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Abstract
We propose and study a model for the interplay between two different dynamical processes

–one for opinion formation and the other for decision making– on two interconnected net-

works A and B. The opinion dynamics on network A corresponds to that of the M-model,

where the state of each agent can take one of four possible values (S = −2,−1, 1, 2),

describing its level of agreement on a given issue. The likelihood to become an extremist

(S = ±2) or a moderate (S = ±1) is controlled by a reinforcement parameter r� 0. The deci-

sion making dynamics on network B is akin to that of the Abrams-Strogatz model, where

agents can be either in favor (S = +1) or against (S = −1) the issue. The probability that an

agent changes its state is proportional to the fraction of neighbors that hold the opposite

state raised to a power β. Starting from a polarized case scenario in which all agents of net-

work A hold positive orientations while all agents of network B have a negative orientation,

we explore the conditions under which one of the dynamics prevails over the other, impos-

ing its initial orientation. We find that, for a given value of β, the two-network system

reaches a consensus in the positive state (initial state of network A) when the reinforcement

overcomes a crossover value r*(β), while a negative consensus happens for r < r*(β). In

the r − β phase space, the system displays a transition at a critical threshold βc, from a

coexistence of both orientations for β < βc to a dominance of one orientation for β > βc. We

develop an analytical mean-field approach that gives an insight into these regimes and

shows that both dynamics are equivalent along the crossover line (r*, β*).

1 Introduction

The study of complex networks has become a matter of great interest to scientists, due to the
large number of real systems that evolve on top of these kind of topological structures, such as
human societies, climate, transportation and physiological systems. For many years researchers
were focused on studying the topology of isolated networks, and its effect on different dynam-
ics [1–13]. However, it is known that many real-world systems are not isolated but they interact
with each other, and they are well described by a multilayer system of interconnected networks
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[14–17], where nodes belonging to different networks interact. A different multilayer context is
that of multiplex networks, in which the same nodes exist –and represent the same entity– in
different network layers (see [15] and references therein). The study of multilayer systems
allows to understand the interplay between complex networks, and how this affects the pro-
cesses propagating on them, e.g, synchronization [18, 19], diffusion [20], percolation [21–26]
and epidemic spreading [27–35]. Within the context of social science, the study of social phe-
nomena on multilayers is relatively new [15]. Multilayer networks have recently been applied
to study opinion dynamics [36], a topic that has many analogies with the dynamics of species
competition [37], and that has been extensively studied by statistical physicists. In reference
[38], Halu et al. use two interacting networks to describe two political parties that compete for
votes in an election. Diakonova et al. explored in [39] the dynamics of the voter model for
opinion formation on a bilayer network system with coevolving links, and also studied in [40]
the reducibility of the voter model on a two-layer multiplex to a single layer system.

The process of opinion formation may affect and depend on other social processes like deci-
sion making [41], due to the relationships between the individuals taking part in each of these
two processes. For instance, people in a civil society discuss and form their opinions on a given
issue, such as the legalization of the marriage between people of the same sex. However, the
decision on whether the same-sex marriage law is approved or not is discussed and finally
taken in a legislative body, such as the Congress. As a consequence, these two social groups –
society and Congress– influence each other, as congressmen form part and interact with mem-
bers of the society and, at the same time, people in the society are influenced by what the Con-
gress is deciding.

In this article we investigate the interaction between two social dynamics, one for opinion
formation and the other for decisionmaking, that take place on two interconnected networks.
The dynamics for opinion formation corresponds to that of the model proposed by La Rocca
et. al [42], to which we refer as the M-model. This model possesses 2M different states describ-
ing the spectrumof possible opinion orientations on a given issue, from totally against (state S
= −M) to totally in favor (S = M), with some moderate opinions between these extreme values.
The M-model explains the phenomena of polarization in a population of individuals that
evolve under pairwise interactions, by implementing two main social mechanisms for opinion
formation, compromise and persuasion [43–45]. The decisionmaking dynamics is akin to that
of the Abrams-Strogatz (AS) model [6, 46] (originally introduced to study language competi-
tion), where agents can choose between only two possible choices, to be either in favor (S = +1)
or against (S = −1) the issue. Each agent may change its decision by a mechanism of social pres-
sure, in which the probability of switching its present choice increases non-linearly with the
number of neighbors that make the opposite choice. In this work, we set the system to explore
a hypothetical polarized scenario where, initially, all the agents in the opinion network are in
favor of the issue (positive orientations), while all the agents in the decision network are against
(negative orientations). By means of this simple model we address the following questions:
under which conditions the opinion dynamics is able to influence and reverse the initial orien-
tation of the decision network?Which dynamics is stronger and prevails in the long run?We
need to mention that the present proposedmodel on two interacting networks has some analo-
gies with models of coupled spin systems previously studied to describe the phase diagram of
orientational glasses [47, 48]. We also notice that, even though we use in this study the M-
model and the AS model for their simplicity, other social models can be implemented as well
to explore the interplay between opinion and decisionmaking processes.

The rest of the paper is organized as follows. In Section 2 we introduce the model, describing
the topology of interactions as well as the dynamics that runs over each network. Results from
numerical simulations of the model are presented in Section 3, where we show that there are
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three possible final states: a coexistence of both orientations (neither dynamics dominates), a
positive consensus (opinion dynamics domination) and a negative consensus (decision dynam-
ics domination). Then, in Section 4 we develop a mean field approach that allows to explain
the qualitative behavior of the system, and shows that both dynamics behave equivalently for
some particular choice of the parameters. Finally, in Section 5 we summarize and discuss our
findings.

2 The Model

In our model we consider two interconnected networks, denoted by networks A and B, each
with the same number of nodes N and intranetwork degree distribution P(k), which represents
the fraction of nodes connected to k other nodes within the same network.We also consider
pairwise interconnections, that is, each node is connected to one randomly chosen node in the
other network, through an internetwork link. Therefore, a node with k intranetwork links and
one internetwork link is connected to a total of k + 1 neighbors: k from the same network and 1
from the other network. In order to keep the internetwork topology as simple as possible, we
allow each node to have only one internetwork link. However, the qualitative behavior of the
system is expected to be the same if other more complex internetwork patterns are used. In this
particular topology, nodes and links represent agents and their social interactions, respectively,
and thus the terms “nodes” and “agents” are used alternatively along the article.

The dynamics on network A corresponds to that of the M-model [42] with M = 2, where
only one random agent updates its state at each time step, unlike the original version of the
model where two randomly chosen agents can change their states. The opinion state of each
agent is represented by an integer number SA with four possible values SA = −2, −1, 1 or 2,
where the sign of SA indicates its opinion orientation and its absolute value |SA| measures the
intensity of its opinion. Thus, SA = 2 and SA = −2 represent positive and negative extremists,
that is, people totally in favor or against the issue, respectively, whereas SA = 1 and SA = −1
describemoderate opinions from each side. In a single step of the dynamics, an agent and one
of its neighbors are chosen at random. A moderate agent is persuaded by a same-orientation
neighbor to become an extremist with persuasion probability p (|SA| = 1! 2 transition), while
an extremist agent becomesmoderate (|SA| = 2! 1) and a moderate agent changes orientation
(SA = ±1!�1) with compromise probability q when they interact with an opposite-orientation
neighbor [see Fig 1A and 1B]. As we choose p + q = 1 and the M-model dynamics depends on
the relative ratio r� p/q between the probabilities to become an extremist or a moderate [42],
we can express both probabilities p = r/(1 + r) and q = 1/(1 + r) as function of r. The parameter r
measures the strength of reinforcement in the opinion orientation, i e., the tendency of same-ori-
entation neighbors to adopt a more extreme viewpoint as they persuade each other. Thus, for
large values of r most agents tend to keep their opinions close to the extreme values S = 2 or S =
−2, while for small r opinions tend to remain close to the moderate values S = 1 or S = −1. This
model was studied on single fully connected networks in [42], where it was shown that the sys-
tem reaches a quasistationary state whose features depend on r. A polarized state is obtained for
r> 1 (persuasion larger than compromise), where agents’ opinions are driven to the extreme
values M and −M, and thus the distribution of opinions becomes “U-shaped”, with peaks at M
and −M. A centralized state is observed for r< 1 (compromise larger than persuasion), in
whichmost agents hold opinions close to the moderate values 1 and −1. The final state in the
long time limit corresponds to an opinion consensus in either state M or −M (all agents in the
same state M or −M), depending on whether there is an initial majority of positive or negative
agents, respectively. When the system reaches this completely ordered state opinions cannot
longer evolve, and thus we say that consensus is an absorbing state of the dynamics.
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The decisionmaking dynamics of network B is similar to that of the AS model [6, 46],
where each agent can choose to be either in favor (choice state SB = +1) or against (choice state
SB = −1) the given issue. This non-linear version of the voter model [5] implements the peer
pressure as a socialmechanism to change an attitude or behavior: an agent can change its mind
and reverse its decision with a probability equal to a power β (the volatility) of the fraction of
its opposite-choice neighbors [see Fig 1C]. The volatility exponent βmeasures how prone a
node is to changing state, from very likely for β’ 0 to very unlikely for β� 1. The dynamics
of the AS model was extensively studied in single topologies, including fully connected

Fig 1. Schematic representation of two interconnected networks with N = 10 nodes in each layer. The dynamics on the top network A

(blue) obeys the M-model, while the dynamics on the bottom network B (beige) is akin to that of the Abrams-Strogatz model. The colors of the

nodes correspond to different opinion states: S = 1 (pink), S = 2 (burgundy) and S = −1 (green). The figures from the left (right) represent the

situation before (after) the chosen node changes its state. (a) A moderate node i (Si = 1) and a extremist neighbor j (Sj = 2) in network A are

chosen. Then i becomes extremist with probability p (Si = 1! 2). (b) A moderate positive node i (Si = 1) in network A and a negative neighbor j (Sj

= −1) in network B are chosen. Then i becomes a negative moderate with probability q (Si = 1! −1). (c) The chosen node i belongs to network B

and is a negative moderate (Si = −1) with total degree ki = 3 (internal and external degrees k = 2 and k = 1, respectively). Then it changes

orientation (Si = −1! 1) with probability (1/3)β.

doi:10.1371/journal.pone.0163593.g001
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networks as well as complex networks and lattices (see [6] and references therein). This model
exhibits a transition from a coexistence of both states (evenmix of +1 and −1 agents) to a con-
sensus in either state +1 or −1, as β overcomes a threshold value βc’ 1 that is slightly sensitive
to the topology of interactions and the symmetry between both states. The coexistence regime
of non-consensus is quasistationary in finite systems, because finite-size fluctuations eventually
drive the system to one of the two absorbing consensus states.

A distinctive feature of both the M-model and the AS model on single topologies is that their
consensus states are attractive. Therefore, starting from a configurationwhere all agents have
the same state S = ±M in the M-model (or S = ±1 in the AS model), we can introduce a small
perturbation by changing the states of a few agents at random, and check that the dynamics
quickly brings the system back to the initial consensus state. The stability of the consensus state
in the M-model increases with r, as agents have a larger probability to adopt and keep their ini-
tial extreme opinions. For its part, the stability of consensus in the AS model increases with β, as
agents are less likely to change their choices. Then, an interesting situation happens when these
twomodels are coupled and start from opposite oriented consensus states, given that each
dynamics tries to bring the entire two-network system to its own initial state. The interplay
between the two dynamics would eventually drive the system to one of the two initial consensus
states, and thus we can interpret this outcome as the prevalence of one dynamics over the other.
We expect that the final result depends on the relative values of parameters r and β, which are
proportional to the “strength” of the M-model and the AS model, respectively.

Since we are interested in studying which dynamics dominates in the long runwe initially
set all nodes in network B to state SB = −1, while in network A we randomly assigned state SA = 2
to N/2 nodes and state SA = 1 to the other N/2 nodes (all nodes positively oriented but with differ-
ent intensities). Then, at each time step of length Δt = 1/2N, a node i is chosen at random from
the two networks and its state Si is updated according to whether i belongs to network A or B:

1. Node i in network A: one of its ki + 1 neighbors, node j with state Sj, is randomly chosen. If i
and j share the same orientation (Si Sj > 0), then with probability p node i adopts an extrem-
ist state if it is a moderate (Si = ±1! ±2), and, independently of the interaction, remains
extremist if it is already an extremist (Si = ±2! ±2) [see Fig 1A]. If i and j have opposite
orientations (Si Sj < 0), with probability q node i becomesmoderate if it is an extremist
(Si = ±2! ±1), or changes orientation if it is a moderate (Si = ±1!�1) [see Fig 1B].

2. Node i in network B: the state of i changes with probability

PBðSi 7! � SiÞ ¼
n

ki þ 1

� �b

; ð1Þ

where n is the number of neighbors of i with opposite orientation than i, and β� 0 is the
volatility.

In the next Sectionwe explore the behavior of the model using β and r as external control
parameters.

3 Simulation Results

We studied the model described in Section 2 by means of Monte Carlo simulations using two
interconnected degree-regular random networks (DR) of degree μ = 5 and N nodes each.We
implemented the Molloy-Reed algorithm [49] to build the networks, where each node is con-
nected to μ random nodes in the same network, and to one random node in the other network.
Starting from a polarized situation that consists of setting all nodes in network A to positive
states and all nodes in network B to negative states, we let the system evolve following the M-
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model and the AS dynamics described in Section 2 for networks A and B, respectively. We
investigated how the steady state of the system depends on the opinion reinforcement r and
volatility β that control, respectively, the strength of agents’ persuasion in network A and the
likelihood that an agent in network B changes its decision. Because we were particularly inter-
ested in studying whether the dynamics in network A prevails over the dynamics in network B
(or vice versa), we runmany independent realizations of the dynamics and calculated the prob-
ability P+ that the entire two-network system reaches a + consensus, that is, the initial orienta-
tion adopted by network A. We consider that the system reaches consensus when all nodes of
both networks have the same orientation (either positive + or negative −). Notice that, for
instance, states S = 2 and S = 1 are both considered as positively oriented. The probability P+

was estimated as the fraction of realizations that ended in a + consensus. Given that each sepa-
rate model always reaches consensus in a finite network –as explained in Section 2–, one can
check that the probability of a − consensus in the entire system is P− = 1 − P+.

In Fig 2A we plot P+ as a function of r for three different volatilities β. We observe that P+

increases abruptly from 0 to 1.0 when r overcomes a crossover value r�(β), determined as the
symmetric point where P+ = 1/2. This means that for large reinforcement r> r� network A
imposes its initial orientation to network B, and thus the dynamics of the M-model prevails
over the AS dynamics. The opposite happens for low reinforcement r< r�, where the initial
orientation of network B prevails, and thus the dynamics of the AS model is stronger than that
of the M-model. An interpretation of these results can be given in terms of the response of the
M-model to a variation in r. As described in Section 2, the initial positive consensus in the M-
model on network A becomesmore stable as r increases. Then, it turns out that for very small
values of r the initial A-consensus is very unstable, and all nodes in network A quickly adopt
the negative states hold by nodes in network B, driving the entire system to a − consensus in
most realizations (P+’ 0). In the opposite limit of very large values of r, the initial A-consensus
is very stable, thus most A-nodes keep their initial positive states while B-nodes change their
states to positive, and the entire system reaches a + consensus in most realizations (P+’ 1).
Finally, for intermediate values of r some realizations end in a + consensus while the rest end
in a − consensus, leading to the sigmoidal shape of P+ vs r in Fig 2A.

In Fig 2B we plot P+ vs β for three values of r. We can see a crossover from + to − consensus
at a value β�(r), where P+ = 1/2, in a similar fashion to the crossover with r described above.
For β> β� network B imposes its initial orientation to network A, while for β< β� the opposite
happens. This behavior can be explained using arguments similar to those used above to
explain the crossover of P+ at r�. As β increases from small values, the initial − consensus state
of network B gains stability, continuously increasing the probability that the system reaches a
− consensus or, equivalently, decreasing P+. The reason why curves start at β = 1 is because for
low values of β consensus states are never observed in the simulations, even though finite sys-
tems must reach consensus as we noted before. As we shall see when we analyze other observ-
able like the magnetization, for β< βc’ 0.86 the system falls in an active steady state with
+ and − orientations coexisting in both networks but, after a long time, consensus is eventually
achieved by fluctuations. Consensus times in this regime are extremely long for the system
sizes we used, and thus consensus is never achieved in a reasonable computer time. Indeed, we
have run simulations on small enough networks and checked that an absorbing state is always
reached. As we shall explain, this quasistationary non-consensus state is related to the coexis-
tence dynamics observed in the AS model for β< βc’ 1.

Fig 2C shows P+ vs β for r = 0.25 and different network sizes N. We can see that the cross-
over becomes sharper as N increases, with a slope at β� that diverges as

ffiffiffiffi
N
p

, as the data collapse
in the inset of Fig 2C shows. In the inset of Fig 2B we show the mean time τ to reach the
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consensus state as a function of β, for the values of r of the main Fig 2B. We observe that τ has
a peak at β�, which is consistent with the fact that at the crossover point the system can reach
either + or − consensus with the same probability 1/2, suggesting that large fluctuations lead
the system to the final state. In Section 4 we give an insight into this last behavior and show
that the breaking in the symmetry of the system at β� eventually happens after a long time,
when finite-size fluctuations make the system overcome a potential barrier. Below β� the M-
model in network A seems to control the dynamics of the system –as there is a + consensus in
both networks–, and thus τ is determined by the time it takes for network B to reach a + orien-
tation from an initial − orientation, which increases with β. But above β� the opposite happens:
network B rules the dynamics, and thus τ is related to the time that network A takes to go from
a positive to a negative orientation. This observation is in agreement with the fact that τ
approaches a constant value as β becomes large, given that the M-model is independent of β,
and then so is τ.

Fig 2. Probability of positive consensus P+ in a system of two interconnected networks A and B. Initially, all nodes in network A (B) are

positive (negative). (a) P+ as function of r = p/q on a log-linear scale, for networks of size N = 2048 nodes and β = 2.0 (�), 2.25 (□) and 2.5 (�). At the

crossover point r*(β) is P+ = 1/2 (vertical dashed line shown for β = 2.5 only). (b) P+ vs β for r = 0.25 (�), 1.0 (□) and 1.2 (�). At β*(r) is P+ = 1/2 (vertical

dashed line for r = 0.25). Inset: mean consensus time τ vs β, for the same parameter values, showing a maximum at β*. (c) P+ vs β for r = 0.25 and

network sizes N = 512 (�), 2048 (□), 8192 (�) and 32768 (4). Inset: the curves collapse when the x-axis is rescaled by ðb � b
�
Þ
ffiffiffiffi
N
p

. All numerical

results correspond to an average over 104 independent realizations on degree-regular random networks of degree μ = 5.

doi:10.1371/journal.pone.0163593.g002

Interacting Social Processes on Interconnected Networks

PLOS ONE | DOI:10.1371/journal.pone.0163593 September 30, 2016 7 / 17



In order to explore the behavior of the system for a wider range of β, we study the magneti-
zation in networks A and B, mA and mB, respectively, at the steady state. The magnetization in
network ℓ (ℓ = A, B) at time t is defined as

m‘ ¼ sþ
‘
� s�

‘
; ð2Þ

with mℓ�mℓ(t), sþ
‘
� sþ

‘
ðtÞ, s�

‘
� s�

‘
ðtÞ, and where sþ

‘
and s�

‘
are the fractions of nodes with

+ and − state, respectively, in network ℓ at time t.
As we mentioned above, consensus in one of the two orientations is only observed in the

simulations when β is above a critical value βc’ 0.86, while for β< βc the system remains in an
active steady state with both positive and negative orientations coexisting. This means that, in
the 0� β< βc region, magnetizations mA and mB in a single realization fluctuate around two
different stationary values that are neither 1.0 nor −1.0. This is shown in Fig 3, where we plot
the average magnetization over many realizations at the steady state in each network, hmAi and
hmBi, as a function of β� 0, for r = 0.25 and N = 2048. We can distinguish three different
regimes. In the first regime (denoted by regime I), we see that hmAi (hmBi) increases from 0.8

Fig 3. Average magnetization at the steady state hmAi (circles) and hmBi (diamonds) in networksA and B, respectively, as a

function of β, forr = 0.25. Below the critical threshold βc’ 0.86 the system remains in a disordered state where both + and − orientations

coexist (Regime I), while above βc the system reaches an ordered state of consensus (Regimes II and III). The point β* denotes the

crossover between Regimes II and III, characterized by a positive and negative consensus, respectively. Numerical results correspond to

two DR random networks of degree μ = 5 and size N = 2048 each, averaged over 104 independent realizations.

doi:10.1371/journal.pone.0163593.g003
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(0.0) to 1.0 (1.0) in the range from β = 0 to βc’ 0.86. That is, there is a majority of nodes with
positive orientation in network A, while in network B the coexistence is more even.We note
that, strictly speaking, this coexistence regime is stable only in the thermodynamic limit, where
the system remains forever in a stationary state of non-consensus. As stated before, in finite
systems the steady state lasts for very long times, but fluctuations ultimately drive the system to
an absorbing consensus state.

Above βc the system reaches a positive consensus hmAi = hmBi = 1.0 (network-A domi-
nance) for βc < β< β� (denoted by regime II), and a negative consensus hmAi = hmBi = −1.0
(network-B dominance) for β> β� (denoted by regime III). In regimes II and III close to β�, an
average value of the magnetization different from 1 and −1 means that some fraction of the
realizations ended in a positive consensus and the rest in a negative consensus.

The values of βc and β� are very different in nature. While βc denotes a critical point from a
disordered phase (regime I) to an ordered phase (regimes II and III), β� denotes a crossover
point within the ordered phase, which separates the two dominance regions.We also note that
the order-disorder transition at βc is related to the same type of transition observed in the AS
model, explained in Section 2. It seems that the coexistence phase in the isolated AS dynamics
is very robust, and the coupling to the M-model produces only a shift in the critical value, from
βc’ 1 to βc’ 0.86.

Fig 4 shows the phase diagram of the system in the r − β plane, on a log-linear scale.We
observe that the crossover point β� increases very slowly (logarithmically) with r�. Therefore,
starting from a point (r, β) inside the B-dominance region, an exponentially large increase in r
must be done to take the system to the A-dominance region. In other words, for a small change
in the volatility of the decisionmaking dynamics of network B, the dynamics of network A has
to increase its opinion reinforcement by a large amount, in order to impose its initial
orientation.

In the next Sectionwe develop a theoretical approach that allows to explain the qualitative
behavior of the system in the three regimes. Even though this approach assumes that the sys-
tem is infinitely large, is able to capture most of the phenomenology observed in the simula-
tions, which are for finite networks.

4 Mean Field Approach

As we showed in Section 3, the system exhibits three different regions in the r − β phase space:
a coexistence of + and − nodes for β below a critical value βc, a + consensus for βc < β< β�(r)
where the M-model in network A dominates, and a − consensus for β> β�(r) where the AS
model in network B dominates. In order to understand the role of β and r in the behavior of
the system in these three regions, we study in this Section the evolution of the system within a
mean-field approach. To be specific, we write and analyze approximate equations for the time
evolution of the magnetization in each network.

As the system is symmetric at β�, where consensus is equally reached in both opinion orien-
tations, we assume that the dynamics of bothmodels are equivalent at β� and, therefore, we con-
sider the M-model as an AS model with a volatility exponent β�. Roughly speaking, we can
think of mapping the four-state M-model into a two-state AS model by combining S = 1 and
S = 2 states into a single + state and S = −1 and S = −2 into a single − state, and considering effec-
tive transition probabilities between+ and − states that are non-linear functions of the fractions
σ+ and σ− of + and − neighbors of a given node, respectively. For instance, the effective transition
probability of a node i from − to + can be written as (σ+)β

�

, where σ+ is the fraction of i’s neigh-
bors in the opposite state + (S = 1 and S = 2 states). Even though it is difficult to obtain the exact
value of the exponent β�, one can show that β� should be larger than 1.0 using the following
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heuristic argument. The effective transition probability from − to + states involves single jumps
from nodes in state S = −1 to state S = 1, whose probability is proportional to the fraction of
+ neighbors σ+, and also double jumps from nodes in state S = −2 to S = −1 and then to S = 1,
with a probability proportional to (σ+)2. Combining these two types of transitions in the entire
network results in an effective probability with an exponent 1.0< β� < 2.0.

The advantage of mapping the four-state M-model into a two-state model is that it allows to
reduce the original two-network system –where the M-model interacts with the AS model– to
a simpler system consisting on two interacting AS models, which can be studied analytically.
Even though these two systems are not exactly the same because the mapping of the M-model
into the AS model is only approximate, we shall see that both systems share the same phenom-
enology, with results that are in qualitative agreement with the simulation results of Section 3,
including a transition and a crossover between the different regimes.

Based on these assumptions, we study a system that consists of two interconnected networks
A and B, where an AS dynamics with fixed volatility α = β� runs on network A (representing the
M-model), and another AS dynamics with variable volatility β runs on network B. We start by
deriving an approximate equation for the time evolution of the magnetization m‘ ¼ sþ

‘
� s�

‘
in

Fig 4. Reinforcement-volatility (r − β) phase diagram on alog-linear scale for a two-network system with the same parametersas in Fig 2.

Solid circles correspond to the crossover points (r*, β*) between network-A and network-B dominance regions, while the dashed line represents the

transition point βc’ 0.86 between coexistence and consensus.

doi:10.1371/journal.pone.0163593.g004
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network ℓ (ℓ = A, B), where sS
‘
is the fraction of nodes with state S (S = +, −) in each network,

which obeys the normalization condition sþ
‘
þ s�

‘
¼ 1. At each time step Δt = 1/2N, a node i in

network A with state S is chosen with probability sS
A=2, and switches to state −S with probability

PA(S! −S), changing mA by ΔmA = −2S/N. Then, the average change in the magnetization of
network A can be written as

dmA

dt
¼

1

1=2N
s�A
2

PAð� ! þÞ
2

N
�

sþA
2

PAðþ ! � Þ
2

N

� �

: ð3Þ

Using Eq (1) for the switching probability, PA can be approximated as

PAðS! � SÞ ’
nAh i

mþ 1

� �a

; ð4Þ

where hnAi is the expectednumber of neighbors of node i with opposite state −S, and μ + 1 is the
total number of neighbors.Within a mean-field approach that neglects nearest-neighbor correla-
tions (node approximation), a neighbor of i in network A (B) is in state −S with probability s� S

A

(s� S
B ) and, therefore, the expectednumber of neighbors with state −S of i can be estimated as

nAh i ’ m s� S
A þ s� S

B : ð5Þ

Using Eqs (4) and (5) and expressing the densities of states in terms of the magnetization
sS

A ¼ ð1þ S mAÞ=2, Eq (3) can be written as

dmA

dt
¼
ð1 � mAÞ

2aðmþ 1Þ
a mð1þmAÞ þ 1þmB½ �

a
�
ð1þmAÞ

2aðmþ 1Þ
a mð1 � mAÞ þ 1 � mB½ �

a
; ð6Þ

and a corresponding equation can be derived for mB,

dmB

dt
¼
ð1 � mBÞ

2bðmþ 1Þ
b

mð1þmBÞ þ 1þmA½ �
b
�
ð1þmBÞ

2bðmþ 1Þ
b

mð1 � mBÞ þ 1 � mA½ �
b
: ð7Þ

Eqs (6) and (7) can be rewritten in the form of a time-dependentGinzburg-Landau equation
[6]

dmA

dt
¼ �

@VA

@mA
; ð8Þ

dmB

dt
¼ �

@VB

@mB
; ð9Þ

with potentials VA� VA(mA, mB) and VB� VB(mA, mB) given by

VA ¼ �
ðmð1þmAÞ þ 1þmB½ �

aþ1
m 2þ ðaþ 1Þð1 � mAÞ½ � þ 1þmB�f g

2aðmþ 1Þ
a
m2 ðaþ 1Þ ðaþ 2Þ

�
ðmð1 � mAÞ þ 1 � mB½ �

aþ1
m 2þ ðaþ 1Þð1þmAÞ½ � þ 1 � mB�f g

2aðmþ 1Þ
a
m2 ðaþ 1Þ ðaþ 2Þ

;

ð10Þ

VB ¼ �
ðmð1þmBÞ þ 1þmA½ �

bþ1
m 2þ ðbþ 1Þð1 � mBÞ½ � þ 1þmA�f g

2bðmþ 1Þ
b
m2 ðbþ 1Þ ðbþ 2Þ

�
ðmð1 � mBÞ þ 1 � mA½ �

bþ1
m 2þ ðbþ 1Þð1þmBÞ½ � þ 1 � mA�f g

2bðmþ 1Þ
b
m2 ðbþ 1Þ ðbþ 2Þ

:

ð11Þ
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This formalism is very useful for visualizing the system’s evolution, as each magnetization
evolves towards the minimum of its associated potential. However, unlike it happens in the AS
model on a single isolated network [6] where the potential depends on a unique magnetization
and is static, the present case has two coupled potentials that vary in time. Indeed, Eq (10) for
the potential VA that rules the evolution of mA can be interpreted as an explicit function of mA,
whose shape is controlled by a time-dependent external parameter mB. Therefore, the shape of
VA varies with time through mB. An analogous interpretation can be done for VB, which
depends on mA. Thus, within this approximate mathematical formalism represented by the
coupled system of Eqs (8) and (9), the interplay between both networks enters through the
potentials VA and VB, which interact and co-evolve in time.

We now explore the behavior of the two networks by studying the evolution of the magneti-
zation describedby Eqs (6) and (7), and using the potential formalism. For network A we set
the volatility value α = β� = 1.78 corresponding to the crossover point for r = 0.25 calculated in
Section 3, and vary the volatility β in network B. The phenomenology described below is quali-
tatively the same for the values of α that correspond to the other values of r used in Fig 4.

To visualize the trajectories of the magnetization, we plot in Figs 5 and 6 the values of mA

and mB (circles) and their associated potentials (solid lines) at different times, for various
parameter values. Each circle corresponds to the magnetization mℓ at a given time t, which lies
over the potential Vℓ at the same time t, with ℓ = A, B. The intensity of a circle’s color decreases
as time increases, starting from t = 0 (dark circle) and ending at the lightest color. Drawing the
complete shape of the potential helps to understand the trajectory followed by mℓ, which
moves in the direction of the minimum of Vℓ. The values of mA and mB were obtained by inte-
grating numerically Eqs (6) and (7), while the potential VA at a given time t was drawn by
replacing the value of mB into Eq (10), and similarly for VB.

Fig 5 (left) shows the behavior in the coexistence regime I, for β = 0.1< βc’ 0.86. As we
can see, the magnetization in network B evolves from mB = −1.0 at t = 0 to the minimum at mB

’ 0 for long times (approximately 51% of positive agents), while mA in network A starts at 1.0
and reaches the stationary value mA’ 0.95 close a positive consensus. This result is in agree-
ment with the one found from simulations for small β� βc (see Fig 3 for small β), where the
system remains in a disordered phase with a coexistence of both orientations. The behavior in
the positive consensus regime II is quite different [Fig 5 (right)]. There we use β = 1.2 that lies
between βc’ 0.86 and β� = 1.78.We observe that, as it happens in simulations, both networks
reach a positive consensus after a few time steps. While mA quickly gets trapped in a local mini-
mum that ultimately reaches the value mA = 1, mB follows a direct trajectory from mB = −1
towards a unique minimum at mB = 1. The critical value of β that separates regime I (coexis-
tence) from regime II (consensus) was found to be close to 1.0 (not shown), which is quite dif-
ferent from the critical threshold βc’ 0.86 obtained fromMonte Carlo simulations. This
discrepancymay be due to the fact that the theoretical approach considers an AS model in net-
work A (instead of the M-model) and also that Eqs (6) and (7) describe the evolution of mA

and mB in infinite large systems, as they do not have any terms that take into account finite-
size fluctuations.

Fig 6 (left) corresponds to the crossover point β = β� = α. We see that the magnetizations
reach the stationary values mA’ 0.75 and mB’ −0.75, corresponding to a totally symmetric
case in which there is an unbalanced coexistence of orientations in each network. Even though
the total magnetization mA + mB = 0 at the crossover point agrees with the average magnetiza-
tion obtained from simulations (see Fig 3), there is a discrepancywith simulations results,
where consensus in one of the two orientations is always obtained for each individual realiza-
tion due to finite-size fluctuations. This is because Eqs (6) and (7) describe an infinite large sys-
tem where fluctuations are neglected and, therefore, the system can never escape from the
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minimum. Due to the symmetry in both potentials, one would expect a 50% chance to escape
towards either consensus state if fluctuations were present, which is consistent with the equal
consensus probability in each state P+ = P− = 1/2 shown in section 3. Finally, Fig 6 (right) cor-
responds to regime III, with β = 3> β�. The behavior in this case is analogous to the one of Fig
5 (right), but with an ultimate negative consensus in both networks (mA = mB = −1), in agree-
ment with simulation results of Section 3.

In summary, the theoretical approach of this Section allows to understand the underlying
behavior of the system in the different regimes, and gives an insight into why a dynamics pre-
vails over the other.

5 Discussion

In this work, we explored the interplay between two different dynamical processes that take
place on two interconnected networks A and B. The dynamics on network A corresponds to
the one of the M-model for opinion formation with four states (M = 2), which implements the
mechanisms of compromise and persuasion related by a reinforcement parameter r. In

Fig 5. Potentials VA and VB (solid lines) as a function of the magnetizations mA and mB in networks A and B, respectively, at different

times, obtained from Eqs (10) and (11). The degree in both networks is μ = 5. The volatility in network A is α = 1.78, while in network B is β = 0.1 (left

panel) and β = 1.2 (right panel). Circles correspond to the values of the magnetizations at different times, starting from the dark topmost circle at t = 0

and ending at the lightest circle for long times. Vertical arrows indicate the time direction. Plots in the left panel show the coexistence regime I, while

plots in the right panel describe the positive consensus regime II.

doi:10.1371/journal.pone.0163593.g005
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network B the dynamics is akin to that of the Abrams-Strogatz model for decisionmaking,
with two states and a volatility parameter β. Bothmodels have positive and negative opinion
orientations. We initially set the system in a symmetric condition, where all nodes in network
A have positive states and all nodes in network B have negative states, and studied the condi-
tions under which one of the two dynamics dominates. We found that for a reinforcement
larger than a crossover value r�(β) the dynamics on network A dominates, as a positive consen-
sus is reached in both networks, while the opposite outcome is obtained for r < r�(β) (network
B dominates). As we have shown, this is due to the fact that increasing the level of opinion rein-
forcement in network A beyond a value r� produces a large number of positive extremists that
are able to resist the change of orientation, imposing their positive orientation to the entire sys-
tem. Besides, the study of the full r − β phase space revealed a transition at a critical threshold
βc, from a disordered phase where both orientations coexist to an ordered phase characterized
by a consensus of one of the two orientations. We also showed that both dynamics are equiva-
lent along the crossover line (r�, β�) that separates the A-dominance and B-dominance regions,
as the consensus probability in either state is the same on the (r�, β�) line. Taking advantage of
this symmetry, we developed a mean-field approach for the evolution of the magnetization in
each network, using a time-dependentGinzburg-Landau equation. This approach was able to

Fig 6. Potentials VA and VB as in Fig 5, but for volatility values β = α = 1.78 (left panel) and β = 3 (right panel). Plots in the left panel correspond

to the crossover point, a symmetric case where the system remains disordered, while plots in the right panel show the negative consensus regime III.

doi:10.1371/journal.pone.0163593.g006
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reproduce qualitatively the different regimes observed in the simulations, and gave an insight
into when and how the dominance of one dynamics takes place.

In practical terms, the equivalence between both dynamics means that a rather complex M-
model with four opinion states and a reinforcement r� can be mapped to a simpler two-state
model with effective transition probabilities given by the exponent β�(r�). This mapping might
be very useful to gain an analytical insight into the behavior of the M-model, given that the
dynamics of the two-state equivalent model can be understood in terms of its associated Ginz-
burg-Landau potential. Despite the fact that this result is particular of the opinion and decision
makingmodels used in this work, we expect that analogous behaviors can be obtained using
other types of dynamics, beyond socially inspired models. As a general remark, one can argue
that it is possible to gain a better understanding of a complex and poorly known dynamics by
coupling this dynamics to a much simpler a better known two-state model, using two similar
interconnected networks as the underlying topology.

While our results are obtained using degree-homogeneousnetworks, it might be worthwhile
to study the system using different network topologies, as real social networks are known to be
quite heterogeneous. Even though we limited our internetwork topology to a single random
interlink per node, the addition of targeted interlinks connecting specific nodes in both net-
works may bring new phenomenology. It could also be interesting to investigate how the num-
ber of different opinion states in the M-model affects the results, given that a more robust
polarized state is expected as the maximum opinion value M increases.
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and dynamics of multilayer networks. Physics Reports. 2014; 544(1):1. doi: 10.1016/j.physrep.2014.

07.001

16. Jianxi G, Li D, Havlin S. From a single network to a network of networks. National Science Review.

2014; 1:346. doi: 10.1093/nsr/nwu020

17. Kenett DY, Perc M, Boccaletti S. Networks of networks: An introduction. Chaos, Solitons & Fractals.

2015; 80:1. doi: 10.1016/j.chaos.2015.03.016

18. Gambuzza LV, Frasca M, Gómez-Gardeñes J. Intra-layer synchronization in multiplex networks. Euro-

physics Letters. 2015; 110(2):20010. doi: 10.1209/0295-5075/110/20010 PMID: 27368794

19. Torres M F, Di Muro M A, La Rocca C E, Braunstein L A. Synchronization in interacting scale-free net-

works. Europhysics Letters. 2015; 111(4):46001. doi: 10.1209/0295-5075/111/46001
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