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Networks composed from both connectivity and dependency links were found to be more vulnerable compared
to classical networks with only connectivity links. Their percolation transition is usually of a first order compared
to the second-order transition found in classical networks. We analytically analyze the effect of different
distributions of dependencies links on the robustness of networks. For a random Erdös-Rényi (ER) network with
average degree k that is divided into dependency clusters of size s, the fraction of nodes that belong to the giant
component P∞ is given by P∞ = ps−1[1 − exp (−kpP∞)]s , where 1 − p is the initial fraction of removed nodes.
Our general result coincides with the known Erdös-Rényi equation for random networks for s = 1. For networks
with Poissonian distribution of dependency links we find that P∞ is given by P∞ = fk,p(P∞)e(〈s〉−1)[pfk,p (P∞)−1],
where fk,p(P∞) ≡ 1 − exp (−kpP∞) and 〈s〉 is the mean value of the size of dependency clusters. For networks
with Gaussian distribution of dependency links we show how the average and width of the distribution affect the
robustness of the networks.
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I. INTRODUCTION

Many systems can be efficiently modeled using a network
structure where the system entities are the network nodes
and the relations between the entities are the network links
[1–14]. However, many systems are also characterized by
small subgroups in which the entities belonging to a group
strongly depend on each other. We coin the relation between
each of the two nodes in such a group as dependency links [15].
For example, consider a financial network: Each company
has trading and sales connections with other companies
(connectivity links). These connections enable the companies
to interact with others and function together as a global
financial market. In addition, companies that belong to the
same owner strongly depend on one another (dependency
links). If one company fails, the owner might not be able
to finance the other companies, which will fail too. Another
example is an online social network (Facebook or Twitter):
Each individual communicates with his friends (connectivity
links), thus forming a social network through which infor-
mation and rumors can spread. However, many individuals
will only participate in a social network if other individuals
with common interests also participate in that social network,
thereby forming dependency groups.

Previous studies focused on network models containing
only a single type of link, either connectivity links [10,16–22]
or dependency links [23–27]. The main feature of connectivity
links is to enable nodes to function cooperatively as a network.
A node can function as long as it is connected to the majority
of the network and fails only when it becomes completely
disconnected from the network. Thus, the connectedness
is a global property that depends on the structure of the
whole network. In contrast, the dependency links represent
local relations in the sense that, when a node fails, his
direct dependency neighbors also fail, independent of the
structure of the network. A network model containing both
connectivity and dependency links was first introduced for
two interdependent networks [28,29].

A recent paper [15] introduced for the first time a single
network model containing both connectivity and dependency
links. In this network model the initial failure of nodes may
trigger an iterative process of cascading failures that has a
devastating effect on the network stability. The cascading
failures are a result of the synergy between two different
effects: (a) a percolation process governed by connectivity
links and (b) the failure of an entire dependency group due to
a failure of one member within the group. For a high density
of dependency links the network disintegrates in the form
of a first-order phase transition, while for a low density of
dependency links the network disintegrates in a second-order
transition.

However, the combined model presented in [15] was based
on an unrealistic assumption that all dependency groups are
of size 2, i.e., only a pair of nodes depends on each other.
In reality, as the examples above suggest, groups of several
elements may depend on each other.

In this paper we analyze both analytically and numerically
the general case of a network with different sizes of depen-
dency clusters, as illustrated in Fig. 1. We study networks
with three different types of dependency groups: (a) fixed
size s dependency groups, (b) normally distributed sizes
of dependency groups, and (c) Poisson distributed sizes of
dependency groups. We find that, for random networks with
an average degree k that are divided into dependency groups
(clusters) of size s, the fraction of nodes belonging to the giant
component P∞ is given by P∞ = ps−1[1 − exp (−kpP∞)]s ,
where 1 − p is the initial fraction of removed nodes. The
critical threshold pc below which the network collapses (P∞ =
0) is given by Eq. (18). Our result for s = 1 (a node depends
only on itself) coincides with the known Erdös-Rényi (ER)
equation, P∞ = 1 − exp (−kpP∞), for a network without
dependency relations [18–20]. We also show that for s ! 2
a process of cascading failures occurs and the percolation
transition is of first order [30].

For normally distributed dependency groups with an aver-
age size 〈s〉 and width σ , we find that the system becomes
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FIG. 1. (Color online) Connectivity network with dependency
clusters. The edges represent connectivity relations, while the (blue,
red, and green) groups surrounded by curves represent dependency
relations between all the nodes of the same group (color). The depen-
dency relations can be between very “f ar” nodes in the connectivity
network. In the general case, the sizes of each dependency clusters
follow a given distribution.

more stable (smaller pc) for a broader size distribution.
When σ → 0, the results are the same as the case of fixed
size dependency groups with 〈s〉 = s. We also analyze both
analytically and numerically the case of a Poisson distribution
of dependency cluster sizes and obtain analytical equations for
both P∞(〈s〉) and pc [Eqs. (27), (28), and (29)].

II. GENERAL FORMALISM

When nodes fail in a network containing both connectivity
links and dependency clusters, two different processes occur.
(i) Connectivity links connected to these nodes fail, causing
other nodes to disconnect from the network (percolation step).
(ii) A failing node causes the failure of all the other nodes of
its dependency cluster, even though they are still connected
via connectivity links (dependency step). Thus, a node that
fails in the percolation step leads to the failure of its entire
dependency cluster, which in turn leads to a new percolation
step, which further leads to a dependency step, and so on. Once
the cascade process is triggered, it will only stop if nodes that
fail in one step do not cause additional failure in the next
step.

We start by presenting the formalism describing the iterative
process of cascading failures. On each step we apply the two
processes, a percolation process followed by the removal of
relevant dependency groups. Before each percolation stage the
accumulated cascades are described as equivalent to a single
random removal, 1 − ψ

p
n , where ψ

p
n is the effective functional

part of the network prior to the percolation stage at step
n. Similarly, before each dependency stage the accumulated
cascades are equivalent to a single random removal, 1 − ψD

n ,
where ψD

n is the effective functional part of the network prior
to the dependency stage at step n.

We define two functions, gp(T ) and gD(T ), to evaluate
the effect of the percolation process and the effect of
the dependency clusters on the network, respectively. After
random removal of (1 − T ) of the nodes, the size of the
giant component is given by gp(T ), and equivalently, the part
of the network that is not dependent on the removed nodes

(and, thus, remains functional) is given by gD(T ). Thus, when
applying the percolation process at stage n on a network of
size ψ

p
n , the remaining giant component consists of a fraction

gp(ψp
n ), which is a fraction φ

p
n = ψ

p
n gp(ψp

n ) from the original
network. Similarly, applying the dependency process at stage
n on a network of size ψD

n results in a remaining functional
nodes consisting of a fraction gD(ψD

n ), which is a fraction
φD

n = ψD
n gD(ψD

n ) from the original network.
The iterative process is initiated by the removal of a

fraction 1 − p of the network nodes. The remaining part
of the network is ψ

p
1 ≡ p. This initial removal will cause

additional nodes to disconnect from the giant cluster due to
the percolation process. The fraction of nodes that remain
functional after the percolation process is φ

p
1 = ψ

p
1 gP (ψp

1 ).
Before the dependency step we describe the accumulated
cascades of the previous steps. The fractions of nodes that
fail due to the initial removal and due to first percolation step
are 1 − ψ

p
1 and ψ

p
1 − φ

p
1 , respectively, and the accumulated

cascades are equivalent to a single random removal of 1 −
φ

p
1 = (1 − ψ

p
1 ) + (ψp

1 − φ
p
1 ). Thus, we denote the remaining

functional part before the dependency step as ψD
1 ≡ φ

p
1 . Each

node from the nonfunctional part will cause all the other nodes
of its dependency cluster to also fail (dependency process). The
remaining functional part of the network after the dependency
step is φD

1 = ψD
1 gD(ψD

1 ).
Let us now calculate the accumulated failure up to this

step. The sum of the previous steps, the initial removal of
(1 − p), the removal due to the percolation step (ψp

1 − φ
p
1 ),

and the removal due to the dependency step (ψD
1 − φD

1 ), is
equivalent to a single random removal of [1 − pgD(ψD

1 )]
from the original network ([15]). After such removal the
remaining part of the network before the second percolation
step is ψ

p
2 ≡ pgD(ψD

1 ), and the size of the giant cluster is then
φ

p
2 = ψ

p
2 gp(ψp

2 ).
Following this approach, we can construct the sequences

ψ
p
n and ψD

n of the remaining fraction of nodes and the
sequences φ

p
n and φD

n of functional nodes at each stage of
the cascade of failures. The general form is given by

ψ
p
1 ≡ p, φ

p
1 = ψ

p
1 gp

(
ψ

p
1

)
,

ψD
1 = gp

(
ψ

p
1

)
p, φD

1 = ψD
1 gD

(
ψD

1

)
,

ψ
p
2 = gD

(
ψD

1

)
p, φ

p
2 = ψ

p
2 gp

(
ψ

p
2

)
,

... (1)

ψp
n = gD

(
ψD

n−1

)
p, φp

n = ψp
n gp

(
ψp

n

)
,

ψD
n = gp

(
ψp

n

)
p, φD

n = ψD
n gD

(
ψD

n

)
.

To determine the state of the system at the end of the
cascade process, we look at ψ

p
m and ψD

m at the limit of
m → ∞. This limit must satisfy the equation ψ

p
m =ψ

p
m+1 (or

ψD
m = ψD

m+1) since eventually the clusters stop fragmenting
and the fractions of randomly removed nodes at step m and
m + 1 are equal. Thus, at steady state the system satisfies the
set of two equations

ψp
∞ = gD

(
ψD

∞
)
p,

(2)
ψD

∞ = gp

(
ψp

∞
)
p.
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Denoting x ≡ ψD
∞ and y ≡ ψ

p
∞, we arrive at a system of

two equations with two unknowns: x = pgp(y), y = pgD(x),
which can be reduced to

x = pgp[pgD(x)]. (3)

Solving equation (3), we obtain the size of the network at the
end of a cascade initiated by random removal of 1 − p of the
nodes.

Next, we calculate explicitly gD(T ) and gp(T ). In the
general case, each node belongs to a dependency group of
size s with a probability q(s) so that the number of groups
of size s is equal to q(s)N/s. Since, after random removal of
1 − T of the nodes, each group of size s remains functional
with a probability T s , the total number of nodes that remain
functional is given by

∑∞
s=1 q(s)NT s . Thus, we define the

function gD(T ) as the fraction of nodes that remain functional
out of the T N nodes that were not removed,

gD(T ) ≡
∞∑

s=1

q(s)T s−1. (4)

Analogous to gD(T ), gp(T ) is defined as the fraction
of nodes belonging to the giant cluster of the connectivity
network after random removal of 1 − T of the nodes. The
percolation process can be solved analytically by using the
apparatus of generating functions. As in Refs. [31–33], we will
introduce the generating function of the degree distributions
G0(ξ ) =

∑
k P (k)ξ k . Analogously, we will introduce the

generating function of the underlining branching processes,
G1(ξ ) = G′

0(ξ )/G′
0(1). Random removal of fraction 1 − T of

nodes will change the degree distribution of the remaining
nodes, so the generating function of the new distribution is
equal to the generating function of the original distribution
with the argument equal to 1 − T (1 − ξ ) [31]. The fraction of
nodes that belong to the giant component after the removal of
1 − T nodes is [32,33]

gp(T ) = 1 − G0[1 − T (1 − u)], (5)

where u = u(T ) satisfies the self-consistency relation

u = G1[1 − T (1 − u)]. (6)

III. ER NETWORKS

The formalism presented in Sec. II is general for a random
network having any degree distribution. In the case of an ER
network, whose degrees are Poisson distributed [18–20], the
problem can be solved explicitly. Suppose that the average
degree of the network is k. Then, G1(ξ ) = G0(ξ ) = exp[k(ξ −
1)]. Thus, gp(x) = 1 − u, and therefore, Eq. (3) becomes

x = p[1 − u], (7)

where u is defined according to (6) by

u = exp[−kpgD(x)(1 − u)]. (8)

Using the definition of gD(x), Eq. (4), together with Eq. (8),
we get the general solution for the steady state of the network
at the end of the cascade failure process,

u = e−k
∑∞

s=1 q(s)ps (1−u)s . (9)

In order to present u, obtained from Eq. (9), in terms of P∞,
recall that, at steady state, the size of the giant cluster φ∞ ≡
φ

p
n = φD

n , and, according to (1),

φ∞ = xgD(x) = x

∞∑

s=1

q(s)xs−1 =
∞∑

s=1

q(s)xs. (10)

Since P∞ ≡ φ∞/p, we get the relation

P∞p =
∞∑

s=1

q(s)ps(1 − u)s , (11)

and using (9), a simple equation for P∞ is obtained,

P∞ = − ln u

kp
, (12)

where u is the solution of Eq. (9).Up to this point, we obtained
the size of the network at each step of the cascade process,
Eq. (1), and, in particular, its size, P∞, Eqs. (9) and (12), at the
end of the cascade for the general case of a given distribution
q(s) of sizes of dependency clusters.

IV. FIXED SIZE OF DEPENDENCY CLUSTERS

Using the general solution described above, we analyze the
case of a fixed size s of dependency clusters. In particular,
we find the size of the giant component and the critical
fraction of the network, 1 − pc, that, if removed, leads to
complete fragmentation of the network. In this case, gD , given
in (4), becomes gD(T ) = T s−1, and Eqs. (9) and (11) become,
respectively,

u = e−kps (1−u)s , (13)

P∞ = ps−1(1 − u)s , (14)

which can be combined into a single equation:

P∞ = ps−1(1 − e−kpP∞ )s . (15)

Eq. (15) coincides for s = 1 (a node depends only on itself)
with the known Erdös-Rényi equation [18–20], P∞ = 1 −
exp (−kpP∞), for a network without dependency relations.
Moreover, for s = 2, Eq. (15) yields the result obtained in [15]
for the case of dependency pairs.

Figure 2 shows the size of the giant cluster P∞ versus the
fraction of nodes p remaining after an initial random removal
of 1 − p for the case of an ER network with fixed size of depen-
dency clusters s. The case of s = 1, each node depend only
on itself, is the regular second-order percolation transition.
For any s ! 2, a first-order phase transition characterizes the
percolation process. Both the regular and the new first-order
percolation obey Eq. (15).

Finding the transition point via simulations is always a
difficult task that requires high precision. In the case of s ! 2,
where first-order transition occurs, we are able to calculate
the transition point with good precision by identifying the
special behavior characterizing the number of iterations (NOI)
in the cascading process [15]. This number sharply drops as the
distance from the transition point is increased. Thus, plotting
the NOI as a function of p provides a useful and precise
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FIG. 2. (a) The size of the giant cluster, φ∞ ≡ P∞p, vs p,
the fraction of nodes that remain after random removal, for ER
networks (k = 8) for different fixed sizes of dependency clusters s.
The symbols represent simulation results of systems of 50000 nodes,
and the solid lines show the theoretical predictions. For the case of
s = 1, there are no dependency clusters, and the regular percolation
process leads to second-order phase transition. For s ! 2, a first-order
phase transition characterizes the percolation process represented by
discontinuity of P∞ at pc. Both the regular and the new first-order
percolation obey Eq. (15). (b) The number of iterative failures (NOI)
sharply increases when approaching the critical threshold pc for the
first-order transitions, and thus, they represent a useful method for
identifying accurately the value of pc [15]. Each curve is maximal
as its related curve in (a) approaches the critical threshold from both
sides.

method for identifying the transition point pc in the first-order
region. Figure 2(b) presents the NOI of the simulation results
of Fig. 2(a). The transition point pc can easily be identified
by the sharp peak characterizing the percolation threshold.
The results shown in Fig. 2(b) are in excellent agreement with
theory.

Next, we find analytically the percolation threshold pc for
the case of a fixed size of dependency clusters. Equation (13),
which is the condition for a steady state, has a trivial
solution at u = 1, which corresponds, by (12), to a complete
fragmentation of the network. For large p there is another
solution of 0 < u < 1, corresponding to a finite fraction of the
network. Therefore, the critical case corresponds to satisfying
both the tangential condition for Eq. (13),

1 = u[kpss(1 − u)s−1], (16)

as well as Eq. (13). Thus, combining Eqs. (16) and (13), we
get a closed-form expression for the critical value uc,

uc = exp
(

uc − 1
suc

)
. (17)

Once uc is known, we obtain pc by substituting it into Eq. (16):

pc = [ksuc(1 − uc)s−1]−1/s . (18)

For s = 1 we obtain the known result pc = 1/k of Erdös-Rényi
[18–20]. Substituting s = 2 in Eqs. (17) and (18), one obtains
pc

2 = 1/[2kuc(1 − uc)], which coincides with the exact result

1 2 3 4 5 6
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FIG. 3. Theory [Eq. (18), dashed lines] and simulation results
(symbols) are compared for the values of pc for ER networks with
different average degree k and different fixed sizes of dependency
clusters s. The solid symbols, for s = 1, represent the known Erdös-
Rényi second-order phase transition threshold for a network without
dependency relations, while the open symbols represent first-order
phase transition thresholds.

found in [15]. In Fig. 3 we plot the values of pc as a function
of s for several k values. Note the dramatic effect of the
dependencies on the vulnerability of the system. Even for high
values of k, pc approach rapidly to 1, even for relatively small
s values.

Next, we show that the difference between the continuous
second-order percolation transition and the first-order transi-
tion is characterized not only by the abrupt jump in the size of
the giant cluster at the critical point pc but also by a difference
in the scaling behavior of the giant component φ∞ near pc.
The scaling near pc is defined by the exponent β,

φ∞(p) − φ∞(pc) ∼ (p − pc)β . (19)

Eq. (15) can be written in terms of φ∞(≡ P∞p), the size of
the giant component,

φ∞ = ps(1 − e−kφ∞ )s . (20)

For the case of s = 1 (ER), φ∞(p) − φ∞(pc) changes (as well
known [17]) linearly with p − pc and β = 1. For s ! 2, we
calculate the behavior close to (and above) the critical point,

p ≡ pc + ε,

φ∞ ≡ φc
∞ + δ,

when δ,ε → 0 and φc
∞ ≡ φ∞(pc). For this case, Eq. (20) can

be written as

pc + ε =
(
φc

∞ + δ
)1/s

1 − e−k(φc
∞+δ) = A[1 + C1δ + C2δ

2 + · · ·], (21)

where A ≡ (φc
∞)1/s

1−e−kφc∞
= pc and the linear coefficient is given

by C1 ≡ ( 1
sφc

∞
− k

ekφc∞ −1
). However, using Eqs. (12) and (17),
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FIG. 4. The minimum averaged degree kmin as a function of
the (fixed) size of dependency clusters s. The solid line shows the
theoretical results, obtained from Eqs. (17) and (22). The region of s

and k values below the line represents an unstable network that will
collapse after any single node failure. For k and s values above the
line, the network is stable, and there exists pc < 1.

we obtain that C1 = 0, so near the critical point, ε ∼ δ2 and
δ ∼ ε1/2. Thus, the scaling behavior of the giant component
near the first-order transition, Eq. (19), is characterized by the
critical exponent β = 1/2.

For a fixed s, when k is smaller than a critical number
kmin(s), pc ! 1, meaning that for k < kmin(s), the network will
collapse for any finite number of nodes failure. From Eq. (18)
we get the minimum of k as a function of s,

kmin(s) = [suc(1 − uc)s−1]−1. (22)

Fig. 4 shows the minimum averaged degree kmin as a function
of the size of dependency clusters s.

V. GAUSSIAN DISTRIBUTION OF DEPENDENCY GROUPS

Using the general solution, given in Eqs. (9) and (11), one
can calculate P∞ after initial removal of 1 − p of the nodes and
get pc for every distribution of sizes of dependency clusters
q(s). Here we calculate pc in the case of a normal Gaussian
distribution for the size of the dependency clusters with
average size 〈s〉 and variance σ 2. In this case, the probability
of a random node to belong to a dependency cluster of size s
is given by

q(s) =
{

Ae−(s−〈s〉)2/2σ 2
1 < s < 2〈s〉 − 1,

0 otherwise,
(23)

where A is a normalization constant. Note that q(s) )= 0
only for 1 < s < 2〈s〉 − 1 in order to have a symmetrical
distribution around 〈s〉.

This case generalizes our results of dependency clusters
(for σ → 0) having a single size s and shows the deviations
from these results as the distribution becomes broader. In
this case there are nodes that belong to dependency clusters
that are larger than 〈s〉 and thus have higher probability of
becoming nonfunctional, while the same number of nodes
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p c

σ/<s>

(b)

FIG. 5. (a) The size of the giant cluster, φ∞ ≡ P∞p, vs p (solid
lines) and φ∞(pc) (symbols) for ER networks with average degree k =
15 and dependency clusters normally distributed around averaged size
〈s〉 = 4. The different curves represent different standard deviations
σ [σ = 0 (solid triangle), σ = 0.8 (circle), σ = 1.6 (square), σ = 2.4
(open triangle), and σ = 3.2 (diamond)]. (b) Theory (solid lines) and
simulation (symbols) values of pc for ER networks with average
degree k = 15 and dependency clusters normally distributed around
averaged size 〈s〉 vs the width of the distribution σ . The three curves
represent different values of 〈s〉: 〈s〉 = 4 (circles), 〈s〉 = 6 (squares),
and 〈s〉 = 10 (triangles). For σ → 0 (solid symbols) the Gaussian
distribution becomes a δ function with fixed size of dependency
clusters, and thus, pc is identical to those obtained by Eqs. (17)
and (18) for groups of single size s.

belong to dependency clusters that are smaller than 〈s〉 have
a smaller probability of becoming nonfunctional. We find that
the first-order transition threshold decreases as the distribution
of dependency groups becomes broader, and thus, the network
is more stable, as shown in Fig. 5(a). However, this effect
becomes weaker for larger 〈s〉, as shown in Fig. 5(b).

VI. POISSON DISTRIBUTION OF DEPENDENCY GROUPS

Next, we study the case of a Poisson distribution of
dependency cluster sizes. In this case, the probability that a
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random node depends on s ′ other nodes (and thus the size of
the cluster s equal to s ′ + 1) is

p(s ′) = λs ′
e−λ

s ′!
≡ lim

n→∞

(
n

s ′

)(
λ

n

)s ′ (
1 − λ

n

)n−s ′

(24)

when λ ≡ 〈s〉 − 1 is the average number of other nodes that
depend on a random node. The dependency process can be
calculated, using Eq. (4) and considering that q(s) = p(s − 1),
as

gD(T ) =
∞∑

s=1

p(s − 1)T s−1 =
∞∑

s ′=0

p(s ′)T s ′
, (25)

with s ′ ≡ s − 1. Using (24), we obtain

gD(T ) =
∞∑

s ′=0

lim
n→∞

(
n

s ′

)(
λ

n

)s ′ (
1 − λ

n

)n−s ′

T s ′

=
∞∑

s ′=0

(
n

s ′

) (
λ

n
T

)s ′ (
1 − λ

n

)n−s ′

= lim
n→∞

[
λ(T − 1)

n
+ 1

]n

= eλ(T −1) = e(〈s〉−1)(T −1).

Following (7) and (8), we get an equation for u for the case of
Poisson distribution:

ln u = −kp(1 − u)e(〈s〉−1)[p(1−u)−1]. (26)

Finally, using (12), P∞ is obtained in a closed form,

P∞ = fk,p(P∞)e(〈s〉−1)[pfk,p(P∞)−1], (27)

where fk,p(P∞) ≡ 1 − exp (−kpP∞).
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FIG. 6. The size of the giant cluster, φ∞ ≡ P∞p, vs p for ER
networks (k = 8) and Poisson distribution of dependency clusters
with different average sizes 〈s〉. The symbols represent simulation
results of systems of 50 000 nodes, and the solid lines show the
theoretical predictions. For 〈s〉 = 1 and 2 the network undergoes a
second-order transition, while for 〈s〉 = 2.5,3.5, and 5 the network
undergoes a first-order transition [see Fig. 7, where the exact transition
point from first- to second-order transition is shown] .

Fig. 6 shows the size of the giant cluster at steady state
versus p for different values of 〈s〉. For small 〈s〉, many nodes
do not depend on other nodes, so the effect of the dependency
clusters is rather weak, and thus, the percolation transition
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β=1
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FIG. 7. (a) Theory (lines) and simulations (symbols) are com-
pared for the values of pI

c (〈s〉) and pII
c (〈s〉) for ER networks with

different average degree k (circles for k = 3, triangles for k = 5,
and squares for k = 8). For 〈s〉 > 〈s〉c (dashed line) the network
undergoes a first-order transition. The theoretical values of the
transition point pI

c (〈s〉) that are calculated according to Eq. (29)
are compared with simulations (open symbols) performed using
the NOI method (explained in text). For 〈s〉 < 〈s〉c the network
undergoes a second-order transition, and the theoretical values of
the transition point pII

c (〈s〉) that are calculated according to Eq. (28)
are compared with simulations (solid symbols) performed using the
second-largest cluster method. The dashed line separating the first
and second orders is obtained according to Eq. (32). (b) The size
of the giant cluster φ∞ above the critical point pc is described by
φ∞(p) − φ∞(pc) ∼ (p − pc)β , as shown in the inset. The critical
exponent β above the transition point pc is plotted vs the average size
of the dependency clusters 〈s〉 for a network with k = 8 [compare to
(a); squares]. For the region of the second-order transition, 〈s〉 < 〈s〉c,
we find β = 1 (〈s〉c is marked by the vertical dashed line), while for
the region of the first-order transition, 〈s〉 > 〈s〉c, β = 1/2.
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is of second order, meaning that P∞ continuously decreases
from a finite value to zero at a specific transition point pII

c .
However, for large 〈s〉 the network undergoes a first-order
transition, meaning that the size of the giant cluster abruptly
jumps discontinuously from finite size for p > pI

c to zero for
p < pI

c . Such a network is qualitatively more vulnerable than
a network that undergoes a second-order transition due to the
cascading failures, leading to high vulnerability of the network
around pI

c .
Next, we find explicitly, by analyzing Eq. (26), the first-

order transition point pI
c and the second-order transition

point pII
c . Equation (26) has a trivial solution for u = 1,

which means that the network is completely fragmented. The
second-order transition point pII

c corresponds to the solution
of Eq. (26), where u → 1. This condition gives pII

c ,

pII
c = e〈s〉−1

k
. (28)

Note that for the case of 〈s〉 = 1, meaning that all the nodes
are not dependent, pII

c = 1/k as for regular Erdös-Rényi
networks.

The first-order transition point pI
c corresponds to the

tangential intersection of the left and right terms of Eq. (26),
meaning that the derivatives of both with respect to u are equal.
This yields

pI
c (〈s〉 − 1) = 1

u − 1
− 1

u ln u
, (29)

where u is the solution of Eq. (26).
Fig. 7(a) shows pI

c and pII
c versus the average size of

the dependency clusters 〈s〉. At critical values p = p∗
c and

〈s〉 = 〈s〉c the phase transition changes from first order to
second order. The values of p∗

c and 〈s〉c are obtained when the
conditions for both the first- and second-order transitions are
satisfied simultaneously. Applying both conditions, we obtain

2(〈s〉c − 1) = ke−(〈s〉c−1), (30)

k = 1
p∗

c

e1/2p∗
c . (31)

For a given ER network with average degree k, Eq. (30)
provides the critical average size of dependency clusters
〈s〉c. A network with 〈s〉 < 〈s〉c undergoes a second-order
phase transition, while for 〈s〉 > 〈s〉c the network undergoes a
first-order transition. Therefore, p∗

c , obtained from Eq. (31)
for the case of 〈s〉 = 〈s〉c, characterizes the stability of a
network with maximal 〈s〉 under the constraint of undergoing
second-order transition. The critical case, shown in Fig. 7(a),
of transition from first-order to second-order transition (dashed
line) is given by

p∗
c = 1

2(〈s〉c − 1)
. (32)

As shown in Figs. 6 and 7, increasing the size of the
dependency clusters increases the network vulnerability, and
pI

c becomes larger. A critical average size of dependency
clusters 〈s〉max corresponds to pI

c = 1, meaning that the
network completely fragments as a result of removal of even
a single node. Such a network can be regarded as unstable.
The value of 〈s〉max is given by Eqs. (29) and (26) under the
condition of pI

c = 1.
Thus, the stability of a random network with dependency

clusters with average size 〈s〉 with Poissonian distribution can
be summarized as

〈s〉 < 〈s〉c,
〈s〉c < 〈s〉 < 〈s〉max,

〈s〉 ! 〈s〉max,

for second-order transition, first-order transition, and an
unstable network, respectively.
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