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We consider the application of fractal concepts to polymer statistics and to 
anomalous transport in randomly porous media. It is found that answers to 
interesting physics questions can be expressed in terms of several new fractal 
dimensions (in addition to "the" fractal dimension d:): (1)d~ B, the fractal 
dimension of the backbone, arises in connection with electric current flow, 
(2) dred, the fractal dimension of the singly connected bonds in the backbone, 
arises in connection with its equivalence to the thermal scaling power, (3)de, 
the fractal dimension of the of the elastic backbone, (4)du, the fractal 
dimension of the unscreened perimeter, arises in connection with the viscosity 
singularity at the gelation threshold, (5)dmi n the fractal dimension of the 
minimum path (or "chemical distance") between two sites, arises in connection 
with the Aharony-Stauffer conjecture, (6)d w, the fractal dimension of a random 
walk, (7)do, the fractal dimension of growth sites that arise as a random walk 
creates a cluster. Relations among these fractal dimensions are discussed, some 
of which can be proved and others of which are conjectures whose validity has 
been established only in certain limiting cases. 

There  is an u n d e r g r o u n d  joke  c i rcu la t ing  that  the three great  diseases of  the 
lat ter  par t  o f  the twent ie th  cen tu ry  will be r emembered  as be ing Herpes ,  

A I D S ,  and  fractals.  Indeed,  f ractals  has  at least one ea rm ark  of  a great  

disease:  it can  spread. Whi le  jus t  a few years  ago, one  heard  of  on ly  a single 

fractal  d imens iona l i ty ,  d:, n o w a d a y s  one hears  of  at least n ine  separa te  

fractal  d imens ions .  In  addi t ion ,  it is somet imes  useful to form the ra t io  of  
two fractal  d imens ions  and  thereby to form what  Tou louse  calls an 
" in t r ins i c"  fractal  d imension. . ,  ana logous  perhaps  to the fami ly  of  c rossover  
or " g a p "  exponents  ob ta ined  when one fo rmal ly  takes the rat io of  scal ing 
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powers, tl) If  there are nine extrinsic fractal dimensions, then there are poten- 
tially (9) possible intrinsic fractal dimensions. Let us hope that our current 
situation is analogous to that in critical phenomena just before Widom and 
Kadanoff  put forth the scaling conjecture. There were, in the early 1960s, 
more exponents in use than letters in the Greek alphabet: in one stroke the 
scaling conjecture reduced this surfeit to a mere two independent exponents. 

The purpose of this talk is to introduce some of these newer fractal 
concepts, with particular emphasis on those that seem to be of some utility in 
polymer statistics and in describing anomalous transport in randomly porous 
media. We shall also discuss several recently discovered relations among the 
various fractal dimensions. 

We must take care to distinguish the utility of regular geometric fractals 
and irregular, random, "statistical" fractals, ~2) For regular "geometric" 
fractals, 

[mass]tot = L al ("exactly") ( la)  

Here M denotes the number of objects in the fractal (its "mass")  and L 
denotes the length scale under which it is examined. 

For irregular (random) or "statistical" fractals, the symbols in ( la )  are 
replaced by their mean values: M denotes the mean mass and L denotes the 
rms radius of gyration (or caliper length---one seems to get the same answer 
regardless3). Thus we write 

[mass]tot ~ L ai ("asymptotically") ( lb)  

For some statistical fractals, one can compute d I exactly; for others, we use a 
computer. In practice, we must average over thousands (sometimes even 
millions) of realizations in order to compute accurate estimates of d I. 

Before formally beginning, I should apologize to those whose work I 
have omitted, and acknowledge my colleagues whose work I have 
emphasized; these include Z. Djordjevic, S. Havlin, H. J. Herrmann, D. 
Hong, N. Jan, F. Leyvraz, I. Majid, P. Meakin, and especially A. Coniglio. 
It is also a pleasure to thank the conference organizers for having invited me. 

1. INTRODUCTION 

The basic phenomenon of interest in porous media is connectivity; e.g., 
in order that oil flow t.o the surface of the earth, there must be some 

3 For example, for the lattice animal model of randomly branched polymers, the fractal 
dimension was independently calculated using two different quantities as the effective 
"length," the caliper length (Reference 3a) and the rms radius of gyration (Reference 3b). 
The same answer was obtained in both calculations, to within the quoted accuracy. 
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Fig, 1. Analogous functions for the spin problem and the connectivity problem: (a) The pair 
correlation function measures the probability a spin at r is pointing in the same direction as a 
spin at the origin, and (b)the pair connectedness measures the probability that there is a 
connected path of "up" spins between the spin at r and the spin at the origin. 

connected path. Let me emphasize that connectivity questions are quite 
different from those we address in ordinary thermal critical phenomena. For  
example, in the Ising model we study the spin correlation function, which is 
related to the probability that two objects ("spins") separated a distance r 
are in the same state. (~) Here we will study the pair connectedness function, 
the probability that two objects separated a distance r are in the same state 
and also are connected by some path between them, all of  whose objects are 
in the same state (Fig. 1). (4) 

There are two reasons we care about transport  in fractals. One is that 
problems involving connectivity are extremely deep and subtle, and hence 
seduce our theoretical interest. A second is that there is a wide range of  
systems in Nature for which the essential physics is connectivity. 4'(6-18) One 
such example, porous earth, was just mentioned. A second but related 
example is randomly branched structures like p o l y m e r s - - y o u  could make 
such a structure by fabricating a plaster cast of  the ramified pore structure in 
porous earth. The list of  additional applications ranges from the study of  the 
spread of  disease to the design of  lightweight mechanical materials. 

When man went to the moon, there no really big physics surprises. This 
is because the laws of  physics that work on Earth also work on the moon. 
To our surprise, we are finding that this is not the case for randomly porous 
materials. Specifically, Fick 's  law of  diffusion states that 

(r 2) = N w (d = 1, 2, 3, . .)  (2a) 

where (r 2) is the rms displacement of  a random walk of  N w steps. If  the 
random walker is obliged to be on a fractal, then he travels much less far in 

4 See, for example, Reference 5, which reports the proceedings of an International Topical 
Conference on this subject. 
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Fig. 2. Schematic illustration of the dependence of the mean square displacement on the 
number of steps of a random walk on (a) a Euclidean lattice, and (b) a percolation cluster at 
the percolation threshold. 

the same time. This could reflect itself in a prefactor in (2a), but in fact the 
entire law is changed---one finds (Fig. 2) (19) 

<r 2) ~ (Nw) x (x = x (d )  ~< 1) (2b) 

One may  think of the r andom walker leaving behind a little piece of  bread at 
each step so that it is possible to define the fractal dimension d w of walk 
through 

[mass]w,l k ~ L ~w (d w = dw(d ) >/2),  (2c) 

where [mass]walk is the total number  of  steps (the total "mass "  of  bread),  
and L is the rms displacement (or " range")  of  the walker. 

2. REGULAR GEOMETRIC FRACTALS 

Consider the structure shown in Fig. 3a. This is an example of  a regular 
or "geometr ic"  fractal sometimes called the Sierpinski gasket;  its dual has 
recently been shown to be the Bethe lattice. (2~ At first sight there is nothing 
particularly intriguing about this s t ruc tu re - -one  iterates a simple rule of  
cutting out the center of  each triangle until one gets tired. However,  this 
structure has a remarkable  property:  Its density depends on the length scale 
L with which the structure is probed. To see this, suppose we examine one of 
the smallest triangles of  Fig. 3a. Let us define the edge of this triangle to 
have length L - 1, and the entire triangle to have mass  M = 1. The density 
on this "scale"  is then p = M / L 2 =  1. Now consider the next smallest 
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Fig. 3. A Sierpinski gasket that is self-similar on all length scales. The density decreases 
with the length scale, in a fashion governed by the codimension d / - d .  

triangles. Clearly L = 2 ,  but M =  3 (not4) because of the hole. Thus 
p =  3/4. The next larger triangles have L = 4  and M = 9  (not 16), so 
p = 9/16. Finally, the largest triangle shown (the entire structure) has L = 8 
and M - - 2 7  (not 64), so that p = 27/64. Clearly the density is decreasing 
with L, unlike a normal solid object. Figure 3b shows a log-log plot of 
p vs. L. From (la), we expect p ~ L d/-d so that the slope of Fig. 3b should 
be a t / -  2. A quick calculation, based on the first two points, shows that the 
"codimension" d / -  d is given by 

d ~ -  d = [ln 1 - ln(3/4)]/(ln 2 - In 1) = (ln 3/ln 2) - 2 (3a) 

so that d / =  (In 3/ln 2) = 1.6. Generalizing to d > 2, one finds 

d/(Sierpinski gasket)= ln(d + 1)/(ln 2) 

One can calculate dw(d) exactly for the gasket, with the result 

dw(Sierpinski gasket) = ln(d + 3)/(ln 2) 

so that d w = d~,(d) >/2, as noted in Eq. (2c). 

(3b) 

(3c) 
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We conclude this section with two remarks. 

(i) Note that a necessary condition for linearity of Fig. 3b is that there 
be "holes" of all sizes in the fraetal object of Fig. 3a. Suppose, e.g., that our 
object had holes of only the smallest two sizes. Then the density would 
decrease as shown in Fig. 4 from 1 to 3/4 to 9/16, but would "stick" at 9/16 
thereafter. The behavior for values of L larger than 4 would correspond to 
simply "patching together" smaller fractal objects to form a macroscopically 
homogeneous structure. We say that the value L = 4 represents a crossover 
from self-similar fractal behavior for L > 4. Since for sufficiently large L, the 
slope of Fig. 4b is zero we conclude that the material is simply two- 
dimensional at large scales even though it is 1.6-dimensional at very small 
scales. A truckload of donuts is 3-dimensional, no matter what hole 
distribution the individual donuts have. We can safely predict that if we 
double the linear dimension of the cargo space that the mass of the load will 
increase by a factor of 8. 

(ii) Note that the mass M in Fig. 3 is a homogeneous function of L, 
and that d s is the degree of homogeneity. That is, for all values of ~, 

M(2L ) = ) , ' # M ( L  ) (4) 

Fig. 4. 
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(b) Self-s imi lar Homogeneous 
(froctal) (non-fractol) 

A Sierpinski gasket that is self-similar (fractal) on small length scales, but becomes 
homogeneous (nonfractal) on large length scales. 
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Equation (4) is a hallmark in critical phenomena. "Functional equations" 
such as (4) play a role in critical phenomena analogous to that played by 
algebraic equations in conventional physics. While the solution of an 
algebraic equation is a number, the solution of a functional equation is a 
function. For example, the solution of Eq. (4) is the function M(L)~ L a:, 
which can be obtained perhaps most simply by setting 2 = 1/L in (4). 

3. STATISTICAL (RANDOM} FRACTALS 

Now we are ready to describe the extension of the fractal concept to 
random fractals, such as the interior space of a porous rock. At first sight it 
might seem impossible to make any concrete predictions (like the values of 
d: or dw) for a structure that is completely random. Moreover, it might seem 
impossible to fulfill the requirement that there be "holes of all sizes." 

3.1. Fractal Dimension of Entire Cluster and the Field Scaling Power 

Consider the paradigm problem of site percolation. (4) To describe this 
problem, imagine a chessboard that is infinite in spatial extent. Imagine also 
that one randomly occupies a fraction p of the squares by pawns. When p is 
small, most pawns are isolated. However, as p increases one begins to see 
"clusters" of two, three .... pawns. Naively, one might expect that as p 
increases we would find more large clusters than small clusters. This is not 
the case. Rather, the cluster size distribution function, giving the probability 
Ps that a randomly selected site belongs to an s-site cluster, is a 
monotonically decreasing function of s for all values o f p  (Fig. 5a). In fact, a 
log-log plot of Ps vs. s is linear with slope -d/d: for all values of s up to a 
characteristic value s * ~  ~a~, where ~ is the pair connectedness length that 
characterizes the decay with distance of the function that gives the 
probability of a site at random r to be connected to a site at the origin. 

As p continues to increase beyond the value 0.50 we find that the 
cluster size distribution continues to be monotonic, extending to larger and 
larger values ofs. Finally, at a critical value p - - P c ,  termed the percolation 
threshold, there appears in addition to the archipelago of finite clusters a 
single cluster that is infinite in spatial extent. In the 1977 paper that 
introduced fractals i/ato percolation, (21) it was noted that one reason for the 
possible interest in d: is that it is equal to the magnetic scaling power yh, 

yh = a: (5) 

Thus fractals provide a geometrical interpretation of what was previously an 
abstract mathematical quantity! 
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Fig. 5. The dependence on s of Ps=sn~, the probability that a randomly chosen site 
belongs to (a) an s-site cluster, or (b) an s-site "blob" in the percolation backbone. The value 
of p chosen is slightly below Pc, so there is a crossover at a large but finite value of s between 
self-similar behavior and homogeneous behavior, analogous to that shown in Fig. 4 for the 
Sierpinski gasket. 

3.2. Fractal Dimension of Red Bonds and the Thermal Scaling Power 
("Links") 

Is there an analogous geometrical interpretation of the thermal scaling 
power Yr in percolation? A second fractal quantity was introduced in the 
1977 paper in connection with the observation that the incipient infinite 
cluster in percolation consists of  multiply connected "blobs" joined by singly 
connected "links" (Fig. 6). Pike has made a computer simulation of this 
links/blobs decomposition, published in color in Physics Today, May 
1983-- the  links are in red and blobs in blue, with the dangling ends in 
yellow. (22~ One defines (/re d through 

[masS]red ~ (length) dre~ (6a) 

with similar definitions for the blue and yellow. Coniglio proved rigorously 
that for all d, 

Yr = dred (6b) 
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i, 

Link " ". 

Fig. 6. Typical percolation cluster just below the percolation threshold, indicating backbone 
bonds (heavy line) and dangling ends (light lines); both are similar in that they are composed 
of "links and blobs." After Reference 32. 

which had been found numerically for d =  2. t23a-c) Thus both scaling powers 
in percolation are directly related to geometrical parameters. ~ 

3.3. Fractal Dimension of the Backbone 

Very recently Herrmann and the speaker ~24) have initiated a program to 
study the distribution of elements in the backbone in the percolation cluster. 
We find that the backbone is made up of singly connected sites and multiply- 
connected blobs (Fig. 6). The blobs come in all sizes s (with s =  1 
corresponding to singly connected sites), so it is natural to enquire about the 
"Nob size distribution function." We find that this function obeys a decay 
law (Fig. 5b) analogous to that found for the full percolation cluster, except 
that the role of d is played by dre d, the fractal dimension of the singly 
connected sites. Moreover, we find that the distribution of length of the 
segments of singly connected bonds is exponential, and the same is true for 
the distribution of length of segments of 2-site blobs, 3-site blobs, and so 
forth. Thus the backbone of a percolation cluster has a structure identical to 
what would be obtained if a blind monkey were to choose "building blocks" 
one-by-one from the probability distribution law of Fig. 5b and assemble 
these building blocks in a linear chain. Thus the backbone of the incipient 
infinite cluster through which oil first passes has a very simple and elegant 
structure! 

5 It appears that Coniglio's lemma holds "term-by-term" in the graphical expansion used in 
exact enumeration methods, as noted in Reference 23d and proved in 23e. 
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Having mentioned the decomposition (zl) of the backbone of the 
incipient infinite cluster into blue blobs and red links, it is natural to consider 
the fractal dimension of the backbone itself. Thus we define 

[mass]b,ckbon e ~ (length)d~" (7) 

Why do we care about the backbone? Suppose we attach the terminals 
of a battery to two points of a percolation cluster. Then it is the backbone 
bonds that will carry current, and not the dangling ends. Thus we expect that 
the backbone will be related to the behavior of the electrical resistance. 

3.4. Fractal Dimension of a Random Walk 

To see the relation directly, we must utilize the Einstein relation: the 
electrical conductivity is proportional to the time rate of change of (r2), the 
mean square displacement of a random walker. Now the fractal dimension of 
a random walk is defined by imagining that the random walk is a free flight 
polymer chain (with no "excluded volume"). Then the mass of the chain is 
equal to the number of steps in the random walk, while the length of the 
walk is the rms displacement (r2) 1/2. Hence we can write, as in (2c), 
[mass]wal k ~ (length) aw. Here d w is called the fractal dimension of the walk. 
For a nonfractal, d w = 2 regardless of d, while for the fractals studied at this 
conference d w is a strong function of d and is always larger than two. For 
example, for percolation clusters d w increases from roughly 91/32 ~ 2.85 for 
d = 2 (a conjecture made in 1982 by Alexander and Orbach and probably 
accurate to at least 2 % - 3 % )  to 6 for d >  6. (25-31) For the percolation 
backbone, which is much less "ramified," d w increases from roughly 2.77 for 
d =  2 to 4 for d > 6. (32) A random walk on a Witten-Sander fractal is 
shown (3~ in Fig. 7. 

From the definition (2), a one-line derivation using the Einstein relation 
shows that physical quantity, the resistance exponent ~, is given by the 
difference between two fractal dimensions, (zs-31) 

~ = d w - d  s (8a) 

Thus a physical quantity which is normally thought to involve the complex 
physics of Kirchoffs laws is found to be simply given by the difference 
between two fractal dimensions. Now the Einstein relation holds even after 
the dangling ends are chopped off. Hence one can apply the same one-line 
derivation to the backbone, with the result (3z) 

~ = d ~ " - d ~  a (8b) 
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Fig. 7. A random walk of 2500 steps on a fractal with 1000 sites (a small aggregate), The 
sites visited by the walk are indicated by heavy lines. (From Ref. 30.) 

Combining (4a) and (4b), we have a relation 
properties and the properties of the full cluster, (32) 

between the backbone 

- as= dg - (8c) 

3.5. Fractal Dimension of Growth Sites: The "Order Parameter" of 
Dynamics? 

This relation between the backbone and the full cluster motivates a 
search for a fundamental geometric interpretation of the basic dynamic 
process itself. Our own group's effort along these lines has focussed to a 
large extent on the Leyvraz/Stanley "growth sites. ''~31) These are defined as 
follows. Imagine that we generate a percolation cluster by dropping an ant 
onto a square lattice at t = 1, letting the ant "generate the percolation cluster 
as it moves." The tbur neighboring sites are called growth sites because the 

822/36/5-6-23 
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ant has the potential of "growing" his territory by moving there. Now we 
give the ant two coins. The first has four sites: N, E, S, and W. The second 
has two sides, occupied and blocked, and is weighted to come up "blocked" 
41% of the time. Thus at each time step the ant flips the two coins in 
succession and moves if possible. The number of G sites clearly increases 
with time. Moreover, as Rammal and Toulouse ~zS) pointed out, there is a 
simple relation between the total number of sites visited by the ant and the 
total number of G sites. 

(d/dN) Mto t = M(7/Mto t (9)  

where N =  [mass]wal k is the total number of steps, and 

M(7 = [mass  ](7 sites ~'~ (length) aa (10) 

which serves to define the fractal dimension d(7. Substituting (1), (2), and 
(10) into (6) we find 

d ~ = 2 d l - d  ~ (11) 

The Alexander-Orbach conjecture (AO) that d w = ( 3 / 2 ) d : =  91/32 predicts 
that d(7 = ( 1 / 2 ) d : =  91/96 ~ 0.9479, while the Aharony-Stauffer conjecture 
(AS) ~33) that d w = d:+ 1 predicts that d(7 = d : -  1 = 43/48 ~ 0.8958, about 
5 % smaller. Coniglio and Stanley(34)--and independently AS--argued that 
the critical dimension for dynamic phenomena was d:= 2 (NOT d =  2); 
indeed, both predictions become identical at d:= 2. Geometrically, the AS 
prediction corresponds to the assumption that the G sites are localized on the 
Mandelbrot perimeter--i.e., in a ring that does not increase in width as the 
fractal grows. This is being tested now for percolation fractals and 
preliminary results can be discussed privately. Such a test would be easier 
for fractals with lower d:, and to this end much attention recently has 
focussed on a family of fractals studied extensively by Meakin, Leyvraz, and 
Stanley. ~35) Here it appears that one can continuously tune the fractal 
dimension and more easily test conjectures like those mentioned above which 
are difficult to test on percolation since d: is so close to 2. 

3.6. The Fractal Dimension of the Chemical ("Minimum") Path 

Of relevance in a polymer problem is not only the "air 'distance 
between two points (this is the length L), but also the "cowpath" connecting 
these two points (Fig. 8). This cowpath was called the minimum path in the 
early studies of Pike and Stanley for d = 2 ~ and series studies for d = 2, 3, 
4 ,  5, the renormalization group studies for d =  2 of Hong and Stanley, ~ 
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Fig. 8. Schematic illustration of the difference between the "airline distance" between two 
points and the "cowpath distance" or "chemical length" ( between the same two points. The 
exponent dmj n characterizes the dependence of I on ~. If we count all the sites within a 
chemical distance t of a given site, then this "mass" scales as (dl, where d / = dy/d n is the ratio 
of two fractal dimensions--an intrinsic fractal dimension. 

and the rigorous results of  Coniglio.(38) The mass o f  bonds in this minimum 
path is larger than the mass of  bonds would be in an "airline" route, and in 
fact scales with L with an exponent distinctly larger than one. Thus we can 
define the fractal dimension dmi n by 

[ m a s s ] r a i n  path ~ (length) dm~n (12) 

Alexander has suggested that one think of  this minimum path between two 
sites as the "chemical  distance" separating them, and Havlin and 
collaborators (39-42) have studied the variation of  the total cluster mass within 

a chemical distance l = Mminpat  h. Clearly 

[mass]tot ~ ( length)aI~ l ay/dmi" = I a' (13) 

and this "intrinsic" exponent d t is termed the c h e m i c a l  d i m e n s i o n .  Toulouse 
has suggested that d t be called the "spreading dimension" since it measures 
the number of  trees felled by a forest fire (44) and Herrmann and his 
colleagues have devised an efficient algorithm for "burning" a cluster.(45) In 
any case, there are now several groups measuring dmi n (or, equivalently, dr) 
and the results are in good agreement. A possible application even more 
intriguing than forest fires is the work of  Ritzenberg and Cohen in modeling 
cardiac phenomena. (10) 

The minimum path between two points is the same regardless of  
whether the dangling ends have been decapitated, so that dm~ n is the same for 
the backbone and the full cluster. Hence the analog of  (5c) is 

dy/dt = dI~B/ABBf / ~ t  (14) 
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3.7. Fractal Dimension of the Elastic Backbone 

The backbone of a percolation cluster is sometimes defined as the union 
of all self-avoiding random walks between two points. The e las t ic  backbone 
is defined as the union of all minimum paths between two points. (45) Thus 
the only blobs in the elastic backbone are those that have the same "stress" 
in all members, so the elastic backbone might represent the essential physics 
of elasticity phenomena when one neglects the contribution from bond angles 
(Fig. 9). 

Although the blobs in the elastic backbone might at first sight appear to 
be rare and small, they in fact seem to occur in all sizes. Hence one finds 

[mass]elastic BB ~ (length) de (15) 

with d e > dmi  n.  Herrmann and his collaborators have measured d~ for 
d = 2, 3. (45) 

3.8. Fractal Dimension of the Unscreened Perimeter 

Perhaps the most dramatic example of the main point of this lecture is 
the example that we have saved for last: The fractal dimension d~ charac- 
terizing the mass of the unscreened perimeter, 

[mass]unscreeneo perimeter ~ (length) d" (16) 

This quantity arises naturally in describing the electrical conductivity of 
a random network made of superconducting bonds. Just below the 
percolation threshold, this problem can be modeled by the de Gennes 

A 

13 

A ,l F 

Fig. 9. Supposing that the angles of the object 
of springs shown in (a)can change freely, we 
show in (b)the elongation of the object due to 
the application of the force F at A and B. (After 
Ref. 45.) 
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termite. (46) The termite, unlike the ant, is free to move off and on the cluster. 
When off the cluster, it is on normal bonds and hence undergoes a normal 
random walk. When on the cluster it moves in accord with the supercon- 
ducting nature of the cluster. Coniglio and Stanley (34) have recently found 
that the unscreened  perimeter of a cluster governs the essential physics of 
this problem, since the termite can enter and leave a cluster only though this 
subset of the total perimeter. They obtain a remarkably simple and 
physically revealing formula 

= 

for the exponent governing the divergence of the conductivity ~',, which is the 
analog of ~" defined above for the random resistor network. Moreover, they 
relate d u to the fractal dimension d e of the projectile (d e = 2 for a random 
walk or termite) through the simple expression 

d,  = (d s - 1 ) + (d - ds ) /d  e (18) 

The first term in (18) corresponds to the "Mandelbrot perimeter": it gives 
the exponent that governs how scales the number of sites that are cut by a 
hypersphere intersecting the fractal. The second term is the increase 
necessary to account for the fact that there is penetration of the fractal; it is 
proportional, therefore, to the codimension d - d s and inversely proportional 
to the fractal dimension of the projectile. Note that in the limiting case 
dp = or, only the first term contributes while if de = d -  d s, then all the 
fjords are accessible to the projectile and d ,  = d s. They find that the critical 
dimension for the termite problem is the same as that for the ant problem, 
d s=  2. This arises from the fact that for d s > 2, a random walk is the most 
efficient way to penetrate another cluster so we choose d s = 2  in (18). 
However for d s < 2, one cluster can penetrate another more efficiently than a 
random walk and one must set dp = d s in (14). 

4. SUMMARY AND OUTLOOK 

In this brief introduction, we have seen that many physical phenomena 
of interest may be expressed directly in terms of fractal dimensions. An 
example that perhaps best illustrates the utility of this correspondence is the 
superconducting network, where we found that all the physics is given by the 
unscreened perimeter: ~s = du [Eq. (17)]. 

Before concluding, we should perhaps emphasize that many of the 
concepts discussed above apply to a richer range of phenomena than 
indicated. One example is diffusive annihilation: suppose our ants are 
particularly hostile to each other and have the property that if they collide 
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then they annihilate. I f  these hostile ants are initially placed at random on a 
fractal, then their concentration will decay in time with a slow power law 
tail, whose exponent is given by the ratio d i d  w. ~47,48) 

In summary,  we have introduced nine different fractal dimensions: 

d f = Y h ,  dr~ Yr ,  d~ R, d~, BB = d ~ ,  d a, dmi n, d e , and d , .  Toulouse has 
suggested that we call such fractal dimensions "extrinsic," and use the term 
"intrinsic" to describe exponents such as the chemical distance dimension 
d I = df/dmi n and the spectral (fracton) dimension d, = d J d  w. Like the 26 
critical exponents of  the early 1960s, these nine fractal dimensions are 
probably not all independent--indeed,  we have just presented some (but 
probably not all) of  the relations among them. What  is the minimum number 
of  fractal dimensions needed to describe the wide range of  critical 
phenomena? This is the analog of  the questions that  Widom and Kadanoff  
must have asked. Let us hope that by the time of  our next conference 
someone has been as successful as they were in reducing this "constellation 
of  disorder" to a simple set of  principles. 

NOTE ADDED IN PROOF 

After this was written, there have been many articles on fractal models 
of growth that would have been discussed had they appeared slightly earlier. 
In an effort to correct for this omission, I shall conclude with citations of  the 
original sources so that the interested reader can be brought up to date. (49 59) 
It should be noted that an increasing effort has been directed toward probing 
fractal materials experimentally. 
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