza-
tion factor, and γ is some exponent (usually 2 < γ < 3). The BA model and
its variants lead to this kind of degree distributions. However, we will focus
on the class of equilibrium scale free networks, obtained by the Bollobás
configuration model, described below (Sect. 2).
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It should be noted that the results supplied here are based on analytical
methods providing insight into the problems. They do not constitute rigor-
ous proofs of the presented results, but mostly heuristic arguments. When
a rigorous proof exists for a certain result we attempt to supply a reference
to the proof. For some of these results no full proof has been obtained, and
they may be seen as open challenges for the mathematical community.

2. The Bollobás Configuration Model

The Bollobás configuration model [6] is a model for random graphs with a
prescribed degree sequence. Given a degree sequence, all graphs having this
degree sequence are equiprobable in this model. In [6] it was shown that an
equiprobable distribution on all graphs with a given degree sequence may be
obtained by starting with a set of N vertices and assigning to each vertex its
degree from the sequence1. The vertex is then equipped with this number
of “stubs” (i.e., links, currently leading nowhere). Random pairs of stubs
are then connected to each other, forming an edge between the respective
vertices. This process continues until no stubs are left. It should be noted
that this process actually may produce a multi-graph, which is a graph with
self loops and multiple links between some pair of vertices, in which case
one may discard the graph and restart the process. However, for a sparse
graph with no vertices having degrees of order N , the expected number of
self loops and multiple edges is of lower order than the node degrees, and
thus discarding these leads to a graph with degree sequence very close to
the prescribed.

This model leads to a graph having the prescribed degree distribution
and no other correlations. That is, it is maximally random for the given
degree distribution. Therefore, it can be seen as an “equilibrium” or “maxi-
mal entropy” model of random graphs with a prescribed degree distribution.
This model can also be seen as an expansion of the ER model, by considering
a configuration model network with a Poisson degree distribution,

(2) P (k) = exp (−a)
ak

k!
,

1Assuming the degree sequence is also random, the degrees may be assumed to be
assigned using the desired degree distribution (such as Eq. (1)). In case the sum of all
degrees is odd and a graph can not be constructed, the degrees should be reassigned from
the distribution.
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where a = 〈k〉 is the average degree. While this model does not repro-
duce exactly the ER model probability distribution, it is very close in its
properties.

3. Percolation on Random Graphs

One of the simplest and most common models for phase transitions is the
percolation model [11, 44, 31]. It is based only on the topological properties
of the underlying network and on a single externally tunable parameter. In
this model each vertex (for site percolation) or edge (for bond percolation) is
occupied with some probability p and vacant otherwise. Alternatively, it can
be thought of as the process of removing vertices or links with probability
q = 1− p.

When only a small fraction of the vertices (or links) is occupied the net-
work is, with high probability, composed of a large number of very small
components, unreachable from each other through occupied vertices (or
links). However, when the occupied fraction becomes large, a giant com-
ponent emerges, connecting a finite fraction of the vertices in the network.
This giant component usually appears at some critical concentration, pc.
The percolation transition is usually second order, i.e., the size of the gi-
ant component varies continuously from zero below and at pc to some finite
value above pc.

The subject of percolation in uncorrelated random networks has been
studied thoroughly (See, e.g. [16, 12]). Here we present a derivation of the
percolation threshold and some properties of the percolating network.

Consider a random network with some degree distribution P (k). The
degree distribution of a randomly selected vertex is P (k), and its average
degree is 〈k〉 =

∑
kP (k). However, when following a link to reach a vertex,

the probability of reaching a vertex with degree k is proportional to its
number of links, i.e., to its degree. The distribution of degrees of vertices
reached by following a random link is therefore φ(k) = kP (k)/〈k〉 and the
average degree of a vertex reached this way is κ ≡

∑
kφ(k) = 〈k2〉/〈k〉.

Since links are randomly connected, uncorrelated random graphs tend, with
high probability, to include almost no small loops, and are locally tree-like.
When considering the process of exploring the graph as a branching process,
each reached vertex has one link through which it has been arrived at, and
k − 1 outgoing link leading to new vertices (until most of the graph is
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explored and some links may lead back to known vertices). When only a
fraction p of the vertices (or links) are occupied, on average only (k − 1)p
of the “descendants” of the vertex will be reachable, and on average, per
an explored vertex, k̃ =

∑
(k − 1)pφ(k) = p(κ − 1) descendants will be

reachable. When k̃ < 1 the branching process will die with probability 1
after a finite number of explored vertices, while when k̃ > 1 the process may
continue indefinitely and a giant component will exist. This leads to the
following value for the critical threshold [16],

(3) pc =
1

κ− 1
.

It should be noted that if the second moment of the degree distribution,
〈k2〉, diverges, pc → 0, i.e., the network contains a giant component when
any finite fraction of the vertices or links are removed [16]. This result has
been proven rigorously for the LCD model in [8]. This is the case for scale
free degree distributions (Eq. (1) with γ ≤ 3), which is a common distrib-
ution for real networks. Therefore, it is expected that these networks will
be very resilient to random breakdown of vertices or links. The vanishing
percolation threshold also indicates that epidemic diseases and viruses can
propagate in the network with no critical threshold. See also [34].

3.1. Generating functions

A different approach for calculating the critical percolation threshold and
other important percolation properties is by utilizing the generating func-
tions approach [33, 12].

Denote by G0(x) the generating function for the vertex degree distribu-
tion, P (k), i.e., the formal power series,

(4) G0(x) =
∑

k

P (k)xk.

Note that G0(1) = 1 by normalization, and G′0(1) = 〈k〉. The generating
function for the out degrees of vertices reached by following a link is then

(5) G1(x) =
∑

k

φ(k)xk−1 =
∑

k

kP (k)
〈k〉 xk−1 =

G′0(x)
G′0(0)

.
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Note that G1(1) = 1 also by normalization (assuming 〈k〉 is finite), and that
G′1(1) = κ − 1, the average outgoing degree of a vertex reached through a
link.

Consider the following process in the network: Start exploring the net-
work by picking a link and following it to one of its vertices. Then all other
links emanating from this vertex are explored and so on. If no vertex is
reached twice during this exploration we may refer to the explored region of
the network as a “branch”, and view this process as a probabilistic branch-
ing process. This process may die out after a finite number of vertices are
reached, or it may continue indefinitely.2 A generating function can be con-
structed for the sizes of branches defined as above by noticing that this is a
branching process where (almost) each link explored leads to a new branch
with the same distribution as the original one. The number of branches
at each point is distributed according to φ(k) (or G1(x)). Assuming the
concentration of links is p,3 the generating function for branch sizes is,

(6) H1(x) = (1− p) + pxG1
(
H1(x)

)
.

Note that it is no longer necessarily true that H1(1) = 1. In fact, H1(1) gives
the probability that a branch has a finite size. See Fig. 1 for illustration.

Fig. 1. An illustration of the recursive branch definition

Starting from a random vertex and studying the size distribution of the
component to which it belongs, is similar to selecting a degree k, using the
distribution P (k), and then summing the sizes of the k branches to which

2Naturally, in a finite network the whole network will be explored in a finite time.
However, when the size of the network, N → ∞, it can be assumed that as long as the
branch size is of o(N), the fraction of edges linking back to explored vertices is of o(1),
and therefore the branching process is a good approximation. When N → ∞ the process
can continue indefinitely (up to O(N)) before loops significantly affect the behavior of the
branching process.

3From here on we consider link, and not vertex, percolation. Vertex percolation can
be handled in a very similar manner. See, e.g, [12] for details.
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it leads. Therefore, to find the distribution of component sizes one can
construct the following generating function

(7) H0(x) = xG0
(
H1(x)

)
.

Again, H0(1) does not necessarily equal 1, and gives the probability of a
vertex to belong to a finite component. Thus, the probability of a vertex
to belong to the infinite component, which is the relative size of the infinite
component is,

(8) P∞ = 1−H0(1).

3.2. Critical exponents

The generating functions presented in Section 3.1 can be used to find the
properties of percolating networks near and at the percolation transition
point. The behavior near a physical phase transition point is known, both
experimentally and using heuristic arguments, to be universal [11, 44], i.e.,
to depend only on the dimensionality of the physical space in which it occurs,
and on the symmetries of the order parameter. It is also known, however,
that heterogeneity in space may break the universality and lead to non-
universal behavior. Below we present a case in which universality is broken
also by heterogeneity in the degrees. We closely follow [15].

Consider percolation in a network. As shown in Section 3, the critical
point can be found at pc = (κ− 1)−1 (Eq. (3)). P∞ can by found using
Eq. (8) and substituting H0(1) = G0

(
H1(1)

)
. H1(1) is to be found using

Eq. (6). This can be done numerically and for some distributions even
analytically. However, near the critical point one can find the leading order
of the behavior of H1(1) for a general distribution. At p = pc + δ, with
δ → 0, the size of the giant component is still very small and the probability
of belonging to it is close to zero. Therefore, u ≡ H1(1) = 1− ε. Expanding
Eq. (6) one obtains

(9) 1− ε = 1− pc − δ +
(pc + δ)
〈k〉

∞∑

k=0

kP (k)(1− ε)k−1.
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The sum in Eq. (9) can be expanded in powers of ε

(10)
∞∑

k=0

kP (k)uk−1 ∼ 〈k〉 −
〈
k(k − 1)

〉
ε+

1
2
〈
k(k − 1)(k − 2)

〉
ε2 + · · · .

Using this expansion, Eq. (9) leads to ε ∼ δ, to first order approximation,
implying that P∞ ∼ (p−pc). This is in accordance with the known universal
behavior for percolation in high dimension, d ≥ dc = 6, where the size of
the giant component (or “spanning cluster”) grows linearly with p−pc near
the transition point.

For scale free networks, however, the behavior is different. When the
degree distribution is given by Eq. (1) with γ < 4, the term

〈
k(k−1)(k−2)

〉

diverges and Eq. (10) no longer holds. The behavior of the sum near u = 1
may be determined using Abelian methods (See, e.g., [50]). In this case

(11)
∞∑

k=0

kP (k)uk−1 ∼ 〈k〉 −
〈
k(k − 1)

〉
ε+ cΓ(2− γ)εγ−2 + · · · ,

where Γ denotes the Gamma function. Thus, Eq. (6) leads to εγ−3 ∼ δ and
therefore,

(12) P∞ ∼ (p− pc)β , β =
1

γ − 3
.

This result is already non-universal, in the sense that the critical exponent
for scale free networks with γ < 4 is different from that obtained for lattices
in high dimensions, for Cayley trees [11], and for ER networks (or scale free
networks with γ > 4).

The distribution of component sizes in the network can also be deter-
mined from the coefficients of the expansion of H0(x) as a power series in
x. The coefficient of xs in this expansion gives P (s), the probability that a
vertex belongs to a component of size s. The number of components of size
s is denoted by ns = NP (s)/s. In mean-field percolation (i.e., percolation
above the critical dimension), it is known (See, e.g., [11, 44, 33]) that near
the threshold

(13) ns ∼ s−τe−s/s∗ ,

where τ = 2.5 and s∗ diverges exactly at the critical point, leading to a
pure power law distribution. To find P (s) one can study Eqs. (7) and (6)
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exactly at p = pc. Letting x = 1 − ε and denoting φ(ε) = 1 − H1(1 − ε),
Eq. (6) leads to

(14) − φ = −pc + (1− ε)pc

[
1− φ

p c
+

〈
k(k − 1)(k − 2)

〉

2〈k〉 φ2

+ · · · + c
Γ(2− γ)
〈k〉 φγ−2

]
.

Again, the analytical terms dominate for ER networks and scale free net-
works with γ > 4 and the non analytical term dominates for scale free
networks with γ < 4. Using Tauberian theorems, linking between the ana-
lytical properties of a function and its power series expansion, one obtains
that P (s) ∼ s−τ+1 with τ = 2.5 for ER networks and scale free networks
with γ > 4 and τ = 2γ−3

γ−2 for γ < 4.
To find the size of the largest component in the network at criticality,

one may consider the number of components of size s, ns. The extreme value
statistics on the largest component size, S may be estimated by taking the
integral over the tail of the distribution to equal 1/N , as this signifies that
approximately one component will have this size. Thus,

(15)
1
N

=
∫ ∞

S
nsds = c1

∫ ∞

S
s−τds = c2s

−τ+1.

It follows that the size of the largest component scales as

(16) S ∼ N1/(τ−1) ,

where, as above, τ = 2.5 for ER networks and τ = 2γ−3
γ−2 for scale free

networks with γ < 4. For ER networks and for scale free networks with
γ > 4 at the transition point this leads to the well known result S ∼ N2/3 [7].

3.3. Fractal dimensions

Several, not necessarily equivalent, definitions exist to the concept of a
dimension. One of the common definitions of the dimension of a graph (as
well as of continuous objects) is based on the dependence of the number of
vertices (or “mass”) as a function of the distance from some initial vertex,
i.e., the size of the l-neighorhood of a random vertex. If the number of
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vertices, Ml, up to some large distance, l, from some initial vertex, scales
as Ml ∼ ld, then the dimension of the graph is considered to be d. This is
true for regular lattices in all dimensions, as well as for many other graphs
embedded in finite dimensional space. In Configuration Model random
graphs, the number of vertices at a distance l from a vertex usually (for high
enough average degree) grows as Ml ∼ bl with some b.4 This exponential
growth is faster than any power law, and therefore random graphs are
usually considered to be infinite dimensional.

At the percolation critical point, however, the network becomes very
diluted, and the growth of M becomes slower. To find the behavior of Ml

we use the following consideration (See [18]). Consider Nl, the generating
function for the distribution of the number of vertices at a distance l along
some branch, i.e., l hops from a random vertex arrived by following some
link. At the end of a followed link there is always one vertex. Therefore
N0(x) = x. The distribution of the number of this vertex’s neighbors
(excluding the link through which this vertex was reached to) is G1(x).
In general, each such branch consists of a vertex whose degree distribution
is represented by the generating function G1, and each of whose links leads
to a new branch. The total number of neighbors at distance l from the
vertex consists of the total number of l−1-distance neighbors of this vertex’s
neighbors. Thus, the generating function of this distribution can be found
using the recursive equation

(17) Nl(x) = G1
(
Nl−1(x)

)
.

Since at criticality the branching factor, pc(κ− 1) is exactly 1, the average
number of vertices at distance l+1 is exactly the average number at distance
l. However, we are only interested in branches that survive at least l layers.
That is, branches in which at least one vertex is at a distance l from the
origin. Since Nl(x) is the generating function for the number of vertices at
distance l, the coefficient of x0 gives the probability of dying before or at
the lth layer. Therefore, the probability to die before the lth layer is given
by Nl(0). The average number of vertices at the lth layer for surviving
branches, Al is thus given by the average for all branches divided by the
survival probability

(18) Al =
1

1−Nl(0)
.

4For equilibrium random graphs with finite κ, b = κ − 1, and when κ diverges, M
grows even faster. See, e.g., [7, 33, 17, 48].
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To find the behavior of Nl(0) for large l, one should expand Eq. (17) at
the critical point. Assuming κ− 1 = 1,5 one obtains

G1(1− ε) = 1− 1
〈k〉

[
〈k〉 −

〈
k(k − 1)

〉
ε+

〈
k(k − 1)(k − 2)

〉

2
ε2 + · · ·

]
.

(19)

Letting Nl(1− ε) = 1− εl, Eq. (17) leads to

(20) 1−εl+1 = 1− 1
〈k〉

[
〈k〉 −

〈
k(k − 1)

〉
εl +

〈
k(k − 1)(k − 2)

〉

2
ε2l + · · ·

]
.

Guessing a solution of the form εl ≈ Bl−h leads to

B(l + 1)−h = B(l−h − hl−h−1) + · · · = Bl−h −
〈
k(k − 1)(k − 2)

〉

2〈k〉 Bl−2h ,

(21)

and thus, h = 1. From Eq. (18) follows Al ∼ l. Therefore,6

(22) Ml ≈
l∑

$=1

Al ∼ lh+1 ∼ l2 ,

and the fractal dimension is dl = 2.7 For scale free networks with 3 < γ < 4
similar considerations lead to dl = (γ − 2)/(γ − 3) [18].

5For simplicity of notation we assume here that the original graph is at criticality,
rather than arriving at criticality through a dilution of the links or vertices. See [29] for
a more complete treatment.

6Note that Al is the average number of vertices in the lth layer provided the branch
survived at least up to the lth layer. This is not the same as the average number of
vertices in the lth layer provided the branch survived l + l′ layers. However, Al gives a
lower bound for this quantity and Al+l′ gives the upper bound.

7Notice that there is no real embedding space here, and the dimension is based on
the shortest distance metric on the graph itself. This is actually known in physics as the
“chemical dimension”, whereas the fractal dimension depends on the embedding space
and for random embedding it is twice the chemical dimension [11].
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4. Weighted Networks

In the following we consider a network in which every link is associated
with a weight – a positive number representing some property of the link.
This property can be the cost, time or capacity of the link. In physical
systems this weight is usually associated with the energy of the bond. We
assume that the weights are randomly selected from some distribution. We
will mainly concentrate on the behavior of the “optimal path” between
vertices, i.e., the path with minimal total weight connecting the two vertices.
We begin by considering distances between vertices in networks with no
disorder.

4.1. Shortest paths in networks

Since networks are usually not considered to be embedded in real space, no
a-priori notion of the distance between vertices exists. Therefore, distances
should be defined based only on the topology of the network. The most
natural definition of a distance between vertices is the “hop distance”, i.e.,
the minimal number of links that need to be transversed to reach one vertex
from the other. This is analogous to assigning a weight of 1 to each link
and considering the minimal weight path between vertices.

Considering a two dimensional lattice, the distance between vertices
using the above definition is the “Manhattan distance”, i.e., the sum of the
absolute difference between the x and y coordinates. Considering an L×L
lattice, with N = L2 vertices, the average distance between two randomly
chosen vertices is L/3 in the x coordinate ad L/3 in the y coordinate.
Therefore, the average total distance is l = 2L/3, which scales as l ∼ L ∼√

N . This behavior, N ∼ ld or l ∼ N1/d implies that the network has
dimension d. In this case d = 2. This shows that the dimension of a lattice
can be defined even if no a-priori assumptions about an embedding space is
made.

For a configuration model random graph, the scaling of the distance is
quite different. As stated above, the random graph has no small loops and
therefore is locally tree-like. Thus, it behaves locally as a branching process
with average branching factor κ − 1. The average number of vertices at a
distance l scales as (κ− 1)l. As this is an exponential growth process (for
κ > 2), the number of vertices up to distance l is proportional to that of
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the lth layer. This implies that the average distance between vertices scales
logarithmically with the size of the network 〈l〉 ∼ log N/ log(κ−1) (See, e.g.,
[7, 46] for a more detailed account). For scale free networks with γ < 3, κ
diverges, and therefore the distances are even shorter than logarithmic. For
2 < γ < 3 the distances behave as [19, 17, 22, 48]

(23) 〈l〉 ∼ ln lnN/
∣∣ ln(γ − 2)

∣∣ .

4.2. Strong and Weak Disorder

Assume now that random weights are associated to the links. The weights
are drawn from some distribution P (w). The total weight of a path is the
sum of the weights of the links along the path. The “optimal path” between
vertices is the path of minimal total weight between these vertices. Two
classes of behavior are possible, with a crossover regime between them [13,
14]. If the weights are drawn from a relatively narrow distribution, the
weight of a path will be closely related to its hop number, as every link
will contribute a similar weight. Thus, the length of the optimal path is
expected to be proportional to the length of the shortest path. This case is
known as “weak disorder”. If the distribution of weights is broad enough,
such that, e.g., each weight is at least twice as large as the next highest
weight, the total weight of a path is determined by the highest weight along
the path, and is almost independent of all other weights. In this case, paths
can be compared by the highest weight on them. If they share the highest
weight links, the lower weight path is determined by comparing the highest
weight between the non-shared links. This is termed “strong disorder”.

While in weak disorder the behavior of the optimal path length is very
similar to that of shortest paths, in the strong disorder regime the behavior
is quite different. In strong disorder the optimal paths attempts to avoid
high weight links whenever possible. This implies that the optimal path
may follow a very long distance to avoid passing through nearby high weight
links. In lattices it is well-known [13, 14, 37] that optimal paths in strong
disorder are fractal, i.e., have dimension higher than 1.8 On the other hand,
in weak disorder the optimal paths are only self-affine, meaning they still

8This implies that if the shortest hop distance between two vertices is l, the optimal
path length will scale as lopt ∼ ldopt with some dopt > 1.
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scale similarly to the shortest paths, but allow some small deviations to find
a lower weight path.9

Strong disorder also appears in cases where a path is determined by the
highest weight link without summation. An example of such a case is circuit
allocation in a communication network, where the bandwidth of a path is
determined by the minimum bandwidth of a link along the paths. In this
case only one link determines the bandwidth of the path. However, it may
happen that one wishes to optimize also the bandwidth of the next lowest
bandwidth links to prevent congestion. In this case the optimal between
two paths will be determined by comparing the minimal bandwidth between
their non-shared links. An illustration is presented in Fig. 2.

4.3. Minimum Spanning Trees

Spanning trees are trees that span the network. That is, trees containing
a subset of the links in the network, while still connecting all vertices in
the network. Minimum spanning trees (MSTs) are the spanning trees that
have the lowest total weight of all spanning trees. When all weights are
equal, all trees are minimal, as they all have the same weight (since all
trees on N vertices have N − 1 links). This model, where all spanning trees
are equiprobable, is called uniform spanning tree (UST). When weights are
drawn from a continuous distribution, ties between the weights of different
links become statistically insignificant, as their probability approaches zero,
and the MST becomes unique.

An interesting feature of the minimum spanning tree is that it induces
global, rather than local, optimization. The tree is selected to minimize
the total weight of links under the constraint that all vertices must be
connected. This implies that paths between vertices on the MST are not
chosen to minimize the distance between vertices, but rather are the result
of the global optimization of the tree weight. Therefore, these paths may be
very long compared to the shortest distance between vertices in the original
network. Furthermore, paths between vertices in the tree are unique, so for
the paths between three vertices, A, B and C, it must hold that one of these
paths is the sum of the other two. This structure is, in some sense, “super-
critical”, as it represents a backbone that has been diluted to the maximum

9Formally, self-affinity implies that the width of the path (i.e., the deviations from the
shortest path) scales as W ∼ lα with some α < 1. Therefore, the optimal path length is
still proportional to l with some higher order corrections [4, 10].
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Fig. 2. Searching for the optimal path between vertices A and B in a network with
strong disorder. The length of a path is calculated using lexicographic comparison

rather than the sum of weights. The first (shortest) path found is (8, 10). However, the
subsequent paths found (8, 7, 6) and (8, 7, 4, 3) have lower weight, although they are

longer. After [9]

possible level while maintaining connectivity. The structure of the minimum
spanning tree in a network is thus very similar to the optimal paths in strong
disorder. However, due to their globally optimized nature, MSTs maintain
this behavior for every distribution of weights, even a narrow one.

Two widespread algorithms exist to find the MST: The Prim algorithm
and the Kruskal algorithm (See, e.g., [20]). The Kruskal algorithm operates
by starting from a forest of N vertices and no edges and adding each time the
minimal weight edge that does not close a loop. The Prim algorithm starts
from a vertex, and at each step adds to the tree the lowest weight adjacent
link that does not close a loop. The order at which the edges are added
is random, since the weights were chosen randomly and independently.
Hence, the Kruskal algorithm resembles percolation and the Prim algorithm
resembles invasion percolation [36]. The main difference is that both are
“guarded” percolation, i.e., percolation with the modification that only
the removal of links that do not disconnect the network is allowed. The
percolation process ends when no loops are left and the remaining network
is a tree [21].
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4.4. Fractal properties of optimal paths

To study the behavior of optimal paths and MSTs we use the following
algorithm (which may be seen as the inverse of the Kruskal algorithm for
MSTs): We begin with the full network, and then start removing the highest
weight links. Whenever the removal of a link will break a component into
two smaller components, the link will be “guarded” and will not be removed.
Since the weights are randomly and independently chosen, the order of link
removal is random, and there is no need to actually draw the weights, as
their numerical value plays no role in the model. This algorithm is naturally
justified for the MST, as discussed above. For strong disorder, it is known
that the weight of the highest weight link is larger than the sum of all weights
below it, so, as long as an alternative path with lower weights exists, it will
always be preferable over the higher weight link.

In configuration model random graphs, the analogy between optimal
paths and percolation becomes more exact [9]. Unlike finite dimensional
percolating lattices, in random graphs the components at criticality are tree
like and contain almost no loops. Thus, the percolation components at and
below criticality are subgraphs of the MST. We expect the properties of the
MST or optimal path tree in strong disorder to be similar to that of the
percolation components at criticality.

As discussed in Section 3.2, at pc the size of the largest component at
the percolation threshold scales as S ∼ N1/(τ−1). The distances between
vertices in this component scale as lopt ∼ S1/dl , where dl is the fractal dimen-
sion. Most of the path is along the largest percolation components [30, 1].
It follows that the distances scale as

(24) lopt ∼ N1/(dl(τ−1)) .

This leads to the conclusion that in ER networks optimal paths scale as [9]

(25) lopt ∼ N1/3 .

This scaling also holds when starting from the complete graph, KN , as ER
graphs are obtained by randomly removing links from the complete graph.
On the other hand, distances in uniform spanning trees of the complete
graph and ER graphs are known to scale as l ∼ N1/2 [45]. It therefore follows
that MSTs are more compact than USTs, due to the global constraint on
MSTs, forcing them to be drawn from a different distribution than the
uniform one.
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In scale free networks with γ > 4 the behavior, as for the other critical
exponents, is similar to that of ER networks. When 3 < γ < 4 the behavior
is [9], according to Eq. (24),

(26) lopt ∼ N (γ−3)/(γ−1) .

When γ < 3 the analogy to percolation gives only little insight, as percola-
tion is only achieved in the limit of zero concentration. However, simulation
results indicate that the optimal path lengths are polylogarithmic. Thus,
the dimension of the MST is still infinite. However, these distances are
exponentially larger than the hop distances, which scale as log log N , see
Eq. (23).

To complete the investigation of the length of the optimal path, one
should establish that the percolation components connect between them in
a compact way through the guarded links. This would establish the above
estimation of lopt also as an upper bound and therefore establish that the
scaling is correct. An investigation of the properties of optimal paths and
their partition to percolation components and guarded links is presented
in [51].

A recent paper [1] finally establishes a tight bound on the optimal path
length for MSTs on the complete graph and ER networks. To establish
the compactness of the connections between components of the network,
the links are divided to three regimes. Up to the critical concentration
all links that do not form loops are added, leading to a critical network
with O(N1/3) path length as presented above, Eq. (25). Then, a series of a
few steps in which the size of the largest component grows from O(N2/3)
to O(N/ lnN). In every such step the length of the optimal path does
not increase too much. Eventually, after reaching a component of size
O(N/ lnN), all other components are considerably smaller and then connect
to the largest component through a short sequence of small components. For
full details see [1].

It is well known that in most physical models weak disorder does not
affect the scaling of the optimal path (See, e.g, [11]. See also [47] for
a rigorous result.). Therefore, when disorder is weak, the optimal path
lengths are expected to scale similarly to the shortest paths. Simulations
confirm this expectation. Simulation results [9] indicate that the distances
in both ER and scale free networks with γ > 3 behave logarithmically with
the network size, similarly to shortest paths. For scale free networks with
2 < γ < 3 simulation results lead to the conjecture that the optimal path
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length also scales as powers of log N , which is different than the log log N
scaling of the shortest path length. We have no explanation or analytical
confirmation for these results.

5. Fractal Networks

As discussed earlier, the dimension of scale free networks and mean field
random graph models, such as ER graphs, can be considered to be infinite,
as the growth of the number of vertices at a distance l from an arbitrary
node grows exponentially with l. This seems to stand in contradiction with
the notion that the “scale free” nature of a network implies some fractal
properties of this network. However, as shown below, a recent study [42]
indicates that actually these notions can be reconciled. To explain how, we
first present two methods of finding the fractal dimension.10

5.1. The cluster growing method

In the cluster growing method one begins with an arbitrary vertex of the
network, the distance l neighborhood of the vertex (i.e., all vertices at a
distance at most l from it) is explored, and the number of vertices at a
distance at most l, Ml, is plotted. Results obtained by starting from many
initial vertices are then averaged, and the growth of Ml determines the
fractal dimension. That is, if Ml ∼ ld for some d then d is the fractal
dimension.

5.2. The box covering method

In the box covering method, the fractal is covered by a minimal number of
boxes of some (Euclidean) linear size l. Since the fractal does not cover the
full space, the smaller the boxes, the more holes can be left uncovered. The
dependence of the number of boxes on l determines the fractal dimension
of the network. That is, if the number of boxes of linear size l needed to
cover the fractal is NB(l) ∼ Nl−dB , dB being the fractal dimension of the

10It should be noted that several models have been presented to scale free networks
with fractal structure. See, e.g., [39].
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network. Since the networks discussed here are not embedded in Euclidean
space a analogous algorithm is covering the network with “boxes”, each of
which contains the nodes within a hop distance L from some starting node.

5.3. The fractal nature of scale free networks

In a recent paper [42, 43], Song et al investigated the fractal properties
of several real world networks. As discussed above it was widely believed
that due to the exponential growth of the number of vertices at a distance
l there can be no fractal properties to scale free networks. Song et al
introduce the following idea: While the cluster growing method always leads
to exponential behavior, the box covering method may lead to a different
behavior. To uncover this behavior one should notice the following point:
A box with linear dimension l covers several vertices within a distance l of
some initial node. More boxes are added to cover the rest of the network,
where a covered vertex is not to be covered again. This last requirement
stems from the fact that high degree nodes have a large number of nodes in
their neighborhood. Allowing their repeated use would lead to a large boxes
containing the same nodes with their sizes growing exponentially with l.

The large number of vertices in the l-distance neighborhood of high
degree vertices leads to the covering of high degree vertices quickly in the
process. This effectively lowers the number of high degree vertices for the
rest of the network; thus reducing the expansion of the network. This allows
the growth to become slower than exponential despite the fast growth of the
cluster growing method.

Empirical results show that the application of the optimal box covering
method to networks such as the WWW and protein interaction networks
results in a power law

(27) N(l) ∼ l−dB ,

where dB is the fractal dimension obtained by the box covering method. For
the WWW, dB ≈ 4.1 and for protein interaction networks, dB ≈ 2.3. For
the Internet network, as well as for different models for network formation
no fractality is found, and no power law can be fitted to NB(l).

The fractal nature of networks is also seen by applying the renormal-
ization technique. In the renormalization process each box is replaced by a
“super-vertex” and two such super-vertices are connected if there is a link
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between vertices in the respective boxes. The process of renormalization
produces a new degree distribution of the super-vertices P (k′) whose tail is
invariant under the renormalization, P (k′) ∼ P (k) ∼ (k′)−γ .

From empirical results, the number of links in each box is proportional
to the number of links in the highest degree vertex in the box, with some
proportionality factor depending on the box size l. This implies

(28) k → k′ = s(l)k .

The proportionality factor also behaves as a power law in l satisfying
s(l) ∼ l−dk for some dk. For the WWW dk ≈ 2.5. Consider now the
transformation k → k′. Since n(k)dk = n′(k′)dk′, where n(k) = NP (k) and
n′(k′) = N ′P ′(k′) are the respective number of vertices of degree k (before
the renormalization transformation) and k′ (after the renormalization trans-
formation) respectively. Using P (k) ∼ k−γ , P (k′) ∼ (k′)−γ and Eq. (28), it
follows that N ′ = Nsγ−1. Since N ′ = NB(l), the number of boxes of size l
needed to cover the network, it follows that NB(l) ∼ Nsγ−1 = Nl−dk(γ−1).
By definition NB(l) ∼ Nl−dB . Therefore, there exists a relation between
the fractal dimensions and the degree distribution exponents,

(29) γ = 1 + dB/dk .

The box covering and renormalization methods are illustrated in Fig. 3.

Fig. 3. The box covering method and the renormalization of the network for different
box sizes. After [42]
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6. Fractal Properties of Network Boundaries

Most work on distances in networks focused on the average, or typical
distance between vertices. In a recent work [40, 41], however, the properties
of the vertices far from a given vertex were investigated. It was found that
the number of vertices at a large distance from an arbitrary vertex follows
a power law distribution.

Consider an N -vertex network with some degree distribution P (k). Start
from some arbitrary vertex and observe the vertices at distance l from this
vertex. For ER networks and small l, the growth with l is approximately
exponential. The average hop distance between vertices is approximately
〈l〉 ∼ log N/ log (κ− 1) when κ is finite. In the following, we study the
structure of layers with l > 〈l〉. That is, we study the properties of the
vertices at a distance l from an arbitrary vertex, where l is larger than the
average distance in the network.

Fig. 4. Shell and cluster (component) structure of the boundary of a network. After [41]
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6.1. Distribution of outer shells population

We now follow [41] to prove that the distribution of the number of vertices
in the nth shell for large n follows p(yn) ∼ y−2

n . When exploring the
network, the probability of reaching a vertex with k outgoing links through
a link is p̃(k) = (k + 1)P (k + 1)/〈k〉. Define g(k) =

∑
p̃(k)xk, and 〈k̃〉 =∑

kp̃(k). The generating function for the number of vertices at the nth
shell of a branch is therefore Gn(x) = Gn−1

(
g(x)

)
. We denote by p̃n(Kn)

the probability of finding Kn vertices at the nth shell. p̃n(Kn) are the
coefficients of the Taylor expansion of Gn(x).

For high shell numbers, by the law of large numbers, we expect the
number of vertices to increase by a factor of 〈k̃〉 ≡ κ−1 at every consecutive
shell. (For ER networks 〈k̃〉 = 〈k〉.) Hence, we can conclude that Gn(x)
converges to a function of the form f̃

(
(1− x)〈k̃〉n

)
for large n.

The solution of g(f∞) = f∞ gives the probability of a vertex not to con-
nect to infinity, i.e., not to belong to the giant component. Near criticality
we can guess a solution of the form f(y) = f∞ + ay−α. Expanding g we
obtain,

(30) g(f∞ + ay−α) = g(f∞) + g′(f∞)ay−α + o(y−α).

Solving g
(
f(y)

)
= 〈k̃〉f(y) we obtain α = − ln g′(f∞)/ ln〈k̃〉. In [5], the

behavior of supercritical branching processes was studied. It was proved
that the tail of the distribution of layer sizes follows a power law, pn(Kn) ∼
Kµ

n , with µ = α− 1.
Let yn be the fraction of vertices not connected after the nth shell. Then

yn =
∑

p̃(k)yk
n−1, and thus yn = g(yn−1). Accordingly, the relation between

any two shells, m and n, is given by

(31) yn = f
(
(1− ym)〈k̃〉n−m)

= f∞ + a(1− ym)−γ .

Using the same reasoning as above we obtain γ = ln g′/f∞ ln〈k̃〉.
For a large m, ym = 1−

∑m
l=1 Kl, where Kl is the fraction of vertices in

the lth shell. For large enough l, by the law of large numbers Kl+1 = 〈k̃〉Kl.
Thus, the sum is a geometric series equal to 〈k̃〉Km/(〈k̃〉 − 1). Therefore,
yn ∼ (〈k̃〉Km/

(
〈k̃〉 − 1

)
)−γ .

As shown above P (Km) ∼ Kµ
m. Using p(yn)dyn = p(Km)dKm, we

obtain p(yn) ∼ y−β
n , where β = 1 + (µ + 1)/γ. For ER networks µ + 1 = γ,

and thus β = 2, leading to p(yn) ∼ y−2
n .
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6.2. Component size distribution

We now turn to study the distribution of the component sizes left when ver-
tices up to distance l from a given vertex are removed from the network [41].
The component size distribution in percolation at some concentration p is
determined using the formula

(32) Pp(s > S) ∼ S−τ+1 exp
(
− S|p− pc|−1/σ) .

This distribution can be approximated by considering the exponent to in-
troduce a sharp cutoff,

(33) Pp(s > S) ∼
{

S−τ+1, S < |p− pc|−1/σ,

0, S > |p− pc|−1/σ.

When links are uncovered one by one as the percolation threshold is ap-
proached in a uniform way, so for any a, P (p − pc < a) ∼ a. Therefore, it
follows that

(34) P (s > S) = Pp(s > S)P
(
S < |p− pc|−1/σ) = S−τ+1S−σ.

Therefore, the component size distribution follows ns ∼ s−(τ+σ). For ER
networks σ = 1/2 and τ = 5/2 and thus ns ∼ s−3.

7. Summary

Complex networks present several different types of scaling behavior. A well-
studied property is the scale free nature of the degree distribution of numer-
ous real networks. The Internet, both at the AS and router levels, and the
WWW present a power law degree distribution for several orders of mag-
nitude. Several other natural, technological and social networks are also
believed to posses a power law degree distribution.

In physics, it is well known that systems at a critical point exhibit
fractal, scale invariant, properties. We discussed the critical exponents
associated with the percolation phase transition in general random networks
and in particular in ER and scale free networks. We surveyed the behavior
in different power law regimes and showed that scale free networks have
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anomalous percolation properties even when the critical concentration is
finite. We have shown that the structure of the percolation components
at the phase transition point is fractal, and discussed how to calculate the
fractal dimension. We also calculated the size and typical length of the
largest components at the critical point and showed that it is a fractional
power of the network size.

We have also shown that despite an apparent contradiction between the
infinite dimensional nature of random networks and the notion of fractality,
many naturally occurring scale free networks have fractal properties even
far from criticality. This property is not present in most equilibrium and
growth models of scale free networks. However, it is observed in many
biological and socio-technological networks in the real world. This seems to
hint some scale free properties of the underlying mechanism for the network
formation.

Finally, it was shown that the distribution of the number of vertices at
a large distance from an arbitrary vertex follows a power law. The sizes of
components left after the removal of the l closest layers of a certain vertex
for large l also follow a power law distribution. Thus, even equilibrium
random networks far from criticality exhibit scaling properties in some of
their features.
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