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The 2008–2012 global financial crisis began with the global recession in December 2007 and exacerbated in
September 2008, during which the U.S. stock markets lost 20% of value from its October 11 2007 peak.
Various studies reported that financial crisis are associated with increase in both cross-correlations among
stocks and stock indices and the level of systemic risk. In this paper, we study 10 different Dow Jones
economic sector indexes, and applying principle component analysis (PCA) we demonstrate that the rate of
increase in principle components with short 12-month time windows can be effectively used as an indicator
of systemic risk—the larger the change of PC1, the higher the increase of systemic risk. Clearly, the higher
the level of systemic risk, the more likely a financial crisis would occur in the near future.

I
n finance, systemic risk is the risk associated with the whole financial system, as opposed to any individual
entity or component1. It can be defined as any set of circumstances that threatens the stability of the financial
system, and so potentially initiates financial crisis2. It generally holds that the larger systemic risk, the larger are

the threats to financial stability. An example is a bank runs associated with a large group of clients deciding to
withdraw their deposits immediately, creating shortage of cash that might lead to multiple bank failures and
cascades into a global financial crisis3. Systemic risk is commonly defined as the probability of a series of
correlated defaults among financial institutions, occurring over a short time span, which in turn trigger a
widespread liquidity and loss of confidence in the financial system as a whole2,4. The 2008–2012 global financial
crisis makes researchers re-cognize the importance of the measurement and forecast of systemic risk.

The empirical studies on systemic risk are loosely divided into three categories2,5. Two of them are directly
related to the performance of banks. The first one involves bank contagion, and is mostly based on the auto-
correlation of the number of bank defaults, bank returns and fund withdrawals6–14. The other one is focused on
bank capital ratios and bank liabilities, and show that aggregate variables such as macroeconomic fundamentals,
which provide evidence in favor of the macro perspective on systemic risk on the banking sector15–18.

The third group of empirical studies on the systemic risk put emphasis on contagion, spillover effects and co-
movement in financial markets3,19,20,22–29. These studies are based on cross-correlations and causality relationships
among securities and currency price time series. Most of the studies are carried out on financial sectors such as
banks, brokers, insurance companies and hedge funds22–25. Many measures of the systemic risks are based on
principal components analysis (PCA) or Granger-causality test24–26. For example, Kritzman et al.25 proposed a
systemic risk measurement called the absorption ratio based on PCA, Billio et al.2 used the first two eigenvalues to
detect the systemic risk from banks, brokers, insurers and hedge funds. They also proposed an indicator named
dynamic causality index (DCI) calculated from Granger-causality test to measure the degree of systemic risk.
Kaminsky and Reinhart24 used a simple vector auto-regression model to run Granger-causality test between the
interest and exchange rates of five Asian economies before and after the Asian crisis. Previous work has shown
that the first PC is closely related to the average correlation. Billio et al.2 reported that four financial sectors
including hedge funds, banks, brokers, and insurance companies become highly interrelated and less liquid prior
to crisis periods. Recently, some of the security cross-correlation studies report that the first principal component
substantially increases during financial crisis19,20. The same studies reported that the volatility cross-correlations
exhibit long memory21, implying that once high volatility (risk)30,31 is spread across the entire market, it could lasts
for a long time.
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On top of what was proposed by previous studies24,25 that use
principle components, we develop an alternative method to use
change in principle component to capture the systemic risk
dynamics. Here based on 10 major economic sectors of US economy
and 10 major economic sectors of European economy, each repre-
sented by the Dow Jones sector index, we apply principal component
analysis with 12-month moving windows and demonstrate that the
steepest increase in the first principal component PC1 may serve as
an indicator of systemic risk—the larger the peak in the change of
PC1, the higher is the systemic risk. Since larger systemic risk means
potentially unstable financial market, a large change of PC1 implies a
crisis is likely to occur in the near future.

Results
Dynamics of principal components. Billio et al.2 suggested several
econometric measures of systemic risk to quantify the interrelation-
ship between the monthly returns of hedge funds, banks, brokers,
and insurance companies based on principal components analysis
(PCA) and Granger-causality tests. They reported that all four
sectors have become highly intercorrelated over the past decade,
increasing the level of systemic risk in the entire financial sector.
The measures contain predictive power for the 2008–2012 global

financial crisis. When applying PCA, the basic idea is that systemic
risk is getting higher when the largest eigenvalue increases explaining
most of variation of the data. When applying Granger-causality test,
the dynamic causality index (DCI) is defined in the way that an in-
crease in the DCI indicates a higher level of system interconnectedness.

Here we study 10 major sectors of the US economy each quantified
by the corresponding Dow Jones sector index and the Dow Jones
Industrial Average. There are 11 indexes in total. Based on principal
component analysis (PCA), using moving windows of size n, first we
calculate the covariance at each time t based on previous n either (a)
returns of Eq. (2) or (b) absolute returns of Eq. (3) (volatilities).

Fig. 1 shows the time series of the first four principal components
(PCs), each quantifying the variability in (a) returns and (b) absolute
returns. Note that the principal components are first normalized so
that they sum up to one (see section Data). In (a) and (b) we use 36-
month moving windows as commonly applied in financial literat-
ure2,4. For the time series of returns (absolute returns), we find that
the first principal component captures the major variation in return
(volatility) series. We also find that the eigenvalues from returns
cover more variation than the eigenvalues of absolute returns. For
example, the first eigenvalue of returns approximately captures the
variation ranging from < 35% to < 85%. This is larger than the first
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Figure 1 | Principal components analysis of the monthly (a) return and (b) volatility of 10 Dow Jones Supersector indexes during March 2000 to June
2012 over 36-month rolling-window proportion of variability (eigenvalues) for principal components 1–4. Note that PC2 actually represents
PC11PC2, and accordingly PC4 represents PC11PC21PC31PC4. (c) and (d) show the principal components 1–4 where 36-month moving time
windows are replaced by 12-month moving time windows. Highest peaks locate at earlier months for 12-month windows.
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eigenvalue of absolute returns which captures the variation ranging
from < 30% to < 70%. For return time series, we find that the four
PCs shows a rich dynamics over the entire period from April 2003 to
June 2012. PC1 eigenvalue fluctuates from < 41% at the beginning of
2007 to < 86% in 2011. We find that PC1 captures < 60% of vari-
ability among 10 major US sectors, and that the first and second PCs
together (PC2 in figure represents PC11PC2) explain < 77% of the
return variation. We note that roughly at the beginning of 2007 the
proportion of variance explained by the first eigenvalue PC1 starts to
increase almost monotonically. We find that the steepest increase of
PC1 occurred in (a) only couple of months before 2009.

We note that the choice for window size n clearly affects the time
coordinate which one can expect the steepest increase in cross-
correlations. To this end, in Fig 1(c) we apply shorter 12-month
moving windows instead of 36-month. The steepest increase in
PC1 occurred in August 2007 before the global recession and before
the markets started to decline.

In Fig. 1(a) the steepest increase in PC1 occurred in late 2008, long
after the crisis started. In Fig. 1(c), for 12-month moving windows—
this has shorter window size than the one used in Fig. 1(a)—we show
that the steepest increase of PC1 occurred before the 2007 global
recession started in December 2007. We propose the following
explanation: market crashes are always associated with large shocks,
but if window size n is too large, large shocks are overridden by all
other signals. Next we study the dynamics of PC1 in terms of the rate
of change in PC1 values.

We define the temporal dependence of the change of the first
component PC1 as

DPC1 tð Þ~PC1 tð Þ{PC1 t{mð Þ: ð1Þ

Since the data are monthly recorded, m 5 1 denotes the change in
PC1 within one month, and therefore, the choice m denotes the
change in PC1 within m months. The change in PC1 for fixed 12-
month moving windows and varying values of m are shown in
Fig. 2. In Fig. 2(a) when m 5 1 we find that the largest increase in
PC1 coincide as expected with the steepest increase in PC1 in
Fig. 1(c) occurred in August 2007, that was a very special month
for the financial system. It was the month when the Interbank
market froze completely32. In Fig. 2(a)–(d) we find that with
increasing m, in the estimator defined in Eq. (1) the change in
PC1 becomes delayed, and that is the same mechanism we found
when varying n in Fig. 1. To have a close examination of the effect
of the size of window n on the forecasting power of our estimator,
in Fig. 3 we show how the peak representing the largest increase in
PC1 depends on n. We see that after n < 20 the date where the
peak occurs virtually saturates. Smaller time windows evidently
have earlier peaks than larger ones.

Next in Fig. 4 for fixed 12-month moving windows we find that the
probability distribution function (pdf) of all past changes in PC1
exhibits an asymmetric functional form (skewness 5 0.29) where
we hypothesize that the right-wing rare events are associated with
highest increase in systemic risk. We also show the Gaussian pdf with
the standard deviation equivalent to the one we found in PC1 data.
Having information about the pdf of past changes in PC1, based on
any future change in PC1 we can test how large the increase of
systemic risk is.
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Figure 2 | For monthly recorded data we show changes of PC1 of returns for lag (a) m 5 1 month (m is defined in Eq. 1), (b) m 5 2 months, (c) m 5 3
months and (d) m 5 6 months calculated for 10 Dow Jones Supersector indexes during March 2000 to June 2012. In (a) the largest peak occurred in
August 2007 before the global recession. With increasing m the highest peaks are becoming delayed.
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We further confirm our results by comparing in Fig. 5 the monthly
change in PC1 values (m 5 1 in Eq. (1)) and 12-month (annual)
returns of the Dow Jones Industrial Average. At each month t, using
moving time window approach, a time series of changes in PC1 based
on past 12-month returns–calculated between t and t 2 12—and a
time series of future 12-month returns of the Dow Jones Industrial
Average—calculated between t and t 1 12—are constructed. In Fig. 5
we find after the largest PC1 peak in August 2007 there is a rapid drop
in index return. Even after the second largest peak in PC1 the annual
return calculated for moving time window continues to decrease,
suggesting that PCA with short-time windows can serve as a measure
for systemic risk. Clearly, the higher the level of systemic risk, the
more likely a financial crisis would occur in the near future.

To validate our approach, we study the U.S. financial sector that
is a subset of the previous dataset, i.e. five U.S. financial indexes

representing banking (KBW Bank Index), broker (NYSE Arca
Securities Broker/Dealer Index), insurance companies (S&P 500
Insurance Index), hedge funds (Eurekahedge North American
Hedge Fund Index), and real estate industry (Vanguard REIT
Index Fund). Fig. 6 shows that financial sector also has the largest
increase in PC1 occurred prior to financial crisis, in July 2007, which
is prior to the global recession and global financial crisis. This implies
that PCA formalism with the rate of increase in principle compo-
nents and short-time windows may serve as an indicator for systemic
risk.
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Figure 3 | Size of the largest peak in PC1 as a function of window size n. With increasing n, the largest peak increases first and saturates after
approximately 20-month time window.
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Figure 5 | Past versus Future—comparison of monthly changes in PC1
values and future annual returns of the Dow Jones Industrial Average.
Both PC1 and returns are evaluated on 12-month time windows. However,
PC1 values are calculated between t and t 2 12, while returns are calculated
between t and t 1 12. It is evident that the largest change in PC1 value is
followed by a large drop in 12-month returns, indicating a market crash.
For the changes in PC1 values, we take m51 such that changes in one
month are considered.
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To further verify our findings, we study 10 major sectors of the
European economy and separately 10 major sectors of the worldwide
developed markets excluding the US and each sector is quantified by

the corresponding Dow Jones sector index (Data section). For the
result from European data in Fig. 7, by applying PCA we show again
the time-series of first four principal components (PCs) for 12-
month moving windows, each quantifying the variability in returns.
We find that the PC1 started to increase almost monotonically in the
mid 2007. In Fig. 7 we find that the largest change in PC1 occurred in
February 2008. Note that very similar results we obtain in Fig. 8 by
analyzing the developed markets excluding the US economy. These
two dates are a few months later after the result from US market, and
this is because it took time for the crisis to spread from US to Europe
in 2008.

Billio et al.2 reported that principal components estimates and
Granger-causality tests yield an asymmetry in the connections
between different financial industries: the returns of banks and
insurers have more significant impact on the returns of hedge funds
and brokers than vice versa. Besides, they found that this asymmetry
became highly significant prior to the Financial Crisis of 2007–2009,
indicating that the measures may be useful as early-warning indica-
tors of systemic risk. In order to support our results reported in
Figs. 1, 2, and 5, next instead of using 36-month time-window, we
apply 12-month time window and calculate the dynamic causality
index (LDCI) of Eq. (6) for monthly recorded time series of 10 Dow
Jones indexes representing 10 super-sectors (see section Methods).
The plot of LDCI versus time in Fig. 9(a) shows that LDCI(t) exhibits
the sharp increase in the number of causality links just prior the
financial crisis, which means that LDCI(t) with shorter time window
of 12 months captures the increase of systemic risk prior the financial
crisis.

We also calculate the (LDCI) of Eq. (6) for monthly recorded time
series of 10 Dow Jones indexes representing 10 super-sectors in
Europe. The plot of LDCI versus time in Fig. 9(b) exhibits not only
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Figure 6 | PC1 with short time windows. Changes for lag m 5 1 month of
PC1 of returns calculated for five financial sector indexes representing
banking, broker, insurance companies, hedge funds and real-estate
industry over 12-month moving windows. The peak at July 2007 coincides
with our finding for the Dow Jones indexes. m is defined in Eq. (1).

Figure 7 | (a) PCA of the monthly return of 10 Dow Jones Supersector
indexes of major sectors of the European economy during January 2000 to
Jun 2012 over 12-month rolling-window proportion of variability
(eigenvalues) for principal components 1–4. Note that PC2 actually
represents PC11PC2, and accordingly PC4 represents
PC11PC21PC31PC4. In (b) we show changes of PC1 of returns for lag m
5 1 month (m is defined in Eq. 1).

Figure 8 | (a) PCA of the monthly return of 10 Dow Jones Supersector
indexes of major sectors of the worldwide developed markets excluding the
US economy during July 2003 to Jun 2012 over 12-month rolling-window
proportion of variability (eigenvalues) for principal components 1–4. Note
that PC2 actually represents PC11PC2, and accordingly PC4 represents
PC11PC21PC31PC4. In (b) we show changes of PC1 of returns for lag m
5 1 month (m is defined in Eq. 1).
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the sharp increase in the number of causality links just prior the
financial crisis, but also even larger increase in the number of caus-
ality links in the mid of 2010 that is most probably related to the
European sovereign debt crisis when some countries in the euro area
were not capable to repay or re-finance their government debt.

Discussion
Over the past two decades of financial innovations and deregulation,
the global financial system has become considerably more complex
and interrelated. The increase in cross-correlations among secur-
ities30,33,34 and industry sectors has great impact in the risks at the
systemic level that has never been present before.

In this paper, we proposed a systemic risk estimator which is built
upon principal components analysis (PCA). When PCA is applied, as
proposed in Refs. 2,5. systemic risk is higher when the largest eigen-
value explains most of variation of the data, or alternatively, with
increasing the largest eigenvalue. The more PC1 explains the vari-
ation of the data, the larger the systemic risk, implying that the larger
the change of PC1, the higher the increase of systemic risk. The larger
increase of systemic risk, the larger are the threats to financial stability,
implying it is more probable the crisis will occur in the near future.

By studying 10 major US economic sectors and their indexes, we
found that within PCA framework and short time windows of 12

months, the change in the first principal component PC1 can be used
as an indicator of systemic risk, where the larger the peak in the
change of PC1, the higher the increase of systemic risk. We obtained
that the largest peak in the PCA approach coincide with the largest
peak obtained by using the dynamic causality index (LDCI) with 12-
month time window. LDCI versus time exhibits the sharp increase in
the number of causality links just prior the financial crisis, which
means that LDCI(t) with shorter time window of 12 months captures
the increase of systemic risk during the financial crisis.

Similar results were obtained on the 10 major European economic
sectors and their indexes. By applying the dynamic causality index
(LDCI), besides the sharp increase in the number of causality links just
prior the financial crisis, we also obtained even larger increase in the
number of causality links in the mid of 2010 that is most probably
related to the ongoing European sovereign debt crisis.

Methods
Data. We analyze monthly recorded time series of 10 Dow Jones indexes representing
10 super-sectors. The super-sectors are categorized following classification sector
rules of Dow Jones Indexes1. Each Dow Jones sector Index captures 95% market
capitalization of the U. S.-traded stocks of the sector. In total, ten sectors are
represented by the following indexes: Dow Jones U.S. Oil & Gas Index, Dow Jones
U.S. Basic Materials Index, Dow Jones U.S. Industrials Index, Dow Jones U.S.
Consumer Goods Index, Dow Jones U.S. Health Care Index, Dow Jones U.S.

Figure 9 | Early-warning indicator—dynamic causality index of Ref [2] defined as the proportion of significant causal connections at 5% level of
statistical significance out of all possible causal connections based on 12-month rolling-windows. Linear Granger-causality relationships are calculated
for the (a) US economy over the period from March 2000 to June 2012 for the monthly returns of 10 Dow Jones Supersector indexes and for the (b)
European economy over the period from January 2000 to June 2012 for the monthly returns of 10 Dow Jones Supersector indexes.
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Consumer Services Index, Dow Jones U.S. Telecommunications Index, Dow Jones
U.S. Utilities Index, Dow Jones U.S. Technology Index, Dow Jones U.S. Financials
Index. We obtain all the data from finance.yahoo.com and analyze these database for
the period starting at March 2000 and ending at June 2012. We also study financial
subsector using the following five indexes: S&P Insurance Index, KBW Bank Index,
Vanguard REIT Index ETF, NYSE Arca Securities Broker/Dealer Index, Eurekahedge
North American Hedge Fund Index.

We also study monthly recorded time series of 10 Dow Jones indexes representing
10 super-sectors in Europe. In total, ten European sectors are represented by the
following indexes: Dow Jones Europe Oil & Gas Index, Dow Jones Europe Basic
Materials Index, Dow Jones Europe Industrials Index, Dow Jones Europe Consumer
Goods Index, Dow Jones Europe Health Care Index, Dow Jones Europe Consumer
Services Index, Dow Jones Europe Telecommunications Index, Dow Jones Europe
Utilities Index, Dow Jones Europe Technology Index, Dow Jones Europe Financials
Index, For European data the range is from Jan 2000 to Jun. 2012.

Finally we study monthly recorded time series of 10 Dow Jones Developed Markets
ex-U.S: Dow Jones Developed Markets ex-U.S. Oil & Gas Index, Dow Jones
Developed Markets ex-U.S. Basic Materials Index, Dow Jones Developed Markets ex-
U.S. Industrials Index, Dow Jones Developed Markets ex-U.S. Consumer Goods
Index, Dow Jones Developed Markets ex-U.S. Health Care Index, Dow Jones
Developed Markets ex-U.S. Consumer Services Index, Dow Jones Developed Markets
ex-U.S. Telecommunications Index, Dow Jones Developed Markets ex-U.S. Utilities
Index, Dow Jones Developed Markets ex-U.S. Technology Index, Dow Jones
Developed Markets ex-U.S. Financials Index. For developed markets ex US, the range
is from July 2003 to Jun. 2012.

For a given index i, its return series is defined as

Ri tð Þ~lnPi tð Þ{lnPi t{1ð Þ ð2Þ

where the P(t) denote the price of a given index i in month t. The volatility is defined as
the absolute of return series:

Vi tð Þ~ Ri tð Þj j: ð3Þ

With the time series of raw returns, we further normalize them into time series with
zero mean and unit variance:

gi tð Þ~ Ri tð Þ{vRi tð Þw
sR

or ~gi tð Þ~ Vi tð Þ{vRi tð Þw
sV

ð4Þ

where i refers to the ith super-sector index; sR~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vR2w{vRw2
p

and
sV ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vV2w{vVw2
p

are the standard deviations of R(t) and V(t) respectively;
, … . denotes a time average over the period studied.

Principle component analysis. In order to investigate the systemic risk among
indexes of different economic sectors, we apply principal components analysis (PCA),
which is a widely used method for capturing correlation dynamics35–37. PCA is a
mathematical tool that converts a group of correlated variables into orthogonal linear
combinations (called principle components) so that the new basis are linearly
uncorrelated. The principle components are usually calculated from eigenvalue de-
composition of a cross-correlation matrix.

If by C we denote the cross-correlation matrix, the squares of the non-zero singular
values of C are equal to the non-zero eigenvalues of CC1, where C1 denotes the
transpose of C. In a singular value decomposition C 5 USV1, the diagonal elements
of S are equal to the singular values of C. The columns of U and V are the left and the
right singular vectors of the corresponding singular values. For the 11 times series in
our analysis, C represents the 11 3 11 correlation matrix of the 11 return time series.

In finance, we base our risk estimate on cross correlation matrices derived from
asset and investment portfolios38–41. The larger the discrepancy between the cor-
relation matrix C between empirical time series and the Wishart matrix W obtained
between uncorrelated time series, the stronger are the cross correlations in empirical
data. In Ref.38 in the case of 406 time series of companies comprising the S&P 500,
94% of the total number of eigenvalues fall in the region where the theoretical formula
that holds for uncorrelated time series applies. Hence, less than 6% of the eigenvec-
tors, which are responsible for 26% of the total volatility, appear to carry some
information.

Dynamic causality index and its changes. We study causality links based on the
linear Granger-causality tests42–44. In this study, we analyze the correlation dynamics
among return series. Precisely we study not the return time series of indexes but their
normalized time series.

In order to calculate the dynamic causality index, that is an early-warning indicator
for financial crisis, first we need to define a Granger causality for a pair of indexes:

Xt~
Xm

j~1

ajXt{jz
Xm

j~1

bjYt{jz t

Yt~
Xm

j~1

cjXt{jz
Xm

j~1

djYt{jzgt

ð5Þ

where Xt and Yt are two time series each defined with zero mean and unit variances. In
this paper each series is normalized and so we use the normalized return and volatility
time series of Eq. 4. In Eq. 5, t and gt are two uncorrelated i.i.d. processes, m is the
maximum lag considered, and aj, bj, cj, dj are coefficients of the model. The definition

of causality implies that Y caused X when bj is statistically significant from zero.
Likewise X cause Y when cj is statistically significant from zero. When both bj and dj
are statistically significant from zero, there is a feedback relationship between the two
time series. In practice, the causality is based on the F-test where the null hypothesis is
defined that coefficients bj and cj are equal to zero.

We analyze the pairwise Granger causality between the t 2 1 and t monthly returns
of the 10 indexes. We follow the definition of Billio et al.2, X Granger-causes Y if C1
has a p-value of less than 5%, similarly Y Granger-causes X if b1 has a p-value of less
than 5%. Billio et al.5 defines the dynamic causality index (DCI) series as

LDCI tð Þ~ number of causal relationships over a given period
total possible number of causal relationships

ð6Þ

where the rolling-windows have length of 12 months, t indicate the month imme-
diately following the rolling-window.
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